用户名: 密码: 验证码:
大气污染物二氧化硫对大鼠哮喘病模型气道平滑肌生物力学行为影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
哮喘(Asthma)作为一种慢性呼吸道疾病,正日益成为严重威胁人类健康的重大问题。令人遗憾的是,科学界对哮喘病的病因和发展过程至今还没有完全认识清楚,其病理机制也一直是医学上的重要难题。随着环境的不断恶化,大气中的污染物,包括二氧化硫(SO_2)与哮喘病的关系也日益受到关注。SO_2是大气中最常见的污染物之一,其对呼吸健康的危害早在上个世纪就引起了人们的重视。通过流行病学、免疫学等方面的大量研究,发现SO_2与哮喘病中包括免疫、炎症、氧化应激和氧化损伤等在内的多种病理机制有关。而有关SO_2对哮喘病中气道的生物力学特性的影响至今尚未见报道。与此对照的是,越来越多的研究表明,哮喘病人的气道组织,特别是气道平滑肌在病变过程中的结构与功能变化会导致其生物力学行为的改变,使其在受到外来刺激时发生过度收缩反应(AHR),从而引起气道过度狭窄和随之而来的呼吸阻碍,这是导致哮喘病成为高度危险疾病的共同的最终途径。由此,气道平滑肌收缩功能变异作为这一现象的终极原因成为目前研究的重点。因此,研究SO_2对于气道平滑肌生物力学特性的影响及其机理将有助于全面的认识和理解大气污染与哮喘病发生、发展的关系,为治理环境和有效防治哮喘病提供重要的参考依据。鉴于此,本文以四周龄Sprague Dawley(SD)大鼠为模型动物,以卵清蛋白(OVA)为致敏剂,建立了哮喘动物模型。在此基础上,以浓度为2 ppm(5.6 mg/m3)的SO_2对正常和哮喘模型动物进行长时间暴露刺激,并分别在个体、组织和细胞水平,研究了SO_2对气道平滑肌的影响,特别是SO_2对气道平滑肌细胞的生物力学行为的影响及其细胞骨架动力学机理。主要研究内容和结果如下:
     1)根据模拟SO_2单因素大气污染环境的要求,设计并制作了内部空间SO_2浓度可控制的动物实验装置。该装置由气路管道系统、传感检测系统和智能控制等部分构成,不仅能够实现在局部封闭空间中模拟低浓度SO_2污染的大气环境,并具有操作性强和可靠性高的优点。经测试和较长时间的实际使用,结果表明该装置能够较好地模拟SO_2单因素大气污染环境,SO_2暴露刺激后的动物出现明显的生理病理变化,证明该装置为研究大鼠长时间暴露于低浓度SO_2环境后其生理病理变化过程和机制提供了一种可靠的技术平台。
     2)研究了SO_2刺激对哮喘模型SD大鼠肺功能与气道组织结构的影响。首先以卵清蛋白(OVA)为致敏剂,刺激四周龄雄性SD大鼠,诱导其出现气道高反应性(AHR),并作为后续研究的哮喘动物模型。在此基础上,利用上述动物实验装置,对正常和哮喘模型SD大鼠进行长时间、低浓度的SO_2暴露刺激,并观察动物受SO_2刺激后的肺功能(Penh)和气道组织病理学变化。实验结果表明,与正常SD大鼠相比,哮喘模型SD大鼠在经受SO_2刺激后其Penh值显著提高(P<0.01),说明SO_2能显著地增强哮喘模型SD大鼠的气道高反应性,对正常SD大鼠的气道反应性则没有明显的作用。同时,肺组织病理切片苏木精-伊红(HE)染色观察和炎症因子检测结果均表明,SO_2能显著的恶化哮喘模型SD大鼠气道组织的炎症反应。
     3)考察了SO_2刺激对SD大鼠气道平滑肌细胞收缩性的影响。首先采用酶消化法与组织块贴壁法相结合,获取SD大鼠原代气道平滑肌细胞,经细胞免疫化学方法鉴定并证明所获得原代气道平滑肌细胞的纯度较高,原代细胞经传代至2-5代时用于实验。结果证明,该方法具有高效、快捷、简单易操作、耗费低、细胞获取量高和纯度高等优点,为后续实验提供了充足的细胞来源。在此基础上,运用磁微粒扭转细胞测量系统(OMTC)测量SD大鼠原代气道平滑肌细胞的生物力学特性。气道平滑肌细胞分别取自正常SD大鼠(正常对照组),经受SO_2刺激的正常SD大鼠(SO_2组),哮喘模型SD大鼠(OVA组),经受SO_2刺激的哮喘模型SD大鼠(OVA+SO_2组)。细胞生物力学特性包括:细胞硬度、细胞硬度与频率的关系、细胞硬度对平滑肌收缩激动剂(氯化钾或组胺)的响应。实验结果表明,与正常对照组比较,其他三组SD大鼠(OVA组,OVA+SO_2组,SO_2组)的气道平滑肌细胞的硬度(G0)都显著增高(P<0.001,P<0.001和P<0.01),细胞硬度与频率之间呈较好的幂率关系且幂指数相差不大。更重要的是,在各实验组中只有OVA+SO_2组SD大鼠的气道平滑肌细胞对氯化钾(KCl)或组胺(histamine)作用的响应显著提高。
     4)研究了SO_2衍生物在体外对正常SD大鼠气道平滑肌细胞生物力学特性的影响。由于大气中的SO_2在体内最终都是以其衍生物的形式作用于体内组织细胞,鉴于此,本文在体内实验的基础上,进一步研究了不同浓度下,SO_2衍生物(亚硫酸钠和亚硫酸氢钠的混合物,二者摩尔比为3:1)对体外培养的正常SD大鼠气道平滑肌细胞生物力学特性的效应。实验表明,在10-4~10-1 mmol/L的浓度范围内,SD大鼠气道平滑肌细胞的增殖能力、迁移能力、细胞收缩性都随SO_2衍生物浓度的增高而增强,同时细胞骨架蛋白F-actin的表达量也随之增加,并且这四者之间存在一定的相关性。这些实验结果提示,SO_2有可能通过增强气道平滑肌细胞的增殖能力、迁移能力和收缩性,引发气道组织的重构和气道高反应性,进而加剧哮喘症状的恶化。
     综上所述,本课题针对大气污染物SO_2对正常或哮喘模型SD大鼠气道平滑肌生物力学行为的影响,分别在个体、组织和细胞水平上进行了研究。结果表明,SO_2刺激对于正常SD大鼠作用不大,但对哮喘模型SD大鼠气道平滑肌却有显著的影响,主要表现为哮喘模型SD大鼠在受到SO_2刺激时出现气道高反应性加剧,气道平滑肌组织增生,气道平滑肌细胞收缩性增强等症状。此外,体外培养的SD大鼠气道平滑肌细胞在受到SO_2衍生物直接刺激时,出现平滑肌细胞增殖、迁移和收缩能力增强的现象。这些结果提示,除了炎症反应外,SO_2有可能通过改变气道平滑肌的生物力学行为,特别是气道平滑肌细胞对收缩激动剂的响应来加剧气道高反应性等哮喘典型症状,这为从生物力学角度认识大气污染在哮喘病病理机制中的作用提供了有价值的参考依据,为提高哮喘病的防治水平提供了新的思路。
As a chronic respiratory disease, asthma is becoming an increasingly serious threat to human health. Unfortunately, the etiology and development of asthma are still not well understood, while the pathological mechanism of asthma remains difficult to elucidate. As the environment keeps deteriorating, the roles of air pollutants including sulfur dioxide (SO_2) in the pathogenesis of asthma are increasingly interested among investigators. SO_2 is one of the most common air pollutants,and its hazardous effects on respiratory health, especially on asthma has been concerned by many researchers as early as in the last century. Early studies focused on epidemiology, immunology and other aspects, which uncovered various roles of SO_2 in asthma pathology including immunology, oxidative stress and damage, and inflammatory mechanisms. However, there has been no pulished report regarding the effects of SO_2 on biomechanical behavior of the airway smmoth muscle (ASM). In contrast, there are more and more reports demonstrating that the structure and function of ASM are altered in asthma, which leads to changes of ASM biomechanical behaviors and ultimately results in airway hyperresponsiveness (AHR). In order to fully understand what does SO_2 do to asthmatics, therefore, it is imperative to study the effects of SO_2 exposure on ASM biomechanical behaviors. Motivated by this question, we established the animal model of asthma using newborn Sprague Dawley (SD) rats that were sensitized by ovalbumin (OVA). Based on this animal model, we exposed either normal or sensitized SD rats to a 2 ppm (5.6 mg/m3) low dose SO_2 for up to 4 wks, and suqsequently investigated the biomechanical behaviors of the ASM at either organism, tissue, or cell level. The specific and primary findings are described as follows:
     1) According to the requirement to mimic SO_2 in the environment, we design and build a device that can control the concentration of SO_2 for animal model experiment. This device consists of gas pipeline system, sensor detection systems and intelligent control system, then we can simulate low concentration of SO_2 pollution in the micro-environment with the use of the device, and it has the maneuverability and high reliability properties. After being tested and used for a long period, the result shows that the device can well simulate the single factor of atmospheric SO_2 pollution, animals after being exposed to SO_2 showed significant changes in physiology, all these results proved that this device provided a strong technology platform for investigating the pathogenesis of SD rats, which were exposd to low concentration of SO_2 for a long time.
     2) The effects of SO_2 exposure on the lung function and airway tissue structure of asthmatic SD rats. First, we used ovalbumin (OVA) as sensitization agent to stimulate the newborn male SD rats, induced airway hyperresponsiveness (AHR), and took them as the asthmatic animal model for the latter study. On this basis, we used the device talked above to stimulate the normal and asthmatic SD rats with low concentration of SO_2 for a long time, and then observed the lung function (Penh) and airway tissue pathological changes. The results show that, compared with the normal SD rats, after being exposed to SO_2, the values of Penh of asthmatic SD rats increased signicanctly (P<0.01), which indicates that SO_2 can significantly enhance the hyperresponsiveness of asthmatic SD rats, however, there is no significanct changes for the normal SD rats. Meanwhile, the lung histology hematoxylin-eosin (H&E) staining and the inflammatory factors assay results show that SO_2 can sinnificantly aggravate the inflammatory reaction of asthmatic SD rats.
     3) The effects of SO_2 exposure on the contractility of airway smooth muscle cells from SD rats. First, we harvested primary airway smooth muscle cells from SD rat successfully by combining the enzymatic digestion method and tissue adherent method, and the immunocytochemistry test proved that the primary airway smooth muscle cells we obtained is relatively high purity, primary cells were passaged to 2-5 generations for the experiments. The results show that this method has the advantages of efficient, fast, easy to operate, low cost, and high volum and purity cells to obtain, and provides sufficient cell sources for the later experiments. On this basis, we measured the biomechanical properties of airway smooth muscle cells by using the optical magnetic twisting cytometry (OMTC). Airway smooth muscle cells were harvested from normal SD rats (control group), normal SD rat which were exposed to SO_2(SO_2 group), asthmatic SD rats(OVA group), and asthimatic SD rat which were exposed to SO_2(OVA+SO_2 group). Biomechanical properties including: cell stiffiness, relationship between cell stiffness and frequency, and cell stiffness response to smooth muscle contraction agonist (KCL, histamine). The results show that, compared with the control group, airway smooth muscle cell stiffness (G0) of the other three groups (OVA+SO_2 group, OVA group, and SO_2 group) was rank ordered and all significantly greater (P<0.001, P<0.001, or P<0.01), it shows a good power law relationship between cell stiffness and frequency, and there is no significant change in the power-law responses to different frequences. More importantly, among the four groups, only the airway smooth muscle cells from OVA+SO_2 group showed a significant response to postassium chloride (KCL) or histamine.
     4) The effects of SO_2 derivatives on the biomechanical properties of normal airway smooth muscle cells in vitro. The SO_2 in the atmosphere are ultimately in the form of its derivatives affect the tissues in the body, therefore, on the basis of animal experiments, we investigated different concentrations of SO_2 derivatives (sodium sulfite and sodidum bisulfite, the molar tatio is 3:1) on normal SD rat primary airway smooth muscle cells in vitro. The results show that between 10-4 to 10-1 mmol/L, SO_2 derivatives can enhance the proliferation, migration and contraction of primary airway smooth muscle cells from SD rat, also they can increase the amount of the F-actins, and there exists correlations among the four factors. These results further suggest us a possible pathogenic mechanism which SO_2 worsening the symptoms of asthma can be explained that, by enhancing the proliferation, migration and contraction of airway smooth muscle cells, SO_2 causes remodeling of the airway, hyperresponsiveness, and then in turn exacerbate asthmatic symptoms.
     In summary, in this paper, we described the biomechanical behavior of airway smooth muscle cells from normal and/or asthmatic SD rats affected by SO_2, respectively, and we studied in individuals, organizations, and celluar level. The results show that, SO_2 exposure can little affect normal SD rats, but it can significantly impact the airway smooth muscle cells from asthmatic SD rats, mainly on the aspects of increasing hyperresponsiveness, the layer of airway smooth muscle, and contractility of airway smooth muscle cells when the asthmatic SD rats were exposured to SO_2. In addition, SO_2 derivatives can enhance the proliferation, migration and contraction of primary airway smooth muscle cells from SD rat cultured in vitro. All these results suggest that, besides of inflammatory response, SO_2 can change the biomechanical behavior of airway smooth muscle cells, especially the response of airway smooth muscle cell to contraction agonist, then increase airway hyperresponsiveness and other typical symptoms of asthma, which providing valuable reference for understanding the role of air pollution in the pathogenesis of asthma on the aspects of biomechanics, also it provides a new way of thinking for improving prevention and treatment of asthma.
引文
[1] Ahmadi KR, Goldstein DB. Multifactorial Diseases: Asthma Genetics Point the Way. Current Biology 2002;12 (20):R702-R4.
    [2] Association AL, Division EaSURaPS. Trends in asthma morbidity and mortality. 2010.
    [3] XU M-l, TAO F-b. Global prevalence of childhood asthma and risk factors. Foreign Medical Sciences Section of Maternal and Child Health 2005;16 (3):161-3.
    [4] Guttikunda SK, Carmichael GR, Calori G, Eck C, Woo J-H. The contribution of megacities to regional sulfur pollution in Asia. Atmospheric Environment 2003;37 (1):11-22.
    [5]霍喜寿.哮喘偷袭都市人.环境. 2002 (4):27.
    [6]钟南山.支气管哮喘-基础与临床. 2006:14.
    [7]田文华,彭希哲,梁鸿.城市空气污染造成儿童健康经济损失的研究中国卫生经济. 2002;21 (10):16-7.
    [8] Garty BZ, Kosman E, Ganor E, Berger V, Garty L, Wietzen T, Waisman Y, Mimouni M, Waisel Y. Emergency room visits of asthmatic children, relation to air pollution, weather, and airborne allergens. Ann Allergy Asthma Immunol 1998;81 (6):563-70.
    [9] Hajat S, Haines A, Goubet SA, Atkinson RW, Anderson HR. Association of air pollution with daily GP consultations for asthma and other lower respiratory conditions in London. Thorax 1999;54 (7):597-605.
    [10] Henry RL, Abramson R, Adler JA, Wlodarcyzk J, Hensley MJ. Asthma in the vicinity of power stations: I. A prevalence study. Pediatr Pulmonol 1991;11 (2):127-33.
    [11] Sunyer J, Spix C, Quenel P, Ponce-de-Leon A, Ponka A, Barumandzadeh T, Touloumi G, Bacharova L, Wojtyniak B, Vonk J, Bisanti L, Schwartz J, Katsouyanni K. Urban air pollution and emergency admissions for asthma in four European cities: the APHEA Project. Thorax 1997;52 (9):760-5.
    [12]香港医学界认为哮喘同三种空气污染物有关.今日应用医学1997;3 (1):1.
    [13]朱蕾,刘又宁,钮善福.临床呼吸生理学. 2006:402.
    [14]夏光,周新,高彤.中日环境政策比较研究. 2000:223-7.
    [15] Millman A, Tang D, Perera FP. Air Pollution Threatens the Health of Children in China. Pediatrics 2008;122 (3):620-8.
    [16] Zhang J, Song H, Tong S, Li L, Liu B, Wang L. Ambient sulfate concentration and chronic disease mortality in Beijing. Science of The Total Environment 2000;262 (1-2):63-71.
    [17] Kilic D. The effects of ageing and sulfur dioxide inhalation exposure on visual-evokedpotentials, antioxidant enzyme systems, and lipid-peroxidation levels of the brain and eye. Neurotoxicology and Teratology 2003;25 (5):587-98.
    [18] Tseng RY, Li CK. Low level atmospheric sulfur dioxide pollution and childhood asthma. Ann Allergy 1990;65 (5):379-83.
    [19] Qian Z, Chapman RS, Hu W, Wei F, Korn LR, Zhang J. Using air pollution based community clusters to explore air pollution health effects in children. Environment International 2004;30 (5):611-20.
    [20] Grella E, Paciocco G, Caterino U, Mazzarella G. Respiratory function and atmospheric pollution. Monaldi Arch Chest Dis 2002;57 (3-4):196-9.
    [21] Linn WS, Avol EL, Peng RC, Shamoo DA, Hackney JD. Replicated dose-response study of sulfur dioxide effects in normal, atopic, and asthmatic volunteers. Am Rev Respir Dis 1987;136 (5):1127-34.
    [22] Sheppard D, Wong WS, Uehara CF, Nadel JA, Boushey HA. Lower threshold and greater bronchomotor responsiveness of asthmatic subjects to sulfur dioxide. Am Rev Respir Dis 1980;122 (6):873-8.
    [23] Mostardi RA, Woebkenberg NR, Ely DL, Conlon M, Atwood G. The University of Akron study on air pollution and human health effects II. Effects on acute respiratory illness. Arch Environ Health 1981;36 (5):250-5.
    [24]顾剑玲.支气管哮喘发病机制研究现状.海南医学2004;15 (3):58-9.
    [25] Deng L, Bosse Y, Brown N, Chin LYM, Connolly SC, Fairbank NJ, King GG, Maksym GN, Par? Peter D, Seow CY, Stephen NL. Stress and strain in the contractile and cytoskeletal filaments of airway smooth muscle. Pulmonary Pharmacology & Therapeutics 2009;22 (5):407-16.
    [26] Deng L, Fairbank NJ, Cole DJ, Fredberg JJ, Maksym GN. Airway smooth muscle tone modulates mechanically induced cytoskeletal stiffening and remodeling. Journal of Applied Physiology 2005;99:634-41.
    [27] Deng L, Trepat X, Butler JP, Millet E, Morgan KG, Weitz DA, Fredberg JJ. Fast and slow dynamics of the cytoskeleton. Nat Mater 2006;5 (8):636-40.
    [28] Fabry B, Maksym GN, Shore SA, Moore PE, Jr. RAP, Butler JP, Fredberg JJ. Selected Contribution: Time course and heterogeneity of contractile responses in cultured human airway smooth muscle cells. Journal of Applied Physiology 2001;91 (2):986-94.
    [29] Fairbank NJ, Connolly SC, MacKinnon JD, Wehry K, Deng L, Maksym GN. Airway smooth muscle cell tone amplifies contractile function in the presence of chronic cyclic strain. American Journal of Physiology-Lung Cellular and Molecular Physiology 2008;295(3):L479-L88.
    [30] Maksym GN, Deng L, Fairbank NJ, Lall CA, Connolly SC. Beneficial and harmful effects of oscillatory mechanical strain on airway smooth muscle. Canadian Journal of Physiology and Pharmacology 2005;83:913-22.
    [31] Glasser M, Greenburg L, Field F. Mortality and morbidity during a period of high levels of air pollution. New York, Nov. 23 to 25, 1966. Arch Environ Health(United Stated) 1967;15 (6):684-94.
    [32] Jones AP. Asthma and the home environment. J Asthma 2000;37 (2):103-24.
    [33] Koken PJ, Piver WT, Ye F, Elixhauser A, Olsen LM, Portier CJ. Temperature, air pollution, and hospitalization for cardiovascular diseases among elderly people in Denver. Environ Health Perspect 2003;111 (10):1312-7.
    [34] Lave LB, Seskin EP. Air pollution and human health. Science 1970;169 (947):723-33.
    [35] Nafstad P, Haheim LL, Oftedal B, Gram F, Holme I, Hjermann I, Leren P. Lung cancer and air pollution: a 27 year follow up of 16 209 Norwegian men. Thorax 2003;58 (12):1071-6.
    [36] Tarlo SM, Broder I, Corey P, Chan-Yeung M, Ferguson A, Becker A, Rogers C, Okada M, Manfreda J. The role of symptomatic colds in asthma exacerbations: Influence of outdoor allergens and air pollutants. Journal of Allergy and Clinical Immunology 2001;108 (1):52-8.
    [37] Tsai S-S, Goggins WB, Chiu H-F, Yang C-Y. Evidence for an Association Between Air Pollution and Daily Stroke Admissions in Kaohsiung, Taiwan. Stroke 2003;34 (11):2612-6.
    [38] Lin M, Chen Y, Villeneuve PJ, Burnett RT, Lemyre L, Hertzman C, McGrail KM, Krewski D. Gaseous Air Pollutants and Asthma Hospitalization of Children with Low Household Income in Vancouver, British Columbia, Canada. Am. J. Epidemiol. 2004;159 (3):294-303.
    [39] Horstman D, Folinsbee L. Sulfur dioxide-induced bronchoconstriction in asthmatics exposed for short durations under controlled conditions: a selected review. 1989:12.
    [40] D'Amato G, Liccardi G, D'Amato M, Cazzola M. Respiratory allergic diseases induced by outdoor air pollution in urban areas. Monaldi Arch Chest Dis 2002;57 (3-4):161-3.
    [41] Wong GW, Lai CK. Outdoor air pollution and asthma. Curr Opin Pulm Med 2004;10 (1):62-6.
    [42] Wong TW, Lau TS, Yu TS, Neller A, Wong SL, Tam W, Pang SW. Air pollution and hospital admissions for respiratory and cardiovascular diseases in Hong Kong. Occup Environ Med 1999;56 (10):679-83.
    [43] Linn WS, Gong H, Jr., Shamoo DA, Anderson KR, Avol EL. Chamber exposures of children to mixed ozone, sulfur dioxide, and sulfuric acid. Arch Environ Health 1997;52 (3):179-87.
    [44] S?yseth V, Kongerud J, Haarr D, Strand O, Bolle R, Boe J. Relation of exposure to airwayirritants in infancy to prevalence of bronchial hyper-responsiveness in schoolchildren. Lancet 1995;345 (8944):217-20.
    [45] Bernstein JA, Alexis N, Barnes C, Bernstein IL, Nel A, Peden D, Diaz-Sanchez D, Tarlo SM, Williams PB. Health effects of air pollution. Journal of Allergy and Clinical Immunology 2004;114 (5):1116-23.
    [46] Sunyer J, Atkinson R, Ballester F, Le Tertre A, Ayres JG, Forastiere F, Forsberg B, Vonk JM, Bisanti L, Anderson RH, Schwartz J, Katsouyanni K. Respiratory effects of sulphur dioxide: a hierarchical multicity analysis in the APHEA 2 study. Occup Environ Med 2003;60 (8):e2.
    [47] Andersson E, Nilsson T, Persson B, Wingren G, Toren K. Mortality from asthma and cancer among sulfite mill workers. Scand J Work Environ Health 1998;24 (1):12-7.
    [48] Nyberg F, Gustavsson P, Jarup L, Bellander T, Berglind N, Jakobsson R, Pershagen G. Urban air pollution and lung cancer in Stockholm. Epidemiology 2000;11 (5):487-95.
    [49]孟紫强.环境毒理学. 2000:338-59.
    [50]盂紫强,张连珍,张珂.硫酸厂工人外周血淋巴细胞染色体畸变的研究.中国环境科学. 1990;10 (5):360-3.
    [51] Andersson E, Knutsson A, Hagberg S, Nilsson T, Karlsson B, Alfredsson L, Toren K. Incidence of asthma among workers exposed to sulphur dioxide and other irritant gases. Eur Respir J 2006;27 (4):720-5.
    [52] Lee JT, Kim H, Song H, Hong YC, Cho YS, Shin SY, Hyun YJ, Kim YS. Air pollution and asthma among children in Seoul, Korea. Epidemiology 2002;13 (4):481-4.
    [53] Fedde M, Kuhlmann W. Cardiopulmonary responses to inhaled sulfur dioxide in the chiken. Poult. Sci. 1979;58 (6):8.
    [54] Wang X, Ding H, Ryan L, Xu X. Association between air pollution and low birth weight: a community-based study. Environ Health Perspect 1997;105 (5):514-20.
    [55] Hatzakis A, Katsouyanni K, Kalandidi A, Day N, Trichopoulos D. Short-term effects of air pollution on mortality in Athens. Int J Epidemiol 1986;15 (1):73-81.
    [56]江耀安.大气中二氧化硫含量与人群肺功能关系.环境与健康杂志. 1988;5 (3):36.
    [57]陈坤华,石田田,伍祥芳,王润华,周燕荣,曾军.重庆地区小儿支气管哮喘与大气污染和气象因素关系的探讨.重庆医学. 1994;23 (1):8-10.
    [58] Qian Z, Zhang J, Wei F, Wilson WE, Chapman RS. Long-term ambient air pollution levels in four Chinese cities: inter-city and intra-city concentration gradients for epidemiological studies. J Expo Anal Environ Epidemiol 2001;11 (5):341-51.
    [59] Qian Z, Zhang J, Korn LR, Wei F, Chapman RS. Exposure-response relationships between lifetime exposure to residential coal smoke and respiratory symptoms and illnesses inChinese children. J Expo Anal Environ Epidemiol 2004;14 (S1):S78-S84.
    [60] Wang B, Peng Z, Zhang X, Xu Y, Wang H, Allen G, Wang L, Xu X. Particulate matter, sulfur dioxide, and pulmonary function in never-smoking adults in Chongqing, China. Int J Occup Environ Health 1999;5 (1):14-9.
    [61] Wang S, Zhao Y, Chen G, Wang F, Aunan K, Hao J. Assessment of population exposure to particulate matter pollution in Chongqing, China. Environmental Pollution 2008;153 (1):247-56.
    [62] Burr ML. Pollution: does it cause asthma? Arch Dis Child 1995;72 (5):377-9.
    [63]王玉明.大同煤矿地区二氧化硫污染现状及控制措施.矿业安全与环保. 2002;20 (5):18-20.
    [64]国家环保总局. 2003年中国环境质量状况. 2004.
    [65] Li W, Chan HS. CLEAN AIR IN URBAN CHINA: THE CASE OF INTER-AGENCY COORDINATION IN CHONGQING'S BLUE SKY PROGRAM. Public Administration and Development 2009;29 (1):55-67.
    [66] Amdur MO. Toxicologic appraisal of particulate matter, oxides of sulfur, and sulfuric acid. J Air Pollut Control Assoc 1969;19 (9):638-44.
    [67] Ceballos-Picot I, Nicole A, Clement M, Bourre JM, Sinet PM. Age-related changes in antioxidant enzymes and lipid peroxidation in brains of control and transgenic mice overexpressing copper-zinc superoxide dismutase. Mutat Res 1992;275 (3-6):281-93.
    [68] Lester MR. Sulfite sensitivity: significance in human health. J Am Coll Nutr 1995;14 (3):229-32.
    [69] Garcet S, Servin A, Huyen VN. Effect of a prolonged treatment by S-carboxy-methyl-cysteine on the disturbances of the pulmonary protein synthesis induced by sulfur dioxide in the rat. C R Seances Soc Biol Fil 1974;168 (1):43-6.
    [70] Meng Z, Li R, Zhang X. Levels of sulfite in three organs from mice exposed to sulfur [corrected] dioxide. Inhal Toxicol 2005;17 (6):309-13.
    [71] Shapiro R. Genetic effects of bisulfite (sulfur dioxide). Mutat Res 1977;39 (2):149-75.
    [72]李明贤.大气污染与人类健康.解放军健康. 2002 (5):34.
    [73]张慧明.烟气脱硫技术讲座.安全. 1997;3:10-8.
    [74] Herbarth O. Risk assessment of environmentally influenced airway diseases based on time-series analysis. Environ Health Perspect 1995;103 (9):852-6.
    [75] Reist M, Jenner P, Halliwell B. Sulphite enhances peroxynitrite-dependent [alpha]1-antiproteinase inactivation. A mechanism of lung injury by sulphur dioxide? FEBS Letters 1998;423 (2):231-4.
    [76]杜青平,孟紫强.二氧化硫对大鼠肺泡细胞和肺泡灌洗液的生化效应.环境科学学报. 2003;23 (6):828-30.
    [77] Hu PC, Miller FJ, Daniels MJ, Hatch GE, Graham JA, Gardner DE, Selgrade MK. Protein accumulation in lung lavage fluid following ozone exposure. Environ Res 1982;29 (2):377-88.
    [78] Meng Z. Oxidative damage of sulfur dioxide on various organs of mice: sulfur dioxide is a systemic oxidative damage agent. Inhal Toxicol 2003;15 (2):181-95.
    [79] Meng Z, Qin G, Zhang B, Bai J. DNA damaging effects of sulfur dioxide derivatives in cells from various organs of mice. Mutagenesis 2004;19 (6):465-8.
    [80] Meng Z, Zhang B. Oxidation damage of sulfur dioxide inhalation on brains and livers of mice. Environ Toxicol Pharmacol 2003;13:8.
    [81]盂紫强,白巨利.二氧化硫体内衍生物对小鼠海马神经元DNA的损伤作用.中国生物化学与分子生物学报. 2003;19 (6):791-4.
    [82] Mehlman MA. Current toxicological information as the basis for sulfur oxide standards. Environ Health Perspect 1983;52:261-6.
    [83] Samukawa T, Arasidani K, Hori H, Hirano H, Arima T. c-jun mRNA expression and profilin mRNA amplification in rat alveolar macrophages exposed to volcanic ash and sulfur dioxide. Ind Health 2003;41 (4):313-9.
    [84] Riedel F, Kr?er M, Scheibenbogen C, Rieger CHL. Effects of SO2 exposure on allergic sensitization in the guinea pig. Journal of Allergy and Clinical Immunology 1988;82 (4):527-34.
    [85] Li R, Meng Z, Xie J. Effects of sulfur dioxide on the expressions of MUC5AC and ICAM-1 in airway of asthmatic rats. Regulatory Toxicology and Pharmacology 2007;48 (3):284-91.
    [86] Li R, Meng Z, Xie J. Effects of sulfur dioxide on the expressions of EGF, EGFR, and COX-2 in airway of asthmatic rats. Arch Environ Contam Toxicol 2008;54 (4):748-57.
    [87] Qin G, Meng Z. Effect of sulfur dioxide inhalation on CYP1A1 and CYP1A2 in rat liver and lung. Toxicology Letters 2005;160 (1):34-42.
    [88] Qin G, Meng Z. The expressions of protooncogenes and CYP1A in lungs of rats exposed to sulfur dioxide and benzo(a)pyrene. Regulatory Toxicology and Pharmacology 2006;45 (1):36-43.
    [89] Bai J, Meng Z. Effects of sulfur dioxide on apoptosis-related gene expressions in lungs from rats. Regulatory Toxicology and Pharmacology 2005;43 (3):272-9.
    [90] van Loon AP, Pesold-Hurt B, Schatz G. A yeast mutant lacking mitochondrial manganese-superoxide dismutase is hypersensitive to oxygen. Proc Natl Acad Sci U S A1986;83 (11):3820-4.
    [91] Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 1979;59 (3):527-605.
    [92] Meng Z, Qin G, Zhang B, Geng H, Bai Q, Bai W, Liu C. Oxidative damage of sulfur dioxide inhalation on lungs and hearts of mice. Environmental Research 2003;93 (3):285-92.
    [93] Knorst MM, Kienast K, Muller-Quernheim J, Ferlinz R. Effect of sulfur dioxide on cytokine production of human alveolar macrophages in vitro. Arch Environ Health 1996;51 (2):150-6.
    [94] Henderson B, Poole S. Modulation of cytokine function: therapeutic applications. Adv Pharmacol 1994;25:53-115.
    [95] Henderson B, Poole S, Wilson M. Microbial/host interactions in health and disease: Who controls the cytokine network? Immunopharmacology 1996;35 (1):1-21.
    [96] Koj A. Termination of Acute-Phase Response: Role of Some Cytokines and Anti-Inflammatory Drugs. General Pharmacology 1998;31 (1):9-18.
    [97] Houtmeyers E, Gosselink R, Gayan-Ramirez G, Decramer M. Regulation of mucociliary clearance in health and disease. Eur Respir J 1999;13 (5):1177-88.
    [98] Muranaka M, Suzuki S, Koizumi K, Takafuji S, Miyamoto T, Ikemori R, Tokiwa H. Adjuvant activity of diesel-exhaust particulates for the production of IgE antibody in mice. Journal of Allergy and Clinical Immunology 1986;77 (4):616-23.
    [99] Li N, Hao M, Phalen RF, Hinds WC, Nel AE. Particulate air pollutants and asthma: A paradigm for the role of oxidative stress in PM-induced adverse health effects. Clinical Immunology 2003;109 (3):250-65.
    [100]孟紫强.氧化应激效应与SO2全身性毒作用研究.中国公共卫生. 2003;19 (12):1422-4.
    [101] Meng Z, Zhang L. Cytogenetic damage induced in human lymphocytes by sodium bisulfite. Mutat Res 1992;298 (2):63-9.
    [102]盂紫强,张波.二氧化硫吸入对大鼠脑组织细胞的氧化损伤作用.中国环境科学. 2001;21 (5):464-7.
    [103]盂紫强,张波,秦国华.二氧化硫对小鼠不同组织器官的氧化损伤作用.环境科学学报. 2001;21 (6):768-73.
    [104] CRIMI E, SPANEVELLO A, NERI M, IND P, ROSSI G, BRUSASCO V. Dissociation between Airway Inflammation and Airway Hyperresponsiveness in Allergic Asthma. Am. J. Respir. Crit. Care Med. 1998;157 (1):4-9.
    [105]邓林红.气道平滑肌生物力学与哮喘病理机制的研究进展.医用生物力学2009;24 (3):95-104.
    [106] An SS, Bai TR, Bates JHT, Black JL, Brown RH, Brusasco V, Chitano P, Deng L, Dowell M, Eidelman DH, Fabry B, Fairbank NJ, Ford LE, Fredberg JJ, Gerthoffer WT, Gilbert SH, Gosens R, Gunst SJ, Halayko AJ, Ingram RH, Irvin CG, James AL, Janssen LJ, King GG, Knight DA, Lauzon AM, Lakser OJ, Ludwig MS, Lutchen KR, Maksym GN, Martin JG, Mauad T, McParland BE, Mijailovich SM, Mitchell HW, Mitchell RW, Mitzner W, Murphy TM, Par茅PD, Pellegrino R, Sanderson MJ, Schellenberg RR, Seow CY, Silveira PSP, Smith PG, Solway J, Stephens NL, Sterk PJ, Stewart AG, Tang DD, Tepper RS, Tran T, Wang L. Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma. European Respiratory Journal 2007;29 (5):834-60.
    [107]冯元帧.生物力学. 1983.
    [108] Satcher Jr RL, Dewey Jr CF. Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton. Biophysical Journal 1996;71 (1):109-18.
    [109] MacKintosh FC, auml, s J, Janmey PA. Elasticity of Semiflexible Biopolymer Networks. Physical Review Letters 1995;75 (24):4425.
    [110] Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix Elasticity Directs Stem Cell Lineage Specification. Cell 2006;126 (4):677-89.
    [111] Huang S, Ingber DE. Cell tension, matrix mechanics, and cancer development. Cancer Cell 2005;8 (3):175-6.
    [112] Lopez JI, Mouw JK, Weaver VM. Biomechanical regulation of cell orientation and fate. Oncogene 2008;27 (55):6981-93.
    [113] Trepat X, Deng L, An SS, Navajas D, Tschumperlin DJ, Gerthoffer WT, Butler JP, Fredberg JJ. Universal physical responses to stretch in the living cell. Nature 2007;447 (7144):592-5.
    [114] Laney DE, Garcia RA, Parsons SM, Hansma HG. Changes in the Elastic Properties of Cholinergic Synaptic Vesicles as Measured by Atomic Force Microscopy. Biophysical Journal 1997;72 (2, Part 1):806-13.
    [115] Dufrene YF. Atomic force microscopy, a powerful tool in microbiology. J Bacteriol 2002;184 (19):5205-13.
    [116] Rotsch C, Radmacher M. Drug-Induced Changes of Cytoskeletal Structure and Mechanics in Fibroblasts: An Atomic Force Microscopy Study. Biophysical Journal 2000;78 (1):520-35.
    [117] Deng L, Fairbank NJ, Fabry B, Smith PG, Maksym GN. Localized mechanical stress induces time-dependent actin cytoskeletal remodeling and stiffening in cultured airway smooth muscle cells. Am J Physiol Cell Physiol 2004;287 (2):C440-8.
    [118] Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ. Scaling theMicrorheology of Living Cells. Physical Review Letters 2001;87 (14):148102.
    [119] Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Taback NA, Millet EJ, Fredberg JJ. Time scale and other invariants of integrative mechanical behavior in living cells. Physical Review E 2003;68 (4):041914.
    [120] Wang N, Butler J, Ingber D. Mechanotransduction across the cell surface and through the cytoskeleton. Science 1993;260 (5111):1124-7.
    [121] National Asthma Education and Prevention Program.Expert Panel Report 3(EPR-3): Guidelines for the Diagnosis and Management of Asthma Summary Report Allergy Clin Immunol 2007;120:S94-S138.
    [122]邱健,杨冠玲,何振江,黄林海.基于紫外荧光法的大气SO2气体浓度分析仪.仪器仪表学报2008;29 (1):174-8.
    [123]张成云,何振江,杨冠玲,徐慧梁.紫外荧光大气SO2浓度监测系统.光电工程2005;32 (7):19-21.
    [124]潘琢金译. C8051F310/1混合信号ISP FLASH微控制器数据手册. 2003.5;Rev 1.3.
    [125]宁涛.虚拟仪器技术及其新进展.仪器仪表学报2007;28 (S1):252-4.
    [126] Gueders M, Paulissen G, Crahay C, Quesada-Calvo F, Hacha J, Van Hove C, Tournoy K, Louis R, Foidart J-M, No?l A, Cataldo D. Mouse models of asthma: a comparison between C57BL/6 and BALB/c strains regarding bronchial responsiveness, inflammation, and cytokine production. Inflammation Research 2009;58 (12):845-54.
    [127] Rogers DF. Airway mucus hypersecretion in asthma: an undervalued pathology? Current Opinion in Pharmacology 2004;4 (3):241-50.
    [128] Wegmann M, Fehrenbach H, Fehrenbach A, Held T, Schramm C, Garn H, Renz H. Involvement of distal airways in a chronic model of experimental asthma. Clinical & Experimental Allergy 2005;35 (10):1263-74.
    [129] Meng Z, Qin G, Zhang B. DNA damage in mice treated with sulfur dioxide by inhalation. Wiley Subscription Services, Inc., A Wiley Company, 2005. pp. 150-5.
    [130] Nie A, Meng Z. Sulfur dioxide derivative modulation of potassium channels in rat ventricular myocytes. Archives of Biochemistry and Biophysics 2005;442 (2):187-95.
    [131] Karol M. Animal models of occupational asthma. European Respiratory Journal 1994;7 (3):555-68.
    [132]李怡文,杜帅,张艳军.慢性支气管炎及支气管哮喘动物模型复制的研究进展.临床肺科杂志2008;13 (11):6541-3.
    [133]吕国平,崔德健,郭英江,谭剑.介绍一种建立大鼠哮喘模型的实验方法.中华结核和呼吸杂志1995;18 (6):377-8.
    [134]吉宁飞,涛卞,力陈,符晓苏,殷凯生.支气管哮喘大鼠模型的建立与气道反应性的测定.南京医科大学学报(自然科学版) 2006;26 (11):1018-21.
    [135] BLACK JL, ROTH M, LEE J, CARLIN S, JOHNSON PRA. Mechanisms of Airway Remodeling . Airway Smooth Muscle. Am. J. Respir. Crit. Care Med. 2001;164 (10):S63-6.
    [136] Elwood W, Barnes PJ, Chung KF. Airway Hyperresponsiveness is Associated with Inflammatory Cell Infiltration in Allergic Brown-Norway Rats. International Archives of Allergy and Immunology 1992;99 (1):91-7.
    [137] Elwood W, O. LJ, Barnes PJ, Chung KF. Characterization of allergen-induced bronchial hyperresponsiveness and airway inflammation in actively sensitized Brown-Norway rats. Journal of Allergy and Clinical Immunology 1991;88 (6):951-60.
    [138] Hirota JA, Ask K, Fritz D, Ellis R, Wattie J, Richards CD, Labiris R, Kolb M, Inman MD. Role of STAT6 and SMAD2 in a model of chronic allergen exposure: a mouse strain comparison study. Clinical & Experimental Allergy 2009;39 (1):147-58.
    [139] Leigh R, Ellis R, Wattie J, Southam DS, De Hoogh M, Gauldie J, O'Byrne PM, Inman MD. Dysfunction and remodeling of the mouse airway persist after resolution of acute allergen-induced airway inflammation. Am J Respir Cell Mol Biol 2002;27 (5):526-35.
    [140] Mathewa A, MacLeana JA, DeHaana E, Tagera AM, Greenb FHY, Lustera AD. Signal Transducer and Activator of Transcription 6 Controls Chemokine Production and T Helper Cell Type 2 Cell Trafficking in Allergic Pulmonary Inflammation The Journal of Experimental Medicine 2001;193 (9):1087-96.
    [141] Careau E, Proulx LI, Pouliot P, Spahr A, Turmel V, Bissonnette EY. Antigen sensitization modulates alveolar macrophage functions in an asthma model. Am J Physiol Lung Cell Mol Physiol 2006;290 (5):L871-9.
    [142] Chiba Y, Ueno A, Sakai H, Misawa M. Hyperresponsiveness of bronchial but not tracheal smooth muscle in a murine model of allergic bronchial asthma. Inflamm Res 2004;53 (11):636-42.
    [143] Choi JH, Oh SW, Kang MS, Kwon HJ, Oh GT, Kim DY. Trichostatin A attenuates airway inflammation in mouse asthma model. Clinical & Experimental Allergy 2005;35 (1):89-96.
    [144] Duan W, Aguinaldo Datiles AMK, Leung BP, Vlahos CJ, Wong WSF. An anti-inflammatory role for a phosphoinositide 3-kinase inhibitor LY294002 in a mouse asthma model. International Immunopharmacology 2005;5 (3):495-502.
    [145] Schramm CM, Guernsey L, Secor E, Thrall RS. Tolerance induced by chronic inhaled antigen in a murine asthma model is not mediated by endotoxin. Biochim Biophys Acta 2006;1762 (5):499-501.
    [146] Tong J, Bandulwala HS, Clay BS, Anders RA, Shilling RA, Balachandran DD, Chen B, Weinstock JV, Solway J, Hamann KJ, Sperling AI. Fas-positive T cells regulate the resolution of airway inflammation in a murine model of asthma. The Journal of Experimental Medicine 2006;203 (5):1173-84.
    [147] Yang G, Li L, Volk A, Emmell E, Petley T, Giles-Komar J, Rafferty P, Lakshminarayanan M, Griswold DE, Bugelski PJ, Das AM. Therapeutic dosing with anti-interleukin-13 monoclonal antibody inhibits asthma progression in mice. J Pharmacol Exp Ther 2005;313 (1):8-15.
    [148] Tsujino I, Kawakami Y, Kaneko A. Comparative Simulation of Gas Transport in Airway Models of Rat, Dog, and Human. Inhalation Toxicology 2005;17 (9):475-85.
    [149] Dalhamn T. Studies on the effect of sulfur dioxide on ciliary activity in rabbit trachea in vivo and on the reabsorptional capacity of the nasal cavity. Am. Rev. Respir. Dis. 1971;83:566-7.
    [150] Haider SS, Hasan M. Neurochemical changes by inhalation of environmental pollutants sulfur dioxide and hydrogen sulWde: degradation of total lipids, elevation of lipid peroxidation and enzyme activity in discrete regions of the guinea pig brain and spinal cord. Ind. Health 1981;22 (1):23-31.
    [151] Langley-Evans SC, Phillips GJ, Jackson AA. Sulphur dioxide: A potent glutathione depleting agent. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology 1996;114 (2):89-98.
    [152] Stratmann U, Lehmann RR, Steinbach T, Wessling G. Effect of sulfur dioxide inhalation on the respiratory tract of the rat. Zentralbl Hyg Umweltmed 1991;192 (4):324-35.
    [153] Li X, David Clark J. Chronic morphine exposure and the expression of heme oxygenase type 2. Molecular Brain Research 2000;75 (2):179-84.
    [154]毕建立,江朝光,周乃康.血红素氧合酶的抗损伤机制.中国体外循环杂志2005;3 (2):123-5.
    [155] Tanaka H. Functional Molecules in Allergic Bronchial Asthma. WILEY-VCH Verlag, 2003. pp. no-no.
    [156] WILLS-KARP M, EWART S. The Genetics of Allergen-Induced Airway Hyperresponsiveness in Mice. Am. J. Respir. Crit. Care Med. 1997;156 (4):S89-96.
    [157] Brusasco V, Crimi E. Methacholine provocation test for diagnosis of allergic respiratory diseases. Allergy 2001;56 (12):1114-20.
    [158] Drazen JM, Finn PW, De Sanctis GT. MOUSE MODELS OF AIRWAY RESPONSIVENESS: Physiological Basis of Observed Outcomes and Analysis of SelectedExamples Using These Outcome Indicators. Annual Review of Physiology 1999;61 (1):593-625.
    [159] Bai J, Liu XS, Xu YJ, Zhang ZX, Xie M, Ni W. Extracellular signal-regulated kinase activation in airway smooth muscle cell proliferation in chronic asthmatic rats. Sheng Li Xue Bao 2007;59 (3):311-8.
    [160] Maksym GN, Fabry B, Butler JP, Navajas D, Tschumperlin DJ, Laporte JD, Fredberg JJ. Mechanical properties of cultured human airway smooth muscle cells from 0.05 to 0.4 Hz. Journal of Applied Physiology 2000;89 (4):1619-32.
    [161] Hirst S. Airway smooth muscle cell culture: application to studies of airway wall remodelling and phenotype plasticity in asthma. European Respiratory Journal 1996;9 (4):808-20.
    [162] Meng Z, Zhang B, Ruan A, Sang N, Zhang J. Micronuclei Induced by Sulfur Dioxide Inhalation in Mouse Bone-Marrow Cells in vivo Inhalation Toxicology 2002;14 (3):303-9.
    [163] Carroll N, Elliot J, Morton A, James A. The structure of large and small airways in nonfatal and fatal asthma. Am Rev Respir Dis 1993;147 (2):405-10.
    [164] Dunnill MS, Massarella GR, Anderson JA. A comparison of the quantitative anatomy of the bronchi in normal subjects, in status asthmaticus, in chronic bronchitis, and in emphysema. Thorax 1969;24 (2):176-9.
    [165] Ebina M, Takahashi T, Chiba T, Motomiya M. Cellular hypertrophy and hyperplasia of airway smooth muscles underlying bronchial asthma. A 3-D morphometric study. Am Rev Respir Dis 1993;148 (3):720-6.
    [166] JOHNSON PRA, ROTH M, TAMM M, HUGHES M, GE Q, KING G, BURGESS JK, BLACK JL. Airway Smooth Muscle Cell Proliferation Is Increased in Asthma. Am. J. Respir. Crit. Care Med. 2001;164 (3):474-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700