用户名: 密码: 验证码:
分布式雷达成像及地面运动目标检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式雷达因为在实现高分辨率成像、宽刈幅成像、三维成像和地面慢速运动目标检测等方面具有广阔的前景,因而受到广泛的关注并因此成为雷达技术,尤其是合成孔径雷达(Synthetic Aperture Radar,SAR)技术研究的热点领域。论文针对分布式雷达的高分辨率成像和地面运动目标检测问题开展工作,重点研究分布式SAR的成像算法和分布式稀疏孔径雷达地面运动目标检测(Ground Moving Target Indication, GMTI)STAP算法和扫描方向干涉雷达(Scanned Pattern Interferometric Radar, SPIR)方法。各章节的主要内容如下:
     第1章介绍本文的研究背景和国内外相关领域的研究现状,归纳了论文的主要工作和贡献。
     第2章在论述SAR的基本原理的基础上,重点介绍SAR成像模拟方面的工作。研究中观察到当用点目标模拟面目标时,会在SAR幅度图像中出现明暗条纹,在条纹的亮区分辨率和清晰度都很高,相位信息得到很好保持,但在暗区则分辨率和清晰度都明显降低,相位信息也受到破坏。用天线阵的观点对此进行了解释并提出三种消除这一现象的方法。
     第3章介绍对宽带调频步进信号的两种处理算法,即基于匹配滤波的子孔径方法和基于de-chirp处理的方法,并对这两种方法进行了比较。本章的工作为第4章分布式SAR成像算法研究奠定了理论基础。
     第4章首先建立分布式SAR距离向和方位向的信号模型与调频步进信号模型的等效关系。但是这种等效关系的建立须满足一定的条件,即在距离向各SAR进行匹配滤波时须以观测区域中的同一参考目标来决定匹配滤波函数参考距离,而在方位向,各SAR的斜视角需较小,且斜视角之间形成一个等差数列关系。本章还提出了广义合成孔径概念,即跨平台进行孔径合成的概念。广义合成的前提是要保证各个平台的SAR所获得的关于同一地面区域的观测频谱是相干的,即经过了相位误差校正。分析表明影响分布式SAR距离向分辨率提高的主要因素是各个SAR系统距离测量的相对精度,而影响方位向分辨率提高的主要因素是斜视角的测量精度。
     第5章针对分布式稀疏孔径雷达实现GMTI的空时自适应处理(Space Time Adaptive Processing, STAP)算法和SPIR算法进行研究。在STAP算法研究中,重点分析影响STAP算法的主要因素,针对稀疏孔径出现的栅瓣从而导致的速度检测盲区问题,用多载频正交技术和非均匀阵列方法加以有效克服。在SPIR方法研究中,重点讨论了影响SPIR性能的主要因素,即分布式雷达的位置测量精度、收发通道的幅度和相位精度。研究表明SPIR方法尽管可以较好地克服稀疏孔径带来的栅瓣问题,但是受地面杂波的影响较大,而地面杂波的影响从本质上体现在点扩散函数(Point Spread Function, PSF)样本矩阵的条件数增大上,此时必须采用Clean算法来加以克服。模拟研究还表明,随着阵列单元数量的增加,SPIR方法对上述误差的容忍度也随之增加。对于设计好的一定构形的分布式稀疏孔径,在一定误差范围内,准确测量孔径实际位置比精确控制孔径位置更重要。
     第6章对全文的工作进行回顾和总结,指出论文工作存在的局限并提出在今后应该开展的四个方面的研究工作。
Distributed radars have been paid to extensive attention in recent years and are becoming the hot research field in radar technologies, especially in SAR, because of their broad prospects in realizing high-resolution, wide-swath, three-dimensional imaging and GMTI (Ground Moving Target Indication). The dissertation focuses on the problems of imaging and GMTI by distributed radar with emphases on the imaging algorithms of distributed SAR and GMTI algorithms of STAP (Space Time Adaptive Processing) and SPIR (Scanning Pattern Interferometric Radar). The major contents of each chapter are summarized as follows:
     Chapter 1 introduces the background and current research status in domestic and abroad, summarizes the major works and contributions.
     Chapter 2 introduces the works on SAR imaging simulation. Study shows that bright and dark strips appear in simulated SAR images, when point-targets are used to simulate distributed target. In the bright strip areas, both of the resolution and definition are very high, and the phase information is well preserved. In dark strips however, both of the resolution and definition are degraded, as well as the phase information is destroyed. Radiation pattern of sparse array antenna is applied to explain the phenomenon and three methods are proposed to remove this effect.
     Chapter 3 introduces two processing method for stepped-frequency chirp signals (SFCSs), i.e. the subaperture method based on matched filtering and the de-chirp method, and gives comparison between these two methods. The works in this chapter lay a theoretical foundation for the development of imaging algorithm in chapter 4.
     Chapter 4 firstly establishes an equivalent relation between the signal models of distributed SAR in both range and azimuthal directions and that of SFCSs. Two preconditions for the existence of equivalent relation should be contented, i.e. the same target point in observed area should be selected to calculate the reference ranges for matched filter of each SAR in range direction, and in azimuthal direction, there should be small squint angle for each SAR and the angle difference between any two neighbor SARs is the same. And then, the algorithms introduced in chapter 3 are applied to process the range and azithumal signals of distributed SAR. This chapter also proposes the idea of general aperture synthesis, i.e. the idea of aperture synthesis across different platforms. The presupposition of general aperture synthesis is that the observed spatial spectrum should be coherent with phase differences between different platforms removed. Studies show that the relative accuracy of range measurement between different SARs and the squint angle measurement accuracy of each SAR dominate the facts of preventing resolution improvement in range direction and azimuthal direction, respectively.
     Chapter 5 concentrates on the STAP and SPIR algorithms for distributed radar with sparse apertures realizing GMTI functions. In the study of STAP, major facts for affecting the performance of STAP are stressed. In view of the grating lobes, i.e. blind zone problems, inherently existed in sparse array, techniques of using multi-carrier frequencies and non-uniform of array are used to mitigate this problem. In the study of SPIR, the key facts influencing the performance of SPIR investigated, such as the position accuracy of array element, the amplitude and phase accuracy between arrays. Studies show that although the SPIR algorithm solves the blind zone problem well, the performance stability is affected greatly by ground clutter, because the ground clutter results in the increase of condition number of Point Spread Function (PSF) matrix, so clean algorithm must be incorporated to overcome the problem. Simulations show that as the element number of array increases, the ability of putting up with the above errors of SPIR algorithm increases correspondingly. The accurate measurement of real position is much more important than the control of position for a designed distributed architecture in some degree.
     Chapter 6 gives reviews and concluding remarks for the whole work in the dissertation, and at the same time points out some limitations and proposes four research aspects, which should be aimed to solve in the future.
引文
1. Sherwin, C.W. P. Ruina, and R.D.Rawcliffe. Some Early Development in Synthetic Aperture Radar Systems. IRE Trans. MIL, 1962, 6: 111-115
    2. M. I. Skolnik. Radar Handbook. Second Edition. McGraw-Hill Companies, Inc. 1990, Chapter 21
    3. William M. Brown. Synthetic Aperture Radar. IEEE Trans. On Aerospace and Electronic System, 1967,3(2):217-229
    4. Thompson, T.; Laderman, A. SEASAT-A Synthetic Aperture Radar: Radar System Implementation. OCEANS, 1976, Volume 8:247 - 251
    5. Barrick, D.; Swift, C. The Seasat microwave instruments in historical perspective. IEEE Journal of Oceanic Engineering, 1980, 5(2):74 - 79
    6. Jordan, R. The Seasat-A synthetic aperture radar system. IEEE Journal of Oceanic Engineering, 1980, 5(2):154 - 164
    7. C. Elachi, T.Bicknell, et al. Spaceborne Synthetic-Aperture Imaging Radars: Applications, Techniques, and Technology. Proceedings of IEEE, 1982, 70(10):1174-1209
    8. Giorgio Franceschetti, Riccardo Lanari. Synthetic Aperture Radar Signal Processing. CRC Press, Inc. 1999
    9. Dean L.Mensa. High Resolution Radar Imaging. Artech House, Inc. 1981
    10. Charles V.Jakowatz, Daniel E.Wahl,etc. Spotlight-mode Synthetic Aperture Radar: A Signal Processing Approach. KLUWER ACADEMIC PUBLISHERS. 1996
    11. Wehner D R. High-Resolution Radar [M]. 2nd edition, Norwood, MA: Artech House, 1995. Chapter 5.
    12. Mehrdad Soumekh. Synthetic Aperture Radar Signal Processing with MATLAB Algorithm. John Wiley &Sons,Inc. 1999
    13. Werner, M. Shuttle radar topography mission (SRTM): experience with the X-band SAR interferometer Radar. 2001 CIE International Conference on, Proceedings, 2001:634 - 638
    14. Brown, C.G., Jr.; Sarabandi, K.; Pierce, L.E. Validation of the Shuttle Radar Topography Mission height data. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8):1707 - 1715
    15. Geudtner, D.; Zink, M.; Gierull, C.; Shaffer, S. Interferometric alignment of the X-SAR antenna system on the space shuttle radar topography mission. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(5): 995 - 1006
    16. http://www.fas.org/spp/military/program/imint/lacrosse.htm
    17. http://earth.esa.int/ers/satconc/
    18. http://www.ifremer.fr/cersat/en/general/satellites/ers/program.htm
    19. http://envisat.esa.int/
    20. http://www.eorc.jaxa.jp/JERS-1/
    21. http://www.eorc.jaxa.jp/ALOS/
    22. http://www.space.gc.ca/asc/eng/satellites/radarsat1/
    23. http://www.radarsat2.info/
    24. http://www.terrasar.de/
    25. http://ccrs.nrcan.gc.ca/radar/airborne/cxsar/sbsyst_e.php
    26. http://www.onera.fr/onera-business/005-radar-surveillance-observation.php
    27. Greidanus, H., et al. First results and status of the PHARUS phased array airborne SAR. IGARSS '96 Proceedings [C]. Piscataway: IEEE Press, 1996,Vol.3: 1633 – 1635
    28. http://www.eid2.dlr.de/hr/institut/abteilungen/sar_technologie/flugzeug_sar
    29. http://www.sandia.gov/radar/sar.html
    30. John N. Entzminger, Charles A. Fowler and William J.Kenneally, JointSTARS and GMTI: Past, Present and Future. IEEE Transactions on Aerospace and Electronic System, 1999, 35(2):748-761
    31. http://www.globalsecurity.org/space/systems/discoverer2.htm
    32. Air Force Research Lab, TechSat 21 next generation space capabilities, http://www.vs.afrl.af.mil/TechProgs/TechSat21/NGSC.html
    33. Martin M., and Stallard, M. , Distributed satellite missions and technologies — The TechSat
    21 program, Proceedings of the AIAA Space Technology Conference and Exposition, Albuquerque, NM, Sept. AIAA, 1999, 99-4479.
    34. Das A., Cobb, R., and Stallard, M., TechSat 21: A revolutionary concept in distributed space based sensing, Proceedings of the AIAA Defense and Civil Space Programs Conference and Exhibition, Huntsville, AL., Oct. AIAA, 1998, 98-5255.
    35. Burns R., et al., TechSat 21: Formation design, control, and simulation, Proceedings of IEEE Aerospace Conference, Big Sky, MT, Piscataway: IEEE Press, 2000, 19-25.
    36. Didier Massonnet, Capabilities and Limitations of the Interferometric Cartwheel, IEEE Trans. On Geoscience and Remote Sensing, 2001, 39(3): 506-520
    37. http://directory.eoportal.org/pres_COSMOSkyMedConstellationof4SARSatellites.html
    38. http://www.terrasar.de/en/prod/tandem/index.php
    39. http://www.ohb-system.de/Security/sarlupe.html
    40. http://space.skyrocket.de/doc_sdat/sar-lupe.htm
    41. http://www.lsespace.com/missions/sarlupe.php
    42. 李真芳,邢孟道,王彤,保铮. 分布式小卫星 SAR 实现全孔径分辨率的信号处理. 电子学报,2003,31(12):1800-1803
    43. 李真芳,保铮,王彤. 分布式小卫星 SAR 系统地面运动目标检测方法. 电子学报, 2005, 33(9): 1664-1666
    44. 李真芳,保铮,杨凤凤. 基于成像的分布式卫星 SAR 系统地面运动目标检测(GMTI)及定位技术. 中国科学:E 辑, 2005, 35(5): 597-609
    45. 王彤,保铮,廖桂生. 天基分布式雷达 GMTI 方法. 电子学报, 2006, 34(3): 399-403
    46. 张振华,保铮,邢孟道,黄军义. 小卫星分布式 SAR 系统的信噪比研究. 电子与信息学报, 2007, 29(1): 15-18
    47. 黄海风,梁甸农,何峰. 主星带辅星编队单基线 InSAR 定位、测高两种方法. 电子学报, 2005, 33(6): 1084-1087
    48. 杨凤凤,梁甸农. 分布式星载合成孔径雷达顺轨干涉动目标检测. 系统工程与电子技术, 2005, 27(11)1852-1854,1882
    49. 刘建平,梁甸农,何峰. 主星带小卫星分布式 SAR 干涉的相对测高精度分析. 电子与信息学报, 2006, 28(12):2236-2239
    50. 陆必应,梁甸农. 天基稀疏阵杂波自由度分析. 电子学报, 2006, 34(6): 1134-1137
    51. 刘建平,梁甸农. 主星带伴随分布式小卫星 SAR 系统效能分析. 电子与信息学报, 2006, 27(9): 1345-1348
    52. 孙造宇,梁甸农 董臻. 星载分布式 InSAR 系统仿真研究. 系统仿真学报, 2006, 18(6):1538-1541
    53. 陈杰,周荫清,李春升. 分布式 SAR 小卫星编队轨道设计方法研究. 中国科学:E 辑, 2004, 34(6):654-662
    54. 徐华平,周荫清,李春升. 分布式小卫星 SAR 回波信号的相关性. 电子学报, 2005, 33(6): 965-969
    55. 袁昊,周荫清,李景文. 主星带辅星的分布式 SAR 二次干涉动目标检测方法. 宇航学报, 2006, 27(5): 885-891
    56. 文竹,周荫清,陈杰. 分布式小卫星 SAR 回波信号精确仿真方法研究. 宇航学报, 2006, 27(5): 909-914
    57. Nathan A. Goodman and James M.Stiles. Resolution and Synthetic Aperture Characterization of Sparse Radar Arrays. IEEE Transactions on Aerospace and Electronic Systems, 39(3): 921-935
    58. Nathan A. Goodman,Sih Chung Lin, et al. Processing of Multiple-Receiver Spaceborne Arrays for Wide-Area SAR. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(4):941 – 849
    59. Nathan A. Goodman. SAR and MTI Processing of Sparse Satellite Clusters [D]. Ph.D dissertation, University of Kansas, 2002.
    60. 张云华,张祥坤,姜景山,空间虚拟探测技术及发展趋势,系统工程与电子技术[J]. 2005, 27(12):2006-2009
    61. Zhang Xiangkun, Zhang Yunhua, Jiang Jingshan, High-resolution SAR imaging by General Synthetic Aperture Processing of Two Observations, IASTED ARP, 2005,150-154
    62. A. Currie and M.A.Brown. Wider-Swath SAR, IEE Proceedings, Part F: Radar and Signal Processing, 1992,139(2): 122-135
    63. C.Prati, E.Rocca, Improving Slant-Range Resolution With Mutiple SAR Surveys [J], IEEE Trans. On Aerospace and Electronic Systems, 1993, 29(1):135-144.
    64. M.Vant, M.Rey, et al., Candian Experience on Radarsat-1 and Radarsat-2 GMTI for Surveillance, AIAA/ICAS International Air and Space Symposium and Exposition: The Next 100 Year, 2003 AIAA-2003-2820.
    65. Tim J. Nohara, Peter Weber, et al., SAR-GMTI Processing with Canada’s Radarsat-2 Satellite, IEEE Radar Conference, 2000,379-384.
    66. I. Sikaneta and C.H. Gierull. Two-Channel SAR Ground Moving Target Indication for Traffic Monitoring in Urban Terran. IAPRS, Vol.VI Part3/W24, 2005, 95-101.
    67. Franz Meyer, Stefan Hinz, et al. A-Priori Information Driven Detection of Moving Object for Traffic Monitoring by Spaceborne SAR. IAPRS, Vol. VI Part3/W24, 2005, 89-94
    68. Chapin, E.; Chen, C.W. GMTI along-track interferometry experiment. IEEE Aerospace and Electronic Systems Magazine,2006, 21(3):15 – 20
    69. Thompson, A.A.; Livingstone, C.E. Moving target performance for RADARSAT-2. IEEE Geoscience and Remote Sensing Symposium, 2000, 2003, 2599 – 2601
    70. Chen, C.W. Performance assessment of along-track interferometry for detecting ground moving targets. Proceedings of the IEEE Radar Conference, 2004, 99 – 104
    71. Chapin, E.; Chen, C.W. Preliminary results from an airborne experiment using along-track interferometry for ground moving target indication. IEEE Radar Conference, 2005,343 – 347
    72. Zhengfan Yang; Soumekh, M. Adaptive along-track multi-channel SAR interferometry for moving target detection and tracking. IEEE Radar Conference, 2005, 337 – 342
    73. Beaulne, P.D.; Gierull, C.H., et al. Preliminary design of a SAR-GMTI processing system forRADARSAT-2 MODEX data. IEEE Geoscience and Remote Sensing Symposium, 2003, 2003,1019 – 1021
    74. Lombardini, F. Bordoni, F. Gini, F. Feasibility study of along-track SAR interferometry with the COSMO-Skymed satellite system. IEEE Geoscience and Remote Sensing Symposium, 2004, 3337 - 3340
    75. Bin, Z.; Xiaoling, Z.; Shunji, H. The Influence of Time and Frequency Synchronism to the ATI Interferometric Phase in the Distributed Satellite SAR System. IEEE Geoscience and Remote Sensing Symposium, 2006, 3352 – 3356
    76. Melvin, W.L. A STAP overview. IEEE Aerospace and Electronic Systems Magazine, 2004, 19(1):19 – 35
    77. Klemm, R. Comparison between monostatic and bistatic antenna configurations for STAP. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2):596 – 608
    78. Zatman, M. Circular array STAP. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 510 - 608
    79. Gerlach, K.; Picciolo, M.L. Airborne/spacebased radar STAP using a structured covariance matrix. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(1): 269 - 281
    80. Koch, W.; Klemm, R. Ground target tracking with STAP radar. IEE Proceedings - Radar, Sonar and Navigation, 2001, 148(3):173 – 185
    81. John Maher, Michael, Callahan, and Doug Lynch. Effects of Clutter Modelling in Evaluating STAP Processing for Space-based Radars. IEEE Radar Conference, 2000,565-569
    82. Steyskal H., Schindler J. K., Franchi P., and Mailloux R. J. Pattern Synthesis for TechSat21 - A Distributed Space-Based Radar System[J]. IEEE Antenna and Propagation Magazine, 2003, 45(4): 19-25.
    83. H.K.Schuman and P.G.Li, Space-Time Adaptive Processing for Space Based Radar, IEEE Aerospace Conference Proceedings, 2004, 1904-1910.
    84. Yuhong Zhang, A. Jajjari, et al. Adaptive Beam-Domain Processing for Space-Based Radars. IEEE Radar Conferences, 2004, 230-235
    85. T.K. Sarkar and R. Adve. Space-Time Adaptive Processing Using Circular Arrays. IEEE Antennas and Propagation Magazine, 2001, 43(1): 138-143
    86. Nathan A. Goodman and James M.Stiles. A General Signal Processing Algorithm for MTI with Multiple Receive Apertures. IEEE Radar Conference, 2001, 315-320.
    87. Jaime R.Roman, James C.Nelander, et al. Suppression of Doppler Ambiguities for Linear Sparse Arrays, IEEE Radar Conference, 2006, 650-656
    88. 雷万明,刘光炎,黄顺吉,分布式卫星 SAR 的慢速目标检测与成像,电子与信息学报,2003,25(8):1042-1050
    89. Leatherwood, D. A., Melvin, W.L, Acree, R., Configuring a Sparse Aperture Antenna for Spaceborne MTI Radar, 2003 IEEE Radar conference
    90. R.J. Sedwick, T.L. Hacker and D.W.Miller. Optimum Aperture Placement for a Space-Based Radar System Using Separated Spacecraft Interferometry. AIAA Guidance, Navigation, and Control Conference and Exhibit, 1999, AIAA 99-4271
    91. T.L. Hacker and R.J. Sedwick. Space-Based GMTI Radar Using Separated Spacecraft Interferometry. AIAA Guidance, Navigation, and Control Conference and Exhibit, 1999, AIAA 99-4634
    92. Karen Marais, R.J. Sedwick. Cluster Design for Scanned Pattern Interferometric Radar (SPIR). AIAA Guidance, Navigation, and Control Conference and Exhibit, 2001, AIAA 99-4654
    93. Marais K. The Development and Analysis of Scanned Pattern Interferometric Radar [D]. Master thesis of the Massachusetts Institute of Technology. 2001
    94. Troy L. Hacker. Performance Analysis of a Space-Based GMTI Radar System Using Separated Spacecraft Interferometry[D]. Master thesis of the Massachusetts Institute of Technology. 2001
    95. J.C. Holtzman, V.S. Frost, et al. Radar Image Simulation. IEEE Trans. On Geoscience and Remote Sensing, 1978, 16 (4): 296-303.
    96. Gioogio Franceschetti, Maurizio Migliaccio, et al. SARAS: A Synthetic Aperture Radar (SAR) Raw Signal Simulator. IEEE Trans. On Geoscience and Remote Sensing, 1992, 30(1): 110-123.
    97. Gioogio Franceschetti, Maurizio Migliaccio, et al. On Ocean SAR Raw Signal Simulation. IEEE Trans. On Geoscience and Remote Sensing, 1998, 36(1): 84-100.
    98. P.W. Vachon, R.K.Raney, et al. A Simulation for Spaceborne SAR Imagery of A Distributed, Moving Scene. IEEE Trans. On Geoscience and Remote Sensing, 1989, 27(1): 67-78.
    99. 孙造宇、梁佃农、董臻. 星载分布是 InSAR 系统仿真研究. 系统仿真学报, 2006,18(6): 1538 – 1541.
    100. 陈杰, 周荫清, 李春升. 星载 SAR 自然地面场景仿真方法研究. 电子学报, 2001, 29(9): 1202-1205.
    101. 万锋, 岳海霞, 杨汝良. 星载 SAR 分布目标原始数据模拟研究. 电子与信息学报, 2004, 26(8): 1250-1255.
    102. Levanon Nadav. Stepped-Frequency Pulse-Train Radar Signal. IEE Proc- Radar Sonar Navigation, 2002, 149(6): 198- 309.
    103. Maron D E. Non-periodic Frequency-Jumped Burst Waveforms. Proceedings of the IEE International Radar Conference, London, Oct. 1987, 484-488.
    104. Maron D E. Frequency-Jumped Burst Waveforms with Stretch Processing. IEEE Radar onference, Piscataway: IEEE Press, 1990, 274-279
    105. Levanon Nadav, Mozeson Eli. Nullifying ACF Grating Lobes in Stepped-Frequency Train of LFM Pulses. IEEE Trans. On Aerospace and Electronic Systems, 2003, 39(2): 694-703
    106. Rabideau D J. Nonlinear Synthetic Wideband Waveforms. IEEE Radar conference, Piscataway: IEEE Press, 2002, 212-219
    107. Lord R T. Inggs, M.R., High Resolution SAR Processing Using Stepped-Frequencies. IGARSS '97 Proceedings, Piscataway: IEEE Press, 1997.Vol.1: 15-17
    108. 龙腾,毛二可,何佩琨.调频步进雷达信号分析与处理. 电子学报,1998,26 (12):84-88
    109. 张云华,李海滨,伍捷,步进频率线性调频脉冲串信号的子孔径处理方法. 系统工程与电子技术, 2006, 23(1):1-6
    110. 张云华,江碧涛,姜景山. 干涉 SAR 提高地距方向分辨率的简明推导. 电波科学学报(已录用)
    111. Gatelli F, et al. The wavenumber Shift in SAR Interferometric Synthetic Aperture Radar. IEEE Trans. On Geoscience and Remote Sensing, 1994, 32(4): 855-864
    112. 徐华平,周荫清,李春升,基于频谱偏移估计的分布式星载 SAR 提高距离向分辨率的数据处理方法. 电子学报,31(12):1790-1794
    113. Trouve E, et al. Improving Phase Unwrapping Techniques by the Use of Local Frequency Estimates [J]. IEEE Trans. On Geoscience and Remote Sensing, 1998, 36(6): 1963-1971.
    114. Shen Chiu and Chuck Livingstone, Computer Simulations of Canada’s RADARSAT2 GMTI, RTO SET Symposium on “Space-Based Observation Technology”, Greece, 16-18 Oct. 2000.
    115. J.R.Guerci, Space-Time Adaptive Processing for Radar, Artech House, Boston, 2003
    116. Rabideau,D., and Kogon,S., A signal processing architecture for space-based GMTI radar, In proceedings of 1999 IEEE Radar Coference, Waltham, MA,96-101
    117. Klemm R., Space-Time Adaptive Processing: Principles and Applications, IEE Press, London, UK, 1998
    118. Leatherwood, D.A., and Melvin, W.L and Garnham, J., High-fidelity MTI modeling and analysis of a distributed aperture spaceborne concept, In Proceeding of AIAA Space 2000 Conference and Expo, Paper AIAA-2000-5187, Long Beach, CA, Sept. 19-21, 2000
    119. L.E.Brenann, J.Mallett, J.S.Reed, Adaptive array in airborne MTI radar, IEEE trans. on AP, 1976, 24(5):607~615
    120. Leatherwood, D.A., and Melvin, W.L., Adaptive processing in a nonstationary spaceborne environment., In Proceedings of 2003 IEEE Aerospace Conference, BigSky, MT, Mar.8-15,2003
    121. Muralidhar Rangaswamy, Braham Himed and James H. Michels, Performance Analysis of the Nonhomogeneity Detector for STAP Application, 2001 IEEE Radar Conference.
    122. D.J.Rabideau, A.O.Steinhardt, Improved Adaptive Clutter Cancellation throught Data-Adaptive Training, IEEE Trans. Aerospace &Electronic System,35(3),July,1999, 879~890
    123. Billingsley, J. B., Exponential Decay in Windblown Radar Ground Clutter Doppler Spectra: Multifrequency Measurements and Model, Technical Report 997, MIT Lincoln Laboratory, Lexington, MA, July 29, 1996
    124. 康雪艳, 江碧涛, 张云华,云日升, 星载 GMTI 稀疏阵雷达的 STAP 研究, 系统工程与电子技术(已录用)
    125. Tsao J., and Steinberg B. D., Reduction of Sidelobe and Speckle Artifacts in Microwave Imaging: The CLEAN Technique. IEEE Transactions on AP, 1988, AP-36(4): 543-556.
    126. 康雪艳, 江碧涛, 张云华,云日升, 星载稀疏阵扫描模式干涉雷达动目标检测研究, 测试技术学报(已录用)
    127. 康雪艳, 江碧涛, 张云华,云日升, 幅相误差对星载稀疏阵 SPIR 性能影响分析,第二届微波遥感讨论会,深圳,2006 年 12 月
    128. 邱力军等, 幅相误差对稀疏阵天线性能的影响.国防科技大学学报,1998,20(1):51-56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700