用户名: 密码: 验证码:
I 金鸡纳生物碱衍生物的合成方法研究 II 龙胆苦苷衍生物的合成及其对CVB3和SIV的体外抑制作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.金鸡纳生物碱衍生物的合成方法研究
     金鸡纳生物碱衍生物是不对称双羟化反应最优秀的催化剂,这类衍生物在不对称有机合成中的应用非常广泛。本论文对龙胆苦苷进行不对称双羟化结构修饰时,利用的手性配体即是金鸡纳生物碱衍生物,因而本文对其合成方法进行了研究。
     传统的金鸡纳生物碱的合成方法均存在一些缺点,如反应件条反苛刻、反应时间长、缚酸剂安全性差以及难以选择性地获得单取代金鸡纳生物碱配体等。本文对金鸡纳碱衍生物的合成方法进行了研究,完成了以下研究内容:
     首次采用微波辐射法合成四种不同类型的金鸡纳生物碱衍生物,系统地考察微波辐射功率、温度、反应时间、催化剂和缚酸剂的种类及投料量等参数对合成这四类衍生物的影响,优化各反应条件;同时采用常规溶剂法分别合成这些衍生物,对常规溶剂法和微波辐射法进行了比较。结论:与常规合成法相比,微波辐射法可快速、高产率的合成金鸡纳碱衍生物,降低了反应成本、减少了环境污染,特别是可选择性地得到单取代或双取代衍生物,是一种合成金鸡纳碱衍生物的新方法,该方法已经申请国家专利。
     2.龙胆苦苷衍生物的合成及体外抑制CVB3作用
     柯萨奇B3病毒(CVB3)是最主要的嗜心肌病毒,可以引起急性或慢性心肌炎,重者表现为进行性心衰,心律失常或猝死,已成为损害人类健康的常见病。虽然应用西药治疗VMC有一些成效,但效果均不很满意,临床试验表明中药对治疗VMC有一定优势。因此,从中药活性成分中寻找有效的抗CVB3的药物和先导化合物,成为治疗VMC的研究热点。龙胆苦苷(GPS)存在于龙胆科龙胆属植物中,属于裂环环烯醚萜类化合物,研究表明它具有显著的抗乙肝病毒、抑菌、抗炎作用。本文以龙胆苦苷为研究对象,进行了以下研究:
     (1)龙胆苦苷衍生物的合成
     首次对龙胆苦苷进行结构修饰,获得了三种衍生物:乙酰化龙胆苦苷衍生物A,立体构型不同的双羟化龙胆苦苷衍生物B和C。
     (2)龙胆苦苷及其衍生物体外抑制CVB3作用
     通过CVB3感染原代培养大鼠乳鼠心肌细胞的方法建立了病毒性心肌炎体外实验模型,首次研究了龙胆苦苷及其衍生物对CVB3的体外抑制作用及机制,初步探讨了龙胆苦苷抑制CVB3病毒的构效关系。结果显示龙胆苦苷具有较好的体外抑制CVB3作用,可抑制进入细胞内CVB3病毒的复制合成,降低病毒感染后心肌细胞酶AST和LDH的释放量;龙胆苦苷体外抗CVB3作用强于衍生物A、衍生物B和C,降低或增大脂溶性均不利于龙胆苦苷对CVB3的抑制,8-C构型不同对心肌细胞的毒性差别影响很大。
     3.龙胆苦苷及其衍生物体外抑制SIV作用
     艾滋病感染性强,死亡率高,迄今为止,全球已经有2000余万人死于艾滋病,但目前尚未有可以治愈的特效药。用于临床的叠氮胸苷AZT、双脱氧肌苷DDC等药物疗效欠佳,毒副作用大,价格昂贵,因而寻找有效的抗HIV药物是摆在各国学者面前的迫切任务。
     本文研究证实龙胆苦苷具有较好的体外抗CVB3作用,在此基础上,进一步研究了其体外抗猴免疫缺陷病毒(SIV)活性。采用SIV和相应的CEMx-174细胞系统为模型,通过对抗原阳性细胞抑制率、CPE等指标的测试,研究了龙胆苦苷及其衍生物对SIV的体外抑制作用,并初步探讨了其抗SIV的构效关系。结果显示衍生物A具有体外高度抑制SIV作用,效果优于龙胆苦苷,衍生物B和C不具有体外抑制SIV的活性,龙胆苦苷末端双键是其抗病毒的活性部位。
1 Synthesis of Cinchona Alkaloid Ligands
     Some disadvantages of conventional cinchona alkaloid ligand synthesis methods include high activities of acid-binding agent, rigorous reaction conditions, long reaction times, difficulties in preparation of the mono-cinchona alkaloid-derived ligands with high yield, use of toxic solvents, and significant amounts of waste product.
     In this study, we design and synthesize four kinds of different cinchona alkaloid ligands by the microwave irradiation method. The effects of irradiation power and temperature, irradiation time, catalysts and acid-binding agents on the yield are discussed in detail. The four kinds of cinchona alkaloid ligands were synthesized under the optimal mivrowave conditions with good yields in short reaction time and with no solvent pollution. The four kinds of cinchona alkaloid ligands were also synthesized using conventional methods. The difference between the conventional method and the microwave irradiation method is discussed. The results showed that under microwave irradiation, the reactions proceeded much faster and at a lower cost with higher yields of mono-cinchona alkaloid-derived ligands.
     2 Antiviral Effects of Gentiopicroside against Coxsackievirus B3 and its Mechanisms in Vitro
     Coxsackievirus B3 (CVB3), a member of the Picornaviridae family that contains a single-stranded and positive-sense RNA genome, causes viral myocarditis (VMC) and can further develop into dilated cardiomyopathy in humans. Although the pathogenesis of CVB3 has been extensively studied in murine models and much work has been performed on the development of vaccines and therapeutic agents against CVB3, no virus-specific preventive or therapeutic procedures have been available to protect humans against enterovirus-induced heart muscle disease. In recent years, many countries are paying more and more attention to looking for anti-virus agents from Chinese medicinal herbs.
     Gentiopicroside (GPS), a secoiridoid glycoside isolated from traditional Chinese herbs, has various bioactivities, such as antibacterial, free radical scavenging and antiviral activities. However, little information is available in the literature about GPS’s effects against CVB3 and the underlying mechanisms.
     (1) Synthesis of derivatives of GPS
     In the present research, three derivatives of GPS were synthesized: derivative A, derivative B, and derivative C.
     (2) Antiviral effects of GPS and its derivatives
     We determined the antiviral effects of GPS and its derivatives against CVB3 in vitro based on primary culture of myocardial cells of newborn SD rats. The results showed that GPS exhibited obvious antiviral effects in vitro. GPS inhibited pathologic change of cultured cardiac cells induced by CVB3. It also prevented the reproduction of CVB3 in myocardial cells and led to a significant decrease in activities of Aspartate transaminases (AST) and Lactic dehydrogenase (LDH) in myocardial cells compared with infected control groups. The antiviral effects of GPS were superior to those of the two derivatives.
     3 Antiviral Effects of Gentiopicroside and its Derivatives against SIV in vitro
     To date, approximately 2 million people have died from AIDS, but there is still no safe, effective vaccine against the human immunodeficiency virus (HIV). Treatment of HIV-infected individuals with one or more drugs (AZT or DDC etc.) that interfere with the viral life cycle has provided a significant therapeutic benefit by reducing the clinical symptoms and prolonging the life of infected individuals. These therapies are not perfect, however, because they do not eradicate the virus, and treatment fatigue and/or the emergence of drug resistant strains eventually occurs which frequently heralds an increase in virus. So, the development of an effective drug is an urgent goal to control the global HIV epidemic.
     In the present study, we investigated the antiviral effect of GPS and its derivatives against simian immunodeficiency virus (SIV) in vitro. SIV and CEMx-174 cell system were employed as the models. The effects of GPS and compound A on antigen positive inhibitory rate, production of SIV virus, cytopathic effect and antigen positive inhibitory rate were studied. The viability of normal (control) and infected CEMx174 cells was determined by MTT assay. The results showed that compound A has a greater inhibitory effect on the activity of SIV in vitro when compared to GPS. Compounds B and C had no antiviral effects against SIV in vitro.
引文
1. Hoffmann HMR, Frackenpohl J. Recent Advances in Cinchona Alkaloid Chemistry. Eur. J. Org. Chem., 2004; 21: 4293.
    2. Park HG, Jeong BS, Yoo MS, Lee JH, Park MK, Lee YJ, Kim MJ, Jew SS. Highly Enantioselective and Practical Cinchona-Derived Phase -Transfer Catalysts for the Synthesis of α-Amino Acids. Angew. Chem. Int. Ed., 2002; 41: 3036.
    3. Shibata N, Suzuki E, Takeuchi Y. A Fundamentally New Approach to Enantioselective Fluorination Based on Cinchona Alkaloid Derivatives/ Selectfluor Combination. J. Am. Chem. Soc., 2000; 122: 10728.
    4. France S, Wack H, Taggi AE, Hafez AM, Wagerle TR, Shah MM, Dusich CL, Lectka T. Catalytic, Asymmetric α-Chlorination of Acid Halides. J. Am. Chem. Soc., 2004; 126: 4245.
    5. Zhang FY, Corey EJ. Highly Enantioselective Michael Reactions Catalyzed by a Chiral Quaternary Ammonium Salt. Illustration by Asymmetric Syntheses of (S)-Ornithine and Chiral 2-Cyclohexenones. Org. Lett., 2000; 2: 1097.
    6. CubilloDe Dios MA, Ley SV, Gaunt MJ. Enantioselective Organocatalytic Cyclopropanation via Ammonium Ylides. Angew. Chem. Int. Ed., 2004; 43: 4641.
    7. Lou S, Taoka BM, Ting A, Schaus S. Asymmetric Mannich Reactions of β-Keto Esters with Acyl Imines Catalyzed by Cinchona Alkaloids. J. Am. Chem. Soc., 2005; 127: 11256.
    8. Tian SK, Hong R, Deng L. Catalytic Asymmetric Cyanosilylation of Ketones with Chiral Lewis Base. J. Am. Chem. Soc., 2003; 125: 9900.
    9. Bremayer N, Smith SC, Ley SV, Gaunt MJ. An Intramolecular Organocatalytic Cyclopropanation Reaction. Angew. Chem. Int. Ed., 2004; 43: 2681.
    10. Kolb HC, Van Nieuwenhze MS, Sharpless KB. Catalytic Asymmetric Dihydroxylation. Chem. Rev., 1994; 94: 2483.
    11. Beller M, Sharpless KB. Applied homogeneous catalysis; Cornil B, Herrmann WA. Eds. VCH: Weinheim, 1996; 1009.
    12. Becker S, King SB, Taniguchi M, Vanhessche KPM, Sharpless KB. New Ligands and Improved Enantioselectivities for the Asymmetric Dihydroxylation of Olefins. J. Org. Chem., 1995; 60: 3940.
    13. Hyunsoo Han, Kim D Janda. A Soluble Polymer-Bound Approach to the Sharpless Catalytic Asymmetric Dihydroxylation (AD) Reaction: Preparation and Application of a [(DHQD) PHAL PEG-OMe] Ligand. Tetrahedron Lett., 1997; 38: 1527.
    14. 孙晓莉. 不对称双羟化反应中手性配体的设计、合成以及在手性酪氨酸激酶抑制剂合成中的应用. 第四军医大学博士论文, 2003.
    15. 孙晓莉, 张生勇, 南鹏娟. 制备金鸡纳生物碱配体的缚酸剂. 专利号: ZL 200510043141.2.
    16. Lee HM, Kim SW, Hyeon T, Kim BM. Asymmetric dihydroxylation using heterogenized cinchona alkaloid ligands on mesoporous Silica. Tetrahedron Asymmetry, 2001; 12: 1537.
    17. Motorina I, Crudden CM. Asymmetric dihydroxylation of olefins using cinchona alkaloids on highly ordered inorganic supports. Organic. Lett., 2001; 3: 2325.
    18. Kuang YQ, Zhang SY, Wei LL. A simple and effective soluble polymer-bound ligand for the asymmetric dihydroxylation of olefins: DHQD-PHAL- OPEG-OMe. Tetrahedron Lett., 2001; 42: 5925.
    19. Kuang YQ, Zhang SY, Wei LL. A soluble block copolymer- supported bis-cinchona alkaloid ligand for the asymmetric dihydroxylation of olefins. Synth. Commun., 2003; 33: 3543.
    20. Acprzak KK, Gawronski J. Cinchona Alkaloids and Their Derivatives: versatile Catalysts and Ligands in Asymmetric Synthesis. Synthesis, 2001; 7: 961.
    21. Hanveg AF. Microwave Engineering. New York: Academic Press, 1963; 5.
    22. Gedye R, Smith F, Westaway K. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett., 1986; 27: 279.
    23. Clark JH. Green chemistry challenges and opportunites. Green Chem., 1999; 1: 1.
    24. Lidstr?m P, Tierney J, Wathey B, Westman J. Microwave assisted organic synthesis a review. Tetrahedron, 2001; 57: 9225.
    25. 张华莲, 胡希明, 赖声礼. 微波对化学反应作用的动力学原理研究. 华南理工大学学报, 1997; 25: 46.
    26. 刘烨, 刘蒲, 高润雄, 等. 微波条件下 V2O5/TiO2 低温选择氧化甲苯制苯甲酸. 催化学报, 1998; 19: 224.
    27. 黄卡玛, 唐敬贤, 刘永清. 生物代谢动态过程中的电磁干扰. 中国科学 B 辑, 1995; 3: 289.
    28. 罗军, 蔡春, 吕春绪. 微波有机合成化学最新进展分成. 合成化学, 2002; 1: 17.
    29. Dollington SD, Bond G, Moyes RB. The influence of microwaves on the rate of reaction of propan-l-ol with ethanoic acid. J. Org. Chem., 1991; 56: 1313.
    30. Caddick S. Microwave assisted organic reactions. Tetrahedron, 1995; 51, 10403.
    31. 曾昭钧, 李香文. 微波有机化学进展沈. 阳药科大学学报, 1999; 16: 304.
    32. Chatti S, Bortolussi M, Loupy A. Synthesis of diethers derived from dianhydrohexitols by phase transfer catalysis under microwave. Tetrahedron Lett., 2000; 41: 3367.
    33. Bram G, Loupy A. Microwave irradiation plus solid-liquid phase transfer catalysis without solvent: further improvement in anionic activation. Synth. Commun., 1990; 20: 125.
    34. Giguere RJ, Bray TL, Duncan SM. Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett., 1986; 27: 4945.
    35. 李耀先, 韩涛. 微波常压合成缩醛(酮). 吉林大学自然科学学报, 1996; 3: 72.
    36. Jin Jin, Wen Zhong, Long Jiang. A new microwave reactor for batchwise Organic synthesis. Synth. Commun., 2000; 30: 832.
    37. Yuan YC, Gao DB, Jiang YL. Ethoxylation of o-or p- nitrochloro benzene using phases tranfer catalysis under microwave irradiation. Synth. Commun., 1992; 22: 2117.
    38. Bogdal D, Pielichowski J, Boron A. New synthetic method of aromatic ethers under microwave irradiation in dry media. Synth. Commun., 1998; 28: 3029.
    39. 沙耀武, 韩涛. 微波促进的有机反应. 精细石油化工, 2001; 6: 25.
    40. Loupy A, Pigeon P, RamdaniM. Synthesis of long chain aromatic esters in asolvent free procedure under microwaves. Tetrahedron, 1996; 52: 6705.
    41. Bram G, Loupy A , MajdoubM. M icrowave irradiation plus solid- liquid phase transefer catalysisw ithout solvent: Further improvement in anionic activation. Synth. Commun., 1990; 20: 125.
    42. 南鹏娟. 用不对称双羟化(AD)反应和不对称氨羟化(AA)反应合成抗癌新药紫杉醇. 第四军医大学硕士论文, 2005.
    43. Chen MN, Prabagaran S, Labenz NA, White MC. Serial Ligand Catalysis: A Highly Selective Allylic C-H Oxidation. J. Am. Chem. Soc., 2005; 127: 6970.
    44. 张克胜, 孙君坦, 何炳林. 双奎宁基间苯二甲酸酯的合成及其催化烯烃不对称双羟基化反应的初步研究. 高等学校化学学报, 1999; 20: 823.
    45. 金瑛. 金鸡纳生物碱及其衍生物催化不对称“中断的 Feist-Benary”反应的研究. 第四军医大学博士论文, 2007.
    46. Taggi AE, Hafez AM, Wack H, Young B, Ferraris D, Lectka T. The Development of the First Catalyzed Reaction of Ketenes and Imines: Catalytic, Asymmetric Synthesis of β-Lactams. J. Am. Chem. Soc., 2002; 124: 6626.
    47. Danda H. Asymmetric Hydrocyanation of Benzaldehydes Catalyzed by (5R)-5-(4-Imidazolylmethyl)-2, 4-imidazolidinedione. Bull. Chem. Soc. Jpn., 1991; 64: 3743.
    48. Amberg W, Bennani YL, Chadha RK, Crispino GA, Sharpless KB. Synthese and crystal structures of cinchona alkaloid derivatives used as ligands in the osmium catalyzed asymmetric dihydroxylation of olefins. J. Org. Chem., 1993; 58: 844.
    49. Jiang R, Kuang YQ, Sun XL, Zhang SY. An improved catalytic system for recycling OsO4 and chiral ligands in the asymmetric dihydroxylation of olefins. Tetrahedron: Asymmetry, 2004; 15: 743.
    50. 匡永清. 不对称双羟化反应中新型可回收和重复使用的手性配体的研究. 第四军医大学博士论文, 2002.
    51. 姜茹. 不对称双羟化反应中可循环使用的催化体系研究. 第四军医大学博士论文, 2004.
    52. Lohray BB, Nandanan E, Bhushan V. Catalytic asymmetric dihydroxylation of Olefins. Tetrahedron Lett., 1997; 38: 2577.
    53. 王陆瑶, 史真. 二茂铁磺酰基苯并咪唑衍生物的合成、表征及晶体结构. 化学通报, 2005; 68: 193.
    1. 董杰德, 夏洪印, 于修平. 中草药对心肌细胞生长代谢及其抗病毒的实验研. 中国病毒学杂志, 1995; 10: 104.
    2. See DM, Tilles JG. Viral myocarditis. Rev. Infect. Dis., 1991; 13: 951.
    3. 金奇. 医学分子病毒学. 科学出版社, 第一版, 2001; 580.
    4. Meinick JL, Knipe DH, Fields BV. Enterovirus: Polioviruses, Coxsackieviruses, Echoviruses and Newer Enteroviruses. Virology Raven., 1990; 11: 549.
    5. Novotny J, Kvapil P, Jelinek F, et al. Alteration in Crprotein-regulated transmembrane signalling induced in marine myocadrditis by coxsackievirus B3 infection. Cardiovasc. Res., 1995; 30: 602.
    6. Arola A, Kalimo H, Ruuskanen O, et al. Experimental Myocarditis induced by two different Coxsackievirus B3 variants: Aspects of pathogenesis and comparison of diagnostic methods. J. Med. Viro1., 1995; 47: 251.
    7. Grodurn EI, Dempster G. Myocarditis in experimental coxsackie B3 infection. Can. J. Microbiol., 1959; 5: 605.
    8. Andreoletti L, Hober D, Becquart P, et al. Experimental CVB3- induced chronic myocarditis in two murine strains: evidence of interrelationships between virus replication and myocardial damage in persistent cardiac infection. J. Med. Virol., 1997; 52: 206.
    9. 郭铃, 钟学宽, 刘阳. 柯萨奇 B3m病毒致低硒低维生素 E 鼠心肌损伤的研究. 中国地方病学杂志, 2001; 20: 412.
    10. 黄莹. 芪芩 I 号对小鼠柯萨奇 B3 病毒性心肌炎防治作用的实验. 第四军医大学硕士论文, 2004.
    11. Woodruff JF. Viral Myocarditis (A Review). Am. J. Pathol., 1980, 101: 425.
    12. Henke A, Huber S, Stelzner A, et al. The role of CD8+ T lymphocytes in coxsackievirus B3-induced myocarditis. J. Virol., 1995; 69: 6720.
    13. Rose NR. The pathogenesis of postfectious myocarditis. Chin. Immunol. Immunophathol., 1996; 9: 80.
    14. Matsumori A, Yamada T, Suzuki H, et al. Increased circulating cytokines inpatients with myocarditis and cardiomyopathy. Heart J., 1994; 72: 561.
    15. Henke A, Zell R, Martin U, et al. Direct interferon-gamma-mediated protection caused by a recombinant coxsackievirus B3. Virology, 2003; 315: 335.
    16. Daliento L, Calabrese F, Tona F, et al. Successful treatment of enterovirus-induced myocarditis with interferon-alpha. J Heart Lung Transplant, 2003; 22: 214.
    17. Lane JR, Neumann DA, Walker LA, et al. Interleukin 1 or tumor necrosis factor can promote coxsackie B3-induced myocarditis in resistant B 10 mice. J. Exp. Med., 1992; 175: 1123.
    18. Yamada T, Matsumori A, Sassayama S, et al. Therapeutic effect of anti-tumor factor-alpha antibody on the murine model of viral myocarditis induced by encephalomyocarditis virus. Circulation, 1994; 2: 846.
    19. Testsuo S, Akira M, Shigetake S. Persistent expression of cytokine in the chronic stage of viral myocarditis in mice. Circulation, 1996; 94: 2930.
    20. Gerhard G, Christian LP, Ivan H, et a1. Induction of autoimmune myocarditis in interleukin-2-deficient mice. Circulation, 1997; 95: 1773
    21. Muller DN, Dechend R, Luft FC, et al. NF-kappa B inhibition ameliorates angiotensin II-induced inflammatory damage in rats. Hypertension, 2000; 35: 193.
    22. Liu SE, Ye X, Malik AB. Inhibition of NF-kappa B activation by pyrrolidine dithiocarbamate prevents in vivo expression of proinflammatory genes. Circulation, 1999; 100: 1330.
    23. Kawano H, Okada R, Kawano Y, et al. Apoptosis in acute and chronic myocarditis. Jpn. Heart J., 1994; 16: 745.
    24. 王永梅. 黄芩苷抗CVB3m和调控CVB3m感染小鼠心肌免疫损伤及细胞凋亡的实验研究. 南京中医药大学博士论文, 2000.
    25. 王薇, 杨占秋, 钟琼等. 大黄茶抗柯萨奇病毒 B3 (CVB3) 的实验研究. 中医药学报, 2005; 4: 17.
    26. Oski FA. Vigamin E-A radical defense. N. Engl. J. med., 1980; 303: 54.
    27. Hiraoka Y. The effects of FK-506, anovel and potent immunosupressant upon murine coxsackie Virus B3 myocarditis. J. Pharmacol. Exp. Ther., 1992; 260: 1386.
    28. Nancy AD. r-globulin treatment of acute myocarditis in the pediatric population. Circulation, 1994; 89: 252.
    29. 钱永和. 氧自由基小儿心血管疾病. 实用儿科杂志, 1993; 8: 69.
    30. Tscho C, Westermanna D, Steendijk P, et al. Hemodynamic characterization of left ventricular function in experimental coxsackieviral myocarditis: effects of carvedilol and metoprolol. Eur. J. Phar., 2004; 491: 173.
    31. Tatjana Gazivoda, Silvana Raic′-Malic′, Marko Marjanovic′. The novel C-5 aryl alkenyl, and alkynyl substituted uracil derivatives of L-ascorbic acid: Synthesis, cytostatic, and antiviral activity evaluations. Bio. Med. Chem., 2007; 15: 749.
    32. Dong R. Verapamil ameliorate the clinical and Pathological course of murine myocarditis. J. Clin. Invest., 1992; 90: 2022.
    33. Xu Y. Effects of verapamil on accute coxsakie virus B3 murine myocarditis. Clin. Med. J. Engl., 1992; 10: 818.
    34. 马伏英, 智光. 栀子等中药抑制柯萨奇B3病毒的体外实验研究. 新乡医学院学报, 2006; 23: 33.
    35. 李滨, 王继弟. 中医防治柯萨奇病毒性心肌炎实验研究回顾. 山东中医药大学学报, 2005; 30: 260.
    36. 王薇, 陈寒梅, 杨占秋. 空心莲子草微乳体外抗柯萨奇病毒B3的实验研究. 武汉大学学报, 2005; 26: 700.
    37. 陈光亮, 王钦茂, 龚蕴贞等. 心肌尔康冲剂柯萨奇病毒作用的初步研究. 安徽中医学院学报, 1996; 15: 53.
    38. 孙非, 肖纫霞, 孙寒. 高山红景天酪醇对病毒性心肌炎小鼠免疫功能及抗氧化酶活性的影响. 中国药理学通报, 2000; 16: 120.
    39. 王玉林, 彭京洪, 马沛然等. 中药芪芍五味合剂对病毒性心肌炎小鼠心肌细胞凋亡和坏死的影响. 山东医药, 2002; 42: 125.
    40. 万素君, 李建农, 赵红. 中药心康口服液对柯萨奇 B3 病毒感染小鼠促干扰素诱生和保护心肌的作用观察. 中华实验和临床病毒学杂志, 2005; 19: 77.
    41. 孙非, 于起福, 张淑芹. 中药复方制剂抗柯萨奇 B 病毒的实验研究. 中国中医基础杂志, 1997; 3: 3057.
    42. 马伏英, 智光. 栀子等中药抑制柯萨奇B3病毒的体外实验研究. 新乡医学院学报, 2006; 23: 33.
    43. 李滨, 王继弟. 中医防治柯萨奇病毒性心肌炎实验研究回顾. 山东中医药大学学报, 2005; 30: 260.
    44. 王薇, 陈寒梅, 杨占秋等. 空心莲子草微乳体外抗柯萨奇病毒B3的实验研究. 北京中医药大学学报, 2005; 26: 700.
    45. 申元英, 杨占秋, 刘建军等. 大黄提取液抗柯萨奇病毒B3 的实验研究. 北京中医药大学学报, 1999; 22: 65.
    46. 杨志伟, 周娅, 曹秀琴. 苦豆子,苦豆总碱苦参总碱体外抗柯萨奇 B3 病毒的作用. 宁夏医学杂志, 2002; 24: 12.
    47. 陈曙霞, 彭旭, 刘晶星等. 苦参对感染柯萨奇 B3 病毒乳鼠搏动心肌细胞的保护作用. 中华实验和临床病毒学杂志, 2000; 14: 137.
    48. 陈曙霞, 李艳, 张冬青等. 抗柯注射液对感染CoxB3 病毒小鼠干扰素水平的影响. 上海第二医科大学报, 2000; 20: 129.
    49. 吴凡, 邱汉婴, 董继华等. 黄芪对病毒性心肌炎心脏细胞因子 mRNA 表达的影响. 临床心血管病杂志, 2004; 20: 65.
    50. 钟飞, 杜九中, 于小华等. 黄芪甲苷对病毒性心肌炎细胞凋亡作用的研究. 南华大学学报医学版, 2004; 32: 17.
    51. 李双杰, 张宝林, 邓晖等. 苦瓜素对柯萨奇B3 病毒RNA 复制抑制作用的研究. 上海中医药杂志, 2001; 5: 45.
    52. 郑敏, 梅贤臣, 鲍翠玉等. 大蒜多糖体外抗柯萨奇病毒 B3 作用. 中国现代应用药学, 2005; 22: 4.
    53. 何丽娜,何素冰. 木犀草素体外抗柯萨奇B3病毒的作用. 中国现代应用药学, 2000; 17: 362.
    54. 孙非, 张淑芹, 刘志屹等. 蟾毒内酯抗柯萨奇病毒、腺病毒和流感病毒作用的研究. 中国药理学通报, 2004; 20: 478.
    55. 郝捍东, 何立人, 徐清. 白藜芦醇抗小鼠柯萨奇病毒感染性心肌炎作用的研究. 上海中医药杂志, 2003; 37: 51.
    56. 杨志伟, 周娅, 曹秀琴. 槐果碱对感染CVB3 小鼠干扰素和肿瘤坏死因子 水平的影响. 山东中医药大学学报, 2003; 27: 146.
    57. Sudhir Gupta. Therapy of AIDS and AIDS-related syndromes. TIPS., 1986; 393.
    58. Greene WC. Aids and the Immune-System. Scientific Am., 1993; 269: 98.
    59. Turner BG, Summers MF. Structural Biology of HIV. J. Mol. Biol., 1999; 285: 1.
    60. Aggarwal SK, Gogu SR, Rangan SR, Agrawal KC. Synthesis and biological evaluation of prodrugs of zidovudine. J. Med. Chem., 1990; 33: 1505.
    61. Shelton MJ, O'Donnell AM, Morse GD. Didanosine. Ann Pharmacother, 1992; 26: 660.
    62. Shelton MJ, O'Donnell AM, Morse GD. Zalcitabine. Ann Pharmacother, 1993;
    27: 480.
    63. Venkatachalam TK, Samuel P, Kourinov IV, Uckun FM. Synthesis and anti-HIV activity of carbamates of antiviral agent stavudine. Antivir. Chem. Chemother., 2002; 13: 289.
    64. Ohta Y, Shinkai I. New drugs-reports of the new drugs recently approved by FDA. Lamivudine. Bioorg. Med. Chem., 1997; 5: 639.
    65. Maruenda H, Johnson F. Design and synthesis of novel inhibitors of HIV-1 reverse transcriptase. J. Med. Chem., 1995; 38: 2145.
    66. Romero DL. Delavirdine Mesylate. Drugs Future, 1994; 19: 238.
    67. 瞿虹. 艾滋病治疗药物及研究进展. 天津药学, 2003; 15: 57.
    68. Cheng Y, Lu Z, Chapman KT, Tata JR. Solid phase synthesis of indinavir and its analogues. J. Comb. Chem., 2000; 2: 445.
    69. Lam TL, Lam ML, Au TK, et al. A comparison of human immunodeficiency virus type-1 p rotease inhibition activities by the aqueous and methanol extracts of Chinese medicine herbs. Life Sci., 2000; 67: 2889.
    70. Au TK, Lam TL, Ng TB, et al. A comparison of HIV-1 integrase inhibition by aqueous and methanol extracts of Chinese medicinal herbs. Life Sci., 2001; 68: 1687.
    71. Kusum M, Klinbuayaem V, Bunjob M, et al. Preliminary efficacy and safety of oral suspension SH, combination of five chinese medicinal herbs, in people living with HIV /AIDS; the phase I/ II study. J. Med. Assoc. Thai., 2004; 87:1065.
    72. 徐立然. 益爱康胶囊治疗HIV病毒感染和艾滋病(AIDS)160例临床研究. 河南中医学院学报, 2005; 3: 4.
    73. 吕乃达, 王禄林. 艾滋病的中医药治疗研究. 中医药临床杂志, 2005; 4: 103.
    74. Schaeffer DJ, Krylov VS. Anti-HIV activity of extracts and compounds from algae and cyanobacteria. Ecotoxicol EnvironSafe, 2000; 45: 208.
    75. 赵芬琴, 朴惠善. 桦褐孔菌的研究进展. 中国中医药信息杂志, 2005; 12: 96.
    76. Lee Huang S, Zhang L, Huang PL, et al.Anti-HIV activity of olive leaf extract(OLE)and modulation of host cell gene exp ression by HIV-1 infection and OLE treatment. Biochem. Biophy. Res. Commun., 2003; 307: 1029.
    77. 李晓波, 金鑫, 李妍, 等. 植物类中药活性蛋白成分研究进展. 中草药, 2004; 35: 706.
    78. Lee JS, Kim HJ, Lee YS. A new anti-HIV flavonoid glucuronide from Hrysanthem um m orifolium. Planta. Medica., 2003; 69: 859.
    79. 杭清. 贯叶连翘不同部位金丝桃素含量分析. 浙江中西医结合杂志, 2004; 14: 780.
    80. 杨毅, 张成路. 木脂素抗艾滋病病毒研究. 化学进展, 2003; 15: 327.
    81. Zhou P, Takaishi Y, Duan HQ. Coumarins and bicoumarin from Ferula sum bul: anti-HIV activity and inhibition of Cytokine release. Phytochemistry, 2000; 53: 689.
    82. 赵华, 王劲, 杨松松. 药用植物牛蒡化学成分和药理活性研究述要. 辽宁中医学院学报, 2005; 7: 128.
    83. Zhou T, Xie L. Progress in HIV non-nucleoside reverse transcriptase inhibitors(NNRTIs). Acta. Pharmaceutica. Sinica., 2004; 39: 672.
    84. Daniel MD, Letvin NL, King NW. Isolation of a T-cell tropic HTLV-Ⅲ-like retrovirus from macaques. Science, 1985; 228: 1201.
    85. 殷震, 刘景华, 主编. 动物病毒学. 第 2 版. 北京: 科学出版社, 1997.
    86. Chakrabarti L. Sequence of simian immunodeficiency virus from maqaque and its relationship to other human and simian retroviruses. Natrue, 1987; 328: 543.
    87. Chen ZW, Luckay A, Sodora DL, et al. Human immunodeficiency virus type2(HIV-2)seroprevalence and characterization of a distinct HIV-2 genetic subtype from the national range of simian immunodeficiency virusinfected sooty mangabeys. J. Virol., 1997; 71: 3953.
    88. Naidu YM, Kestler HW, Li Y, et al . Characterization of infectious molecular clones of simian immunodeficiency virus(SIVMAC)and human immunodeficiency virus type 2: persistent infection of rhesus monkeys with molecularly cloned SIVMAC. J. Virol., 1988; 62: 4691.
    89. Edghill Smith YY, Aldrich K, Zhao J, et al. Effects of intestinal survival surgery on systemic and mucosal immune responses in SIV-infected rhesus macaques. J. Med. Primatol., 2002; 31: 313.
    90. Sauermann U. Making the animal model for AIDS research more precise : the impact of major histocompatibility complex(MHC)genes on pathogenesis and diseasep rogression in SIV-infected monkeys. C Molecular Medicine, 2001; 1: 515.
    91. 卢耀增, 吴小闲等. 猴免疫缺陷病毒(SIV)猴模型的建立. 中国实验动物学报, 1994; 2: 94.
    92. Hiroyuki Inouye, Takashi Yoshida, Yushin Nakamura, Shusaku Tobita. Die stereochemie einiger secoiridoidglucoside und die revision der struktru des gentiopicrosides. Tetrahedron Lett., 1968; 42: 4429.
    93. Kondo Y. Supression of chemically and ammunologically induced hepatic injuries by gentiopicroside in mice. Plant med., 1994; 60: 414.
    94. 李艳秋, 赵德化. 龙胆苦苷抗鼠肝损伤的作用. 第四军医大学学报, 2001; 22: 1645.
    95. 张勇, 蒋家雄, 李文明. 龙胆苦甙药理研究进展. 云南医药, 1991; 12: 304.
    96. 湖北中医学院附属医院中心实验室. 中药龙胆的成药制剂龙胆注射液药效学研究. 中西医结合资料汇编, 1979; 96.
    97. 刘占文, 陈长勋. 龙胆苦苷的保肝作用研究. 中草药, 2002; 33: 47.
    98. 陈长勋, 刘占文. 龙胆苦苷抗炎药理作用研究. 中草药, 2003; 34: 814.
    99. Teruaki H, Michinor K. Anti-inflammatory secoirridoids. Kokai Tokkyo Koho 1979; 91: 323.
    100. Ray S, Majumder Amarogentin HK. A Naturally Occurring Secoiridoid Glycoside and a Newly Recognized Inhibitor of Topoisomerase I from Leishmania donouani. J. Nat. Prod., 1996; 59: 27.
    1. Vogel A.I. A Textbook of Practical Organic Chemistry (5th Edition).
    2. Song CE, Jung DU, Roh EJ, Lee SG, et al. Osmium tetroxide- (QN)2PHAL in an ionic liquid: a highly efficient and recyclable catalyst system for asymmetric dihydroxylation of olefins. Chem. Comm., 2002; 3038.
    3. 冯英菊, 杨甫昭, 郭五保. 龙胆苦苷在 Beagl 犬体内药代动力学研究. 中药新药与临床药理, 2004; 15: 333.
    4. 孙晓莉. 不对称双羟化反应中手性配体的设计、合成以及在手性酪氨酸激酶抑制剂合成中的应用. 第四军医大学博士论文, 2003.
    5. Ru Jiang, Yongqing Kuang, Xiaoli Sun, Shengyong Zhang. An improved catalytic system for recycling OsO4 and chiral ligands in the asymmetric dihydroxylation of olefins. Tetrahedron: Asymmetry, 2004; 15: 743.
    6. YongQing Kuang, ShengYong Zhang, Ru Jiang. A free ligand for the asymmetric dihydroxylation of olefins utilizing one-phase catalysis and two-phase separation. Tetrahedron Letters Pergamon, 2002; 43: 3669.
    a) 刘培辉. 双黄连抗柯萨奇 B3 病毒感染原代大鼠心肌细胞效应的研究. 安徽医科大学硕士论文, 2001.
    b) Blondel B, Roijen J, Cheneval L. Heart Cells in Culture: A Simple Method for Increasing the Proportion of Myoblasts. Experientia, 1971; 27: 356.
    c) 顾方舟等译. 病毒、立克次体及衣原体疾病诊断技术. 第六版, 北京: 北京医科大学, 中国协和医科大学联合出版社, 1993; 15.
    d) Selinka HC, Wolde A, Sauter M, et al. Virus receptor interactions of coxsackie B viruses and their putative influence on cardiotropism. Med. Microbiol. Immunol (Berl)., 2004; 193: 127.
    e) Alrabiah FA. New anti-herpes virus agents: their targets andtherapeutic potential. Drugs, 1996; 52:17.
    f) 陈本川. 抗病毒药物. 陈冠军主编, 化工百科全书. 北京, 化学工业出版社, 1995; 623.
    
    
    
    
    
    
    
    1. 司徒镇强, 吴军正. 细胞培养. 北京: 世界图书出版社, 1996; 175.
    2. 吴小闲, 何伏秋, 涂新明等. 应用 SRV-1 和 SIV 靶病毒建立模拟抗人免疫缺陷病毒药物筛选方法的研究. 中华实验和临床病毒学杂志, 1993; 7 :230.
    3. 张奉学, 邓文娣, 胡英杰, 吴小闲. 中药艾可清体外抑制猴免疫缺陷病毒活性的观察. 广州中医药大学学报, 1996; 16: 127.
    4. 李平, 关崇芬. 中研Ⅱ号抗 SIVmac 感染机理的初步研究. 北京中医药大学学报, 2000; 23: 25.
    5. Dalgleish AG, Weiss RA. AIDS and the New Viruses. London: Academic Press 1990; 56.
    6. 张奉学. 猴免疫缺陷病毒感染的免疫病理机制及中医药的干预作用. 广州中医药大学博士论文, 2005.
    7. Lairmore MD, Kaplan JE,Daniel MD, et al. Guidelines for the prevention of simianimmunodefiency virus infection in laboratory workers and animal handlers. J. Med. Primatol., 1989; 18: 162.
    8. Lu Yaozeng, Wu Xiaoxian, Qin Chuan, et al. Preliminary Study on the Pathogenesis and Treatment in Simian AIDS. 国际实验动物专题研讨会论文摘要集.
    9. 姚振江, 王滨有, 李洪源, 赵景波, 高桥めぐみ, 高桥秀实. SIVmac239 对恒河猴 B 淋巴细胞生长繁殖的抑制作用. 疾病控制杂志, 2006; 10: 12.
    10. Vladimir L, Khimani AH, Hofmann Lehmann R, et al . Viremia and AIDS in rhesus macaques afrer intramuscular inoculation of plasmid DNA encoding full-length SIVmac329. AIDS Research and Human Retroviruses, 1999; 55: 445.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700