用户名: 密码: 验证码:
AlOOH核壳、空心球的控制合成与组装及Al_2O_3纳米粉体、薄膜的廉价制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料因为它们所具有的独特的磁学、电学、光学性质,一直是科学家研究的热点。目前研究的难点是如何合理的控制材料的定向生长,进而实现对其尺寸、维度、组成、晶体结构乃至物性的调控,深入研究结构与物性的关联、并最终实现按照人们的意愿设计合成功能材料。本论文总结了纳米材料的结构、制备、形成机理和性质等方面的进展,把液相合成方法拓展到新颖、特殊结构的设计合成与生长,在研究形成机制及所获得新型纳米结构的物性等方面进行了有益的探索;并在纳米氧化铝粉体、薄膜的廉价制备以及所设计路线工业化生产的可能性方面进行了大胆的尝试。论文中取得了一批创新性成果,主要内容概括如下:
     1.建立了纳米Al_2O_3空心球的乳液界面控制合成新技术,通过对实验过程中影响空心球形成的各种因素进行考察,阐述了其形成机理。表面活性剂的加入量是反应中最重要的影响因素,它影响乳液中水核的存在形状,最终影响产物的形貌。通过增加表面活性剂Span80的量至1.5g,使之形成带状水核,成功合成了竹叶状Cu(OH)2单晶。通过煅烧得到了表面具有纳米孔的CuO纳米带。并对其带状结构的光学性质进行了初步研究,为进一步探索该类独特结构的优异物理化学性质奠定了坚实的基础。
     2.利用柠檬酸根可以和很多金属离子络合而控制水解速率及产物结晶方向的特点,在醇-水混合溶剂作用下合成出纳米AlOOH的核壳结构。高倍透射电镜照片显示:其二级结构是由纳米薄片以及其卷曲而成的纳米管组成。核壳结构的形成可归因为酸性条件下表面晶核溶解-再沉淀的过程,不同反应时间产物的透射电镜阐述了这一机制。由于其具有大的比表面积、均一的孔径分布,在吸附与分离、催化等领域将展示良好的应用前景。初步研究表明其在室温条件下显示出较强的对刚果红染料的吸附性能。
     3.发展了溶剂热法,选择丙酮-水作混合溶剂,调控合成了AlOOH的空心球。通过SEM,TEM,XRD,BET和PL等手段对产物的结构和形貌进行了表征。深入研究了实验参数对产物形貌的影响,探讨了AlOOH的三维结构的形貌与发光性能之间的关系。通过这些新型纳米结构的合成,发展了一条简单有效的制备金属氧化物核壳及空心球纳米结构的途径,并为新的合成方法学的建立奠定了基础。
     4.建立了以废铝料为原料制备高纯度纳米氧化铝的新流程。废铝料经过与硫酸氢铵反应,利用重结晶技术,实现了硫酸铝铵的纯化。硫酸铝铵与碳酸氢铵等反应得到了碳酸铝铵,经过煅烧最终得到了纯度可达99.99%粒径分布集中在49nm的α-Al_2O_3。并对中间产物碳酸铝铵的合成过程进行实验设计,利用支持向量机方法处理实验数据,得到了控制收率的优化区间。本流程既处理了废料,又为纳米氧化铝的工业化生产找到了一条廉价的工艺路线。
     5.建立了从废料中提取的无机盐出发,采用溶胶-凝胶法制备氧化铝纳滤膜的方法。深入研究了影响薄膜开裂的各种影响因素(例如支撑体的孔径大小,氧化铝含量,干燥控制剂的选择和用量,浸渍时间,干燥和煅烧条件等),制得了表面无开裂、无针孔缺陷的不对称膜。并应用数据挖掘方法处理实验数据,得到了不开裂膜制备条件的半经验方程式。
Nanomaterials have drawn continuous research attention because of their unique electrical, optical and magnetic properties different from that of bulk materials. But the main challenge in this area is how to precisely control the sizes, dimensionalities, compositions and crystal structures in nanoscale, which may serve as a powerful tool for the tailoring of physical/chemical properties of materials in a controllable way. In this dissertation, based on the comprehensive and thorough investigation of a lot of literatures, I gave a concise review on the structures, properties, applications and preparation methods. Following that, solution-based routes were developed to realize the chemical synthesis of special and novel nanomaterials. Furthermore, valuable explorations have been carried out on the research on their growth mechanism and properties and attempts have been made on low-cost preparation of alumina nanopowders and the possibilities of large scale production. The research conclusions provide some original and innovative results, and the main points are summarized as follows:
     1. A new and feasible emulsion route was established to control the synthesis of Al_2O_3 hollow spheres. The reaction was accomplished at the organic/aqueous biphasic boundary. Based on a series of comparative experiments under different reaction conditions, the probable formation mechanism of Al_2O_3 hollow spheres was proposed to be emulsion-morphology controlled growth process. The Al_2O_3 hollow spheres could be tailored by using different concentration of surfactant. In addition, Cu(OH)2 bamboo-leaf-like single crystals were successfully synthesized by increasing the surfactant amounts to 1.5g. It could be converted to a porous structure (CuO) after removing the Span80 molecules via calcination. The optical properties of these CuO nanostructures were studied with UV-vis spectra measurements and found to exhibit blue shifts in UV-vis spectra and possess larger band gaps compared with those of bulk crystals.
     2. The AlOOH core/shell microspheres were successfully synthesized in large-scale via a one-step template-free solvothermal route. Most shells of the spheres composed of loosely stacked nanoplatelets and nanotubes as second order structure. Based on the evolution process of the products at various stages of the reaction, a possible mechanism was proposed to the formation of core-shell structures, which involved a surface reaction-dissolution-recrystallization process. Citrtate anion, as a coordination agent and shape modifier, plays a key role in determining the morphology of the final products. The as-prepared AlOOH core-shell superstructures are powerful in the removal of Congo red pollutant from waste water. Taking into account the high BET surface area and excellent porous properties, this novel structure is expected to be useful in many other applications, such as catalysts, sorbents, ceramics, and optical nanodevices.
     3. A solvothermal method using the mixed solvent of water and acetone was developed to prepare AlOOH hollow spheres. The structure and morphology of the products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), Brunauer-Emmett-Teller (BET) and room-temperature photoluminescence (PL) spectra, etc. The effect of the important experiment parameters on the morphology of the final products was deeply investigated. And we also investigated the dependent relationship between morphologies and PL. And this work may provide new insights into preparing other inorganic core/shell spheres with complicated structure.
     4. A new synthetic strategy has been established to prepare nano-alumina of high purity with exhausted aluminum scraps as the raw material. Aluminium ammonium sulphate (AA) with high purity was obtained via the reaction of aluminum scrap reacted with ammonium bisulfate and recrystallization several times. And aluminium ammonium carbonate hydroxide (AACH) was synthesized via the reaction of AA reacted with ammonium bicarbonate. The precursor was calcined to getα-Al_2O_3 nanometer powders with average grain size of 49nm. Inductive Coupled Plasma Emission Spectrometer (ICP) analysis result shows that the purity of Al_2O_3 is beyond 99.99%. Support vector machine, a new computational method which can avoid over-fitting and has powerful prediction ability, has been used for optimizing process parameters of AACH and establishing the models between process parameters and the mass ratio of AACH. By this way, the costs of the preparation of nanometer alumina can be reduced while the industrial waste is disposed at the same time.
     5. Alumina nanofiltration membrane has been prepared by sol-gel dip-coating method. The effects of preparation parameters during the preparation process on the quality of the final membrane were studied. These parameters included pore size of the substrate, alumina content, selection and dosage of the drying control chemical additives, times of dipping, drying process and heating conditions of the gel membrane. The problem of the desquamation between the selective layer and the substrate was solved; large area membrane without pinholes and cracks was prepared successfully. Orthogonality experiments were designed to examine the effects of different preparation parameters. Semi-empirical mathematical model of preparing crack free membrane was built based on the data mining of the preparation data.
引文
【1】. Feynman R P. There’s plenty of room at the bottom [J]. Engineering and Science (California Institute of Technology), 1960, 22-36.
    【2】.严东生,纳米材料的合成与制备[J].无机材料学报,1995, 10 (1): 1-6.
    【3】.张立德,牟季美.纳米材料科学[M].沈阳,辽宁科学技术出版社,1994, 76-88.
    【4】.杨剑.一维半导体纳米材料溶剂热合成机制探讨,中国科学技术大学博士学位论文,2001,1.
    【5】. Borghesi M,Mackinnon A J, Barringer L, et al., Relativistic channeling of a Picosecond laser Pulse in a nearcritical Preformed Plasma [J]. Phys. Rev. Lett., 1997, 78: 879-882.
    【6】. Webb R A, Observation of the Aharonov-Bohm Oscillations in Normal-Metal Rings [J]. Phys. Rev. Lett., 1985, 54, 2696-2699.
    【7】. Kroto H W, Heath J R, et al. C60: Buckminsterfullerene [J]. Nature, 1985, 318 :62-163.
    【8】. Ozin G A, Nanochemistry: Synthesis in Diminishing Dimensions [J]. Ady. Mater. 1992, 4: 612-649.
    【9】. Ball P, Garwin L. Science at the atomic scale [J]. Nature, 1992, 355:761-766.
    【10】. Yiping L, Hdjipanayis G C, Sorensenk C M, et al. Magnetic properties of fine cobalt particles prepared by metal atom reduction [J]. J. Appl. Phys., 1990, 67(9): 4502-4504.
    【11】. Hagfeldt A, Gratzel M. Light-induced redox reactions in nanocrystalline systems [J]. Chem. Rev., 1995, 95: 49-68.
    【12】. Xia Q Y, Zhou Z Y, Lu C, Cheng D J. A Draft Sequence for the Genome of the Domesticated Silkworm (Bombyx mori) [J]. Science, 2004, 306(5703): 1915-1917.
    【13】. Wang Y, Herron N. Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties [J]. J. Phys. Chem., 1991, 95(2): 525-532.
    【14】. Linderoth S, Morup S, Chemically prepared amorphous Fe-B particles: Influence of pH on the composition [J], J. Appl. Phys., 1990, 67: 4472-4474.
    【15】. Fedhein D L, Keating C D, Chem. Soc. Rev., 1998, 27: 1.
    【16】. Moggridge D, Rayment T, Lambert R M, J. Catal. 1992, 13: 242.
    【17】. Stobhe E R, Boer B A D, Deus J W, Catal. Today. 1999, 47: 161.
    【18】. Yamashita T, Vannice A. NO Decomposition over Mn2O3 and Mn3O4 [J]. J. Catal. 1996, 163: 158.
    【19】. Kawabata A, Kubo R. Electronic properties of fine metallic particles. II. Plasma resonance absorption [J]. J. Phys. Soc. Jpn, 1977, 38: 2.
    【20】. Brringer, Gleiter R, Klein H, Marquit H P. Nanocrystalline materials: an approach to a novel solid structure with gas-like disorder [J]. Appl. Phys. Lett. 1984, 102A: 365.
    【21】.张立德,牟季美.开拓原子和物质的中间领域-纳米微粒和纳米固体[J].物理, 1992, 21(3): 167.
    【22】. Calvert P. Materials Science-Rough Guide to the Nanoworld [J]. Nature, 1996, 383: 300.
    【23】. Hwang N M, Cheong W S, Yoon D Y, Kim D Y. Silicon nanowires can be grown by chemical vapor deposition [J]. Journal of Crystal Growth, 2000, 218: 33.
    【24】. KongY C, Yu D P, Zhang B. Appl. Phys. Lett. 1990, 73(6): 407.
    【25】. Robin H A Ras, Marianna Kemell, Joost de Wit, et al. Hollow Inorganic Nanospheres and Nanotubes with Tunable Wall Thicknesses by Atomic Layer Deposition on Self-Assembled Polymeric Templates [J]. Adv. Mater. 2007, 19: 102-106.
    【26】. Hu Y J, Li C Z, Gu F. Preparation and Formation Mechanism of Alumina Hollow Nanospheres via High-Speed Jet Flame Combustion [J]. Ind. Eng. Chem. Res. 2007, 46: 8004-8008.
    【27】. Jacquier C, Ferro G, Cauwet F. SiC Homoepitaxial Growth at Low Temperature by Vapor-Liquid-Solid Mechanism in Al-Si Melt [J]. Cryst. Growth Des. 2003, 3(3): 285-287.
    【28】. Wang H, Zhang X, Lee C S, et al. Oxide Shell Assisted Vapor-Liquid-Solid Growth of Periodic Composite Nanowires-A Case of Si/Sn [J]. Chem. Mater., 2007, 19(23): 5598-5601.
    【29】. Sutter E, Sutter P. Phase Diagram of Nanoscale Alloy Particles Used for Vapor-Liquid-Solid Growth of Semiconductor Nanowires [J]. Nano Lett. 2008, 8(2): 411-414.
    【30】. Peng X S, Zhang L D, Meng G W, Photoluminescence and Infrared Properties of α-Al2O3 Nanowires and Nanobelts [J]. J. Phys. Chem. B 2002, 106: 11163-11167.
    【31】.夏光祥.湿法冶金[M].北京:科学出版社, 1978. 1-39.
    【32】. [苏]拉斯科林B. H.等(张镛,夏润身,蒋筝民.译).北京:原子能出版社, 1984. 1-383.
    【33】.李洪桂.湿法冶金学[M].长沙:中南大学出版社, 2002, 1-14.
    【34】.陈家镛,杨守志,柯加俊等.湿法冶金的研究与发展[M].北京:冶金工业出版社, 1998, 1-616.
    【35】. Mech A, Karbowiak M, Kepinski L, et al. Structural and luminescent properties of nano-sized NaGdF4 : Eu3+ synthesised by wet-chemistry route [J]. J. Alloys Compund. 2004, 380 (1-2): 315-320.
    【36】. ZhongW, Wu X L, Tang N J, et al. Magnetocaloric effect in ordered double-perovskite Ba2FeMoO6 synthesized using wet chemistry [J]. Eur. Phys. J. B 2004, 41 (2): 213-217.
    【37】. Munoz A, Alonso J A, Martinez-Lope M J, et al. Synthesis, structural, and magnetic characterization of a new ferrimagnetic oxide: YFeMnO5 [J]. Chem. Mater. 2004, 16 (21): 4087-4094.
    【38】. Menegotto R V. Multiparameter analysis and enhanced productivity by the consolidation of inorganic wet chemistry methods [J]. Am. Lab. 2002, 34 (4): 36.
    【39】. Castro-Garcia S, Julien C, Senaris-Rodriguez M A. Structural and electrochemical properties of Li-Ni-Co oxides synthesized by wet chemistry via a succinic-acid-assisted technique [J]. Int. J. Inorg. Mater. 2001, 3 (4): 323-329.
    【40】. Wu J H, Li B S, Guo J K. A novel wet chemistry/two-step calcining process for the synthesis of ultrafine alpha-A12O3 particles [J]. Mater. Lett. 2001, 47 (1-2): 40-43.
    【41】. Chow G M. Chemical synthesis and processing of nanostructured particles andcoatings. In: Chow G M, Noskova N I, eds. Nanostructured Materials Science&Technology [M]. Dordrecht/Boston/London: Kluwer Academic Publishers, 1998, 31-46.
    【42】. Kamins T I. Self-assembly semiconductor nanowires [M]. In: Fecht H J, Werner M, eds. The Nano-Micro interface: Bridging the Micro and Nano World. Weinheim: Wiley-VCH Verlag GmbH&Co. KgaA, 2004, 195-206.
    【43】. Chow G M, Kurihara L K. Chemical synthesis and processing of nanostructured powders and films. In: Koeh C C, eds. Nanostructured Materials: Processing, properties and potential applications [M]. New York: Noys Publications/William Andrew Publishing, 2002, 3-50.
    【44】. Hambardzumyan A, Biltresse S, Dufrene Y, et al. An unprecedented surface oxiidation of polystyrene substrates by wet chemistry under basic conditions [J]. J. Colloi. Interf. Sci. 2002, 252 (2): 443-449.
    【45】. Wu H Q, Wei X W, Shao M W, et al. Preparation of Fe-Ni alloy nanoparticles inside carbon nanotubes via wet chemistry [J]. J. Mater. Chem. 2002, 12 (6): 1919-1921.
    【46】. P1uchery O, Eng J, Opila R L, et al. Vibrational study of indium phosphide oxides [J]. Surf. Sci. 2002, 502: 75-80.
    【47】. Bemt M, Solomon G. Using wet chemistry for etching under-bump metal [J]. Solid State Tech. 2001, 44 (10): 89.
    【48】. Bonnemann H, Brijoux W, Hofstadt H W, et al. Wet chemistry synthesis of beta-nickel aluminide NiAl [J]. Angew. Chem. Int. Edi. 2002, 41 (4): 599.
    【49】. Muukkonen E, Hakkinen T, Riihisaari T, et al. Characterization of wet chemistry resist and resist residues removal processes [J]. Phys. Script. 1999, 79: 255-258.
    【50】. Mews A, Kadavanich A V, Banin U, et al. Structural and spectroscopic investigations of CdS/HgS/CdS quantum-dot quantum wells [J]. Phys. Rev. B 1996, 53 (20): 13242-13245.
    【51】. Cushing B L, Kolesnichenko V L, Connor C J. Recent advances in the liquid-phase synthesis of inorganic nanoparticles [J]. Chem. Rev. 2004, 104 (9): 3893-3946.
    【52】. Burda C, Chen X B, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes [J]. Chem. Rev. 2005, 105: 1025-1102.
    【53】.李小兵,刘竞超.纳米粒子与纳米材料[J].塑料, 1999, 28(1): 19-22.
    【54】.张泰.纳米材料的制备技术及进展[J].辽宁化工, 1999, 28 (1): 3-8.
    【55】. Okabe A, Fukushima T, Ariga K, Niki M, Aida T. Tetrafluoroborate Salts as Site-Selective Promoters for Sol-Gel Synthesis of Mesoporous Silica [J]. J. Am. Chem. Soc. 2004, 126(29): 9013-9016.
    【56】. Han W S, Kang Y, Lee S J, Lee H, et al. Fabrication of Color-Tunable Luminescent Silica Nanotubes Loaded with Functional Dyes Using a Sol-Gel Cocondensation Method [J]. J. Phys. Chem. B 2005, 109(44): 20661-20664.
    【57】. Yan W, Chen B, Mahurin S M, Hagaman E W, et al. Surface Sol-Gel Modification of Mesoporous Silica Materials with TiO2 for the Assembly of Ultrasmall Gold Nanoparticles [J]. J. Phys. Chem. B., 2004, 108(9): 2793-2796.
    【58】. Hamza K, Abu-Reziq R, Avnir D, et al. Heck Vinylation of Aryl Iodides by a Silica Sol-Gel Entrapped Pd(II) Catalyst and Its Combination with a PhotocyclizationProcess [J]. Org. Lett., 2004, 6(6): 925-927.
    【59】. Wu J, Coffer J L. Strongly Emissive Erbium-Doped Tin Oxide Nanofibers Derived from Sol Gel/Electrospinning Methods [J]. J. Phys. Chem. C 2007, 111(44): 16088-16091.
    【60】. Yan Q Z, Su X T, Zhou Y P, et al. Controlled synthesis of TiO2 nanometer powders by sol-gel auto-igniting process and their structural property [J]. Acta Phys.-Chim. Sinica 2005, 21 (1): 57-62.
    【61】. Xie X H, Dong Y M, Chen C J, et al. Nonhydrolytic Sol-Gel Synthesis of Ba1-xSrxTiO3 Nanopowder [J], Ind. Eng. Chem. Res., 2005, 44(4): 811-815.
    【62】. Dhanaraj J, Jagannathan R, Kutty T R N, et al. Photoluminescence characteristics of Y2O3:Eu3+ nanophosphors prepared using sol-gel thermolysis [J]. J. Phys. Chem. B 2001, 105 (45): 11098-1110.
    【63】.张良苗,冯永利,陆文聪,陈念贻.溶胶-凝胶法制备纳米氢氧化铝溶胶[J].物理化学学报, 2007, 23(5): 728-732.
    【64】.徐甲强,潘庆谊,孙雨安等.纳米氧化锌的乳液合成、结构表征与气敏性能[J].无机学报, 1998, 14(3): 355-359.
    【65】. Morales D, Gutierrez J M, Garcia-Celma M J, et al. A Study of the Relation between Bicontinuous Microemulsions and Oil/Water Nano-emulsion Formation [J]. Langmuir 2003, 19(18): 7196-7200.
    【66】. Izquierdo P, Esquena J, Tadros T F, et al. Phase Behavior and Nano-emulsion Formation by the Phase Inversion Temperature Method [J]. Langmuir, 2004, 20(16): 6594-6598.
    【67】. Zhang X, Chan K Y, Water-in-Oil Microemulsion Synthesis of Platinum-Ruthenium Nanoparticles, Their Characterization and Electrocatalytic Properties [J]. Chem. Mater., 2003, 15(2): 451-459.
    【68】. Wang X, Rodriguez J A, Hanson J C, et al. Unusual Physical and Chemical Properties of Cu in Ce1-xCuxO2 Oxides [J]. J. Phys. Chem. B. 2005, 109(42): 19595-19603.
    【69】. Zhang J, Ju X, Wu Z Y, et al. Structural Characteristics of Cerium Oxide Nanocrystals Prepared by the Microemulsion Method [J]. Chem. Mater. 2001, 13(11): 4192-4197.
    【70】. Roth M, Hempelmann R. Synthesis of Nanocrystalline NH4MnF3. A Preparation Route To Produce Size-Controlled Precipitates via Microemulsion Systems [J], Chem. Mater. 1998, 10(1): 78-82.
    【71】. Yoon H, Chang M, Jang J. Sensing Behaviors of Polypyrrole Nanotubes Prepared in Reverse Microemulsions: Effects of Transducer Size and Transduction Mechanism [J]. J. Phys. Chem. B. 2006, 110(29): 14074-14077.
    【72】. Wang H, Schaefer K, Moeller M. In situ Immobilization of Gold Nanoparticle Dimers in Silica Nanoshell by Microemulsion Coalescence [J]. J. Phys. Chem. C 2008, 112(9): 3175-3178.
    【73】. Agostiano A, Catalano M, Curri M L, et al. Synthesis and structural characterization of CdS nanoparticles prepared in a four-components "water-in-oil" microemulsion [J]. Micron 2000, 31 (3): 253-258.
    【74】. Guo L, Wu Z H, Liu T, et al. Synthesis of novel Sb2O3 and Sb2O5 nanorods [J]. Chem. Phys. Lett. 2000, 318(1-3): 49-52.
    【75】. Naskar M K, Chatterjee M. Boehmite nanoparticles by the two-reverse emulsion technique [J]. J. Am. Cream. Soc. 2005, 88(12): 3322-3326.
    【76】. Daniel H. M. Buchold, Claus Feldmann, Nanoscaleγ-AlO(OH) Hollow Spheres: Synthesis and Container-Type Functionality [J], Nano Letters, 2007, 7(11): 3489-3492.
    【77】.施尔畏,夏长泰,王步国等.水热法的应用与发展[J].无机材料学报, 1996, 11: 193-206.
    【78】. Byrappa K, Yoshimura M. Handbook of Hydrothermal Technology: A Technology for Crystal Growth and Materials Processing [M], William Andrew Publishing, LLC Norwich. New York. 2001:1-43.
    【79】. Yoshimura M. Importance of Soft Solution Processing for Advanced Inorganic Materials [J]. T. Mater. Res. 1998, 13(5):1091-1098.
    【80】. Murchison S R. Hydrothermal Reactions for Materials Science and Engineering [J]. Elsevier Applied Science, 1989: 1.
    【81】. Schafthaul K F E. Gelehrte Anzeigen Bayer. Akad. 1845, 20: 557-561.
    【82】. Spezia G. Acad. Sci. Torino Att. 1905, 40: 254.
    【83】. Demazeau G. Future Trends of Hydrothermal and Solvothermal Reactions in Materials Science [M]. Proceedings of Joint ISHR&ICSTR. Edited by K.Yanagisawa and Q. Feng, Printed by Nishimura Tosha-Do Ltd., Kochi, Japan, 2001: 1-5.
    【84】. Demazeau G. Solvothermal Processes: a Route to the Stabilization of New Materials [J]. J. Mater. Chem. 1999, 9: 15-18.
    【85】. Bibby D M. Atlas of Zeolite Structure Types [J]. Nature 1985, 317: 157.
    【86】. Chen N, Zhang W, Yu W, Qian Y. Synthesis of nanocrystalline NiS with different morphologies [J]. Mater. Lett. 2002, 55 (4): 230-233.
    【87】. Wright C S, Walton R I, Thompsett D, Fisher J. Investigation of Hydrothermal Routes to Mixed-Metal Cerium Titanium Oxides and Metal Oxidation State Assignment Using XANES [J]. Inorg. Chem. 2004, 43(6): 2189-2196.
    【88】. Lu J, Wei S, Yu W, Zhang H, Qian Y. Hydrothermal Route to InAs Semiconductor Nanocrystals [J]. Inorg. Chem. 2004, 43(15): 4543-4545.
    【89】. Yu J C, Xu A, Zhang L, Song R, Wu L. Synthesis and Characterization of Porous Magnesium Hydroxide and Oxide Nanoplates [J]. J. Phys. Chem. B 2004, 108(1): 64-70.
    【90】. Sato Y, Ogawa T, Motomiya K, et al. Purification of MWNTs Combining Wet Grinding, Hydrothermal Treatment, and Oxidation [J]. J. Phys. Chem. B 2001, 105(17): 3387-3392.
    【91】. Yang H X, Qian J F, Chen Z X, et al. Multilayered Nanocrystalline SnO2 Hollow Microspheres Synthesized by Chemically Induced Self-Assembly in the Hydrothermal Environment [J]. J. Phys. Chem. C 2007, 111(38): 14067-14071.
    【92】. Feng S, Xu R, New Materials in Hydrothermal Synthesis [J]. Acc. Chem. Res. 2001, 34(3): 239-247.
    【93】. Kar S, Santra S. ZnO Nanotube Arrays and Nanotube-Based Paint-Brush Structures: A Simple Methodology of Fabricating Hierarchical Nanostructures with Self-Assembled Junctions and Branches [J]. J. Phys. Chem. C 2008, 112(22): 8144-8146.
    【94】. Wang W Z, Huang J Y, Ren Z F. Synthesis of Germanium Nanocubes by aLow-Temperature Inverse Micelle Solvothermal Technique [J]. Langmuir, 2005, 21(2): 751-754.
    【95】. Ma Y, Qi L, Ma J, Cheng H. Hierarchical, Star-Shaped PbS Crystals Formed by a Simple Solution Route [J], Cryst. Growth Des. 2004, 4(2): 351-354.
    【96】. Cao C B, Huang F L, Cao C T, et al. Synthesis of Carbon Nitride Nanotubes via a Catalytic-Assembly Solvothermal Route [J]. Chem. Mater. 2004, 16(25): 5213-5215.
    【97】. Jia X, Chen D, Jiao X, He T, et al. Monodispersed Co, Ni-Ferrite Nanoparticles with Tunable Sizes: Controlled Synthesis, Magnetic Properties, and Surface Modification [J]. J. Phys. Chem. C 2008, 112(4): 911-917.
    【98】. Qian X F, Zhang X M, Wang C, et al. The Preparation and Phase Transformation of Nanocrystalline Cobalt Sulfides via a Toluene Thermal Process [J]. Inorg. Chem. 1999, 38(11): 2621-2623.
    【99】. Hu J Q, Lu Q Y, Tang K B. Synthesis and Characterization of SiC Nanowires through a Reduction-Carburization Route [J]. J. Phys. Chem. B 2000, 104(22): 5251-5254.
    【100】. Hu J Q, Deng B, Zhang W X, Tang K B, Qian Y T. Synthesis and Characterization of CdIn2S4 Nanorods by Converting CdS Nanorods via the Hydrothermal Route [J]. Inorg. Chem. 2001, 40(13): 3130-3133.
    【101】. Deng Z X, et al. Structure-Directing Coordination Template Effect of Ethylenediamine in Formation of ZnS and ZnSe Nanocrystallites via Solvothermal Route [J]. Inorg. Chem. 2002, 41: 869-873.
    【102】. Chen X Y, Soon W. Lee. pH-Dependent formation of boehmite (γ-AlOOH) nanorods and nanoflakes [J]. Chemical Physics Letters 2007, 438: 279-284.
    【103】. Hyun Chul Lee, Hae Jin Kim, Soo Hyun Chung, Synthesis of Unidirectional Alumina Nanostructures without Added Organic Solvents [J]. J. Am. Chem. Soc. 2003, 125: 2882-2883.
    【104】. Peng X S, Zhang L D, Meng G W, Photoluminescence and Infrared Properties of γ-Al2O3 Nanowires and Nanobelts [J]. J. Phys. Chem. B 2002, 106: 11163-11167.
    【105】. Daniel H. M. Buchold and Claus Feldmann, Nanoscaleγ-AlO(OH) Hollow Spheres: Synthesis and Container-Type Functionality [J]. Nano Letters, 2007, 7(11): 3489-3492.
    【106】. Zhao Y Y, Frost R L, Wayde N M, Gallium-Doped Boehmite Nanotubes and Nanoribbons. A TEM, EDX, XRD, BET, and TG Study [J]. J. Phys. Chem. C 2007, 111: 5313-5324.
    【107】. Zhao Y Y, Frost R L, Wayde N M. Growth and Surface Properties of Boehmite Nanofibers and Nanotubes at Low Temperatures Using a Hydrothermal Synthesis Route [J]. Langmuir, 2007, 23: 9850-9859.
    【108】. He T B, Xiang L, Zhu S L. Hydrothermal Preparation of Boehmite Nanorods by Selective Adsorption of Sulfate [J]. Langmuir, in press.
    【109】. Shen S C, Chen Q, Chow P S. Steam-Assisted Solid Wet-Gel Synthesis of High-Quality Nanorods of Boehmite and Alumina [J]. J. Phys. Chem. C 2007, 111: 700-707.
    【110】. Mathieu Y, Lebeau B, Valtchev V. Control of the Morphology and Particle Size of Boehmite Nanoparticles Synthesized under Hydrothermal Conditions [J]. Langmuir, 2007, 23: 9435-9442.
    【111】. Zhu H Y, Gao X P, Song D Y. Growth of Boehmite Nanofibers by Assembling Nanoparticles with Surfactant Micelles [J]. J. Phys. Chem. B 2004, 108: 4245-4247.
    【112】. Zhu H Y, Riches J D, Barry J C.γ-Alumina Nanofibers Prepared from Aluminum Hydrate with Poly(ethylene oxide) Surfactant [J]. Chem. Mater. 2002, 14: 2086-2093.
    【113】. Hitoshi Ogihara, Masahiro Sadakane,Yoshinobu Nodasaka, Wataru Ueda, Shape-Controlled Synthesis of ZrO2, Al2O3, and SiO2 Nanotubes Using Carbon Nanofibers as Templates [J]. Chem. Mater. 2006, 18(21).
    【114】. Chen X Y, Huh H S, Soon W Lee, Hydrothermal synthesis of boehmite (γ-AlOOH) nanoplatelets and nanowires: pH-controlled morphologies [J]. Nanotechnology, 2007, 18: 285608.
    【115】. Liu Y, Ma D, Han X W, et al. Hydrothermal synthesis of microscale boehmite and gamma nanoleaves alumina [J]. Materials Letters 2008, 62: 1297-1301.
    【116】. Hou H W, Xie Y, Yang Q, GuoQ X, Tan C R, Preparation and characterization of γ-AlOOH nanotubes and nanorods [J]. Nanotechnology, 2005, 16: 741-745.
    【117】. Farag H K, Endres F. Studies on the synthesis of nano-alumina in air and water stable ionic liquids [J]. J. Mater. Chem. 2008, 18: 442-449.
    【118】. Li Y Y, Liu J P, Jia Z J. Fabrication of boehmite AlOOH nanofibers by a simple hydrothermal process [J]. Materials Letters, 2006, 60: 3586-3590.
    【119】. Lepot N, Van Bael M K, Van den Rul H, et al. Synthesis of platelet-shaped boehmite and g-alumina nanoparticles via an aqueous route [J]. Ceramics International 2007, in press.
    【120】. Chen X Y, Zhang Z J, Li X L, Soon W. Lee. Controlled hydrothermal synthesis of colloidal boehmite (γ-AlOOH) nanorods and nanoflakes and their conversion into γ-Al2O3 nanocrystals [J]. Solid State Communications, in press.
    【121】. Wei S Y, Zhang J, Elsanousi A, Lin J. From Al4B2O9 nanorods to AlOOH (boehmite) hierarchical nanoarchitectures [J]. Nanotechnology, 2007, 18: 255605.
    【122】. Ren T Z, Yuan Z Y, Su B L. Microwave-Assisted Preparation of Hierarchical Mesoporous-Macroporous Boehmite AlOOH andγ-Al2O3 [J]. Langmuir, 2004, 20: 1531-1534.
    【123】. Mousavand T, Ohara S, Umetsu M, et al. Hydrothermal synthesis and in situ surface modification of boehmite nanoparticles in supercritical water [J]. J. of Supercritical Fluids, 2007, 40: 397-401.
    【124】. Shen S C, Ng W K, Chen Q, et al. Novel synthesis of lace-like nanoribbons of boehmite andγ-alumina by dry gel conversion method [J]. Materials Letters, 2007, 61: 4280-4282.
    【125】. Zhao Y Y, Martens W N, Bostrom T E, et al. Synthesis, Characterization, and Surface Properties of Iron-Doped Boehmite Nanofibers [J]. Langmuir, 2007, 23: 2110-2116.
    【126】. Ding X X, Gao J M, Qi S, et al. Template-Free Preparation of Bunches of Aligned Boehmite Nanowires [J]. J. Phys. Chem. B 2006, 110: 21680-21683.
    【127】. Ma M G, Zhu Y J, Xu Z L. A new route to synthesis ofγ-alumina nanorods [J]. Materials Letters, 2007, 61: 1812-1815.
    【128】. Zhong Q Y, Chong X W, Xiao T G, Cun L. Photoluminescent properties of boehmite whisker prepared by sol-gel process [J]. Journal of Luminescence, 2004, 106: 153-157.
    【129】. Kuang D B, Fang Y P, Liu H Q, et al. Fabrication of boehmite AlOOH andγ-Al2O3 nanotubes via a soft solution route [J]. J. Mater. Chem. 2003, 13: 660-662.
    【130】. Chadradass J, Balasubramanian M, Sol-gel processing of alumina fibers [J], J. Mater. Processing Technology, 2006, 173: 275-280.
    【131】. Zhang M, Zhang R, Xi G C, Liu Y, Qian Y T. From Sheet to fibers: a novel approach to γ-AlOOH andγ-Al2O3 1D nanostructures [J]. J. nanoscience and nanotechnology, 2006, 6:1437-1440.
    【132】. Milan Kaiti Naskar, Minati Chatterjee, Boehmite nanoparticles by the two-reverse emulsion technique [J]. J. Am. Cream. Soc. 2005, 88(12): 3322-3326.
    【133】. Park J H, Lee M K, Rhee C K, Kim W W. Control of hydrolytic reaction of aluminum particles for aluminum oxide nanofibers [J]. Materials Science and Engineering A, 2004, 375-377: 1263-1268.
    【134】. S.Musi?, ?. Drag?evi?, S.Povi?. Hydrothermal crystallization of boehmite from freshly precipitated aluminium hydroxide [J]. Materials Letters, 1999, 40: 269-274.
    【135】. Zhang Z R, Hicks R W, Pauly T R, Mesostructured forms ofγ-Al2O3 [J]. J. Am. Chem. Soc. 124(8): 1592-1593.
    【136】. Feng Y L, Lu W C, Zhang L M, et al. One-Step Synthesis of Hierarchical Cantaloupe-like AlOOH Superstructures via a Hydrothermal Route [J], Cryst. Growth Des. 2008, 8(4): 1426-1429.
    【137】. Yang J, Lin C, Wang Z, Lin J. In(OH)3 and In2O3 Nanorod Bundles and Spheres: Microemulsion-Mediated Hydrothermal Synthesis and Luminescence Properties [J]. Inorg. Chem. 2006, 45(22): 8973-897.
    【1】施惠娟等.超细氧化铝的制备和现状[J].轻金属, 1990, 7.
    【2】张永刚等.纳米氧化铝制备及应用[J].无机盐工业, 2001.
    【3】丁安平等.纳米氧化铝的用途和制备方法初探[J].有色冶炼, 2001.
    【4】耿新玲等.纳米氧化铝的制备与应用进展[J].河北化工, 2002, 3.
    【5】Yuan J J, Zhou S X, You B, Wu L M. Organic Pigment Particles Coated with Colloidal Nano-Silica Particles via Layer-by-Layer Assembly [J]. Chem. Mater. 2005, 17: 3587-3594.
    【6】Holland B T, Christopher F B, Thang D, et al. Synthesis of Highly Ordered, Three-Dimensional, Macroporous Structures of Amorphous or Crystalline Inorganic Oxides, Phosphates, and Hybrid Composites [J]. Chem. Mater. 1999, 11: 795-805.
    【7】Sara E S, Kenneth S S, Carbon Powders Prepared by Ultrasonic Spray Pyrolysis of Substituted Alkali Benzoates [J]. J. Phys. Chem. C 2007, 111 (48): 17807 -17811.
    【8】Zhong Z, Yin Y, Gates B, Xia Y. Preparation of Mesoscale Hollow Spheres of TiO2 and SnO2 by Templating Against Crystalline Arrays of Polystyrene Beads [J]. Adv. Mater. 2000, 12: 206.
    【9】Chen Z, Zhan P, Wang Z L, et al. Two- and Three-Dimensional Ordered Structures of Hollow Silver Spheres Prepared by Colloidal Crystal Templating[J]. Adv. Mater. 2004, 16: 417-422.
    【10】Pavlyuchenko V N, Sorochinskaya O V, Ivanchev S S, et al. J. Polym. Sci. Polym. Chem. 2001, 39: 1435-1449.
    【11】Wu D, Ge X, Zhang Z, Wang M, Zhang S, Novel One-Step Route for Synthesizing CdS/Polystyrene Nanocomposite Hollow Spheres [J]. Langmuir, 2004, 20: 5192-5195.
    【12】Huang C C, Liu T Y, Su C H, Lo Y W, et al. Superparamagnetic Hollow and Paramagnetic Porous Gd2O3 Particles [J]. Chem. Mater. 2008, 20(12): 3840-3848.
    【13】Zhang J, Elsanousi A, Lin J, Huang Y, et al. Aerosol-Assisted Self-Assembly of Aluminum Borate (Al18B4O33) Nanowires into Three Dimensional Hollow Spherical Architectures [J]. Cryst. Growth Des. 2007, 7(12): 2764-2767.
    【14】Fujiwara M, Shiokawa K, Tanaka Y, Nakahara Y. Preparation and Formation Mechanism of Silica Microcapsules (Hollow Sphere) by Water/Oil/Water Interfacial Reaction [J]. Chem. Mater. 2004, 16(25): 5420-5426.
    【15】He X D, Ge X W, Liu H R, Wang M Z, Zhang Z C. Synthesis of Cagelike Polymer Microspheres with Hollow Core/Porous Shell Structures by Self-Assembly of Latex Particles at the Emulsion Droplet Interface [J]. Chem. Mater. 2005, 17(24): 5891-5892.
    【16】Li W, Coppens M O. Synthesis and Characterization of Stable Hollow Ti-Silica Microspheres with a Mesoporous Shell [J]. Chem. Mater. 2005, 17(9): 2241-2246.
    【17】Sun Q, Deng Y. In Situ Synthesis of Temperature-Sensitive Hollow Microspheres via Interfacial Polymerization [J]. J. Am. Chem. Soc. 2005, 127(23): 8274-8275.
    【18】Lu Y L, Xia Y M. Monodisperse spherical colloids of Pb and their use as chemical templates to produce hollow particles [J]. Adv. Mater. 2005, 17(4): 473-477.
    【19】Sun X M, Li Y D, Ga2O3 and GaN semiconductor hollow spheres [J]. Angew.Chem. Int.Ed. 2004, 43: 3827-3831.
    【20】Wang D, Caruso R A, Caruso F. Synthesis of Macroporous Titania and Inorganic Composite Materials from Coated Colloidal Spheres-A Novel Route to Tune Pore Morphology [J]. Chem. Mater. 2001, 13(2): 364-371.
    【21】Yang J H, Sasaki T. Synthesis of CoOOH Hierarchically Hollow Spheres by Nanorod Self-Assembly through Bubble Templating [J]. Chem. Mater. in press.
    【22】Anil Khanal, Yuko Inoue, Mitsunori Yada, and Kenichi Nakashima, Synthesis of Silica Hollow Nanoparticles Templated by Polymeric Micelle with Core-Shell-Corona Structure [J]. J. Am. Chem. Soc. 2007, 129: 1534-1535.
    【23】Wu X F, Tian Y J, Cui Y B, et al. Raspberry-like Silica Hollow Spheres: Hierarchical Structures by Dual Latex-Surfactant Templating Route [J]. J. Phys. Chem. C 2007, 111: 9704-9708.
    【24】Zhao X, Li T k, Xi Y Y, Ng D H L, Yu J. Synthesis of BaWO4 Hollow Structures [J]. Cryst. Growth Des. 2006, 6(10): 2210-2213.
    【25】Rautaray D, Sinha K, Shankar S S, et al. Aqueous Foams as Templates for the Synthesis of Calcite Crystal Assemblies of Spherical Morphology [J]. Chem. Mater. 2004, 16(7): 1356-1361.
    【26】Fei J B, Cui Y, Yan X H, Controlled Preparation of MnO2 Hierarchical Hollow Nanostructures and Their Application in Water Treatment [J]. Adv. Mater. in press.
    【27】Zhou H, Fan T X, Zhang D, Guo Q X, Ogawa H. Novel Bacteria-Templated Sonochemical Route for the in Situ One-Step Synthesis of ZnS Hollow Nanostructures [J]. Chem. Mater. 2007, 19(9): 2144- 2146.
    【28】Deng Z W, Chen M, Gu G X, Wu L M. A Facile Method to Fabricate ZnO Hollow Spheres and Their Photocatalytic Property [J]. J. Phys. Chem. B 2008, 112, 16-22.
    【29】曹洁明,邓少高,冯杰,郭静,张防,陶杰.三元添加剂水溶液体系合成亚微米硫化锌空心球[J].高等学校化学学报, 2005, 26(2): 199.
    【30】宋秀芹,杨晓辉,陈汝芬,魏雨.纳米结构TiO2/PS及TiO2空心球的自组装与表征[J].化学学报, 2006, 64(3): 198~202.
    【31】朱钰方,方莹,刘亚云,施剑林.利用具有核壳结构的SiO2@PPy粒子制备SiC空心球[J].高等学校化学学报, 2006, 27(1): 23-25.
    【32】胡孝昀,郑明波,赵燕飞,刘劲松,李子全,曹洁明.利用胶体碳球为模板制备SiO2、TiO2、SnO2空心球[J].化学研究与应用, 2006, 18(4):415.
    【33】Lu Q F, Chen D R, Jiao X L. Fabrication of Mesoporous Silica Microtubules through the Self-Assembly Behavior of Cyclodextrin and Triton X-100 in Aqueous Solution [J]. Chem. Mater. 2005, 17: 4168-4173.
    【34】Naik S P, Chiang A S T, R. Thompson W, Huang F C. Formation of Silicalite-1 Hollow Spheres by the Self-assembly of Nanocrystals [J]. Chem. Mater, 2003, 15: 787-792.
    【35】Francesco D R, Romain V, Michel B, Audrey T. Hierarchical Macroporosity Induced by Constrained Syneresis in Core-Shell Polysaccharide Composites [J]. Chem. Mater. 2005, 17: 4693-4699.
    【36】Zoldesi C I, Cornelis A W, Arnout I. Deformable Hollow Hybrid Silica/Siloxane Colloids by Emulsion Templating [J]. Langmuir 2006, 22: 4343-4352.
    【37】韩春蕊,吕伟丽,吴秀勇,傅洵,胡正水.以PSA-A乳胶粒为模板批量制备TiO2空心球[J].无机材料学报, 2005, 20(6): 1409.
    【38】宋秀芹,杨晓辉,陈汝芬,魏雨.纳米结构TiO2/PS及TiO2空心球的自组装与表征[J]. 化学学报, 2006, 64(3): 198~202.
    【39】Hsieh C C, Lin K F, Chien A T. Fabrication of PEO17-OPV3 Templated Titania Nano-Hollow Rods and Their Aggregating Microspheres [J]. Macromolecules, 2006, 39: 3043-3047.
    【40】Zhong Z Y, Chen F X, Ang T P, Han Y F, et al. Impact of Growth Kinetics on Morphology and Pore Structure of TiO2-One-Pot Synthesis of Macroporous TiO2 Microspheres [J]. Inorg. Chem. 2006, 45: 4619-4625.
    【41】Zhan S H, Chen D R, Jiao X L, Tao C H. Long TiO2 Hollow Fibers with Mesoporous Walls: Sol-Gel Combined Electrospun Fabrication and Photocatalytic Properties [J]. J. Phys. Chem. B 2006, 110: 11199-11204.
    【42】Sun C W, Sun J, Xiao G L, Zhang H R, et al. Mesoscale Organization of Nearly Monodisperse Flowerlike Ceria Microspheres [J]. J. Phys. Chem. B 2006, 110: 13445-13452.
    【43】Xu L Q, Du J, Li P, Qian Y T. In Situ Synthesis, Magnetic Property, and Formation Mechanism of Fe3O4 Particles Encapsulated in 1D Bamboo-Shaped Carbon Microtubes [J]. J. Phys. Chem. B 2006, 110: 3871-3875.
    【44】Yu D B, Sun X Q, Zou J W, et al. Oriented Assembly of Fe3O4 Nanoparticles into Monodisperse Hollow Single-Crystal Microspheres [J]. J. Phys. Chem. B 2006, 110: 21667-21671.
    【45】Lu H B, Liao L, Li J C, Wang D F, et al. High Surface-to-Volume Ratio ZnO Microberets: Low Temperature Synthesis, Characterization, and Photoluminescence [J]. J. Phys. Chem. B 2006, 110: 23211-23214.
    【46】Yan C L, Xue D F. Room Temperature Fabrication of Hollow ZnS and ZnO Architectures by a Sacrificial Template Route [J]. J. Phys. Chem. B 2006, 110: 7102-7106.
    【47】Shen G Z, Bando Y, Lee C J. Synthesis and Evolution of Novel Hollow ZnO Urchins by a Simple Thermal Evaporation Process [J]. J. Phys. Chem. B 2005, 109: 10578-10583.
    【48】Gao S Y, Zhang H J, Wang X M, et al. ZnO-Based Hollow Microspheres: Biopolymer-Assisted Assemblies from ZnO Nanorods [J]. J. Phys. Chem. B 2006, 110: 15847-15852.
    【49】Cao H L, Qian X F, Wang C, Ma X D, et al. High Symmetric 18-Facet Polyhedron Nanocrystals of Cu7S4 with a Hollow Nanocage [J]. Journal of American chemistry Society, 2005, 127: 16024-16025.
    【50】Choon Hwee Bernard Ng, Wai Yip Fan. Shape Evolution of Cu2O Nanostructures via Kinetic and Thermodynamic Controlled Growth [J]. J. Phys. Chem. B 2006, 110: 20801-20807.
    【51】闫仕农,王永昌,郝丽梅,魏天杰. Au/Ag芯-壳复合结构纳米颗粒的制备和表征[J]. 功能材料, 2005, 36 (3): 425.
    【52】闫仕农,王永昌.金/银芯-壳复合纳米颗粒的制备及光学吸收特性[J].稀有金属, 2005, 29(4): 505.
    【53】Kobayashi Y, Verónica S M, Luis M. L. Deposition of Silver Nanoparticles on SilicaSpheres by Pretreatment Steps in Electroless Plating [J]. Chem. Mater. 2001, 13: 1630-1633.
    【54】Mayer A B R, Grebner W, Wannemacher R. Preparation of Silver-Latex Composites [J]. J. Phys. Chem. B 2000, 104: 7278-7285.
    【55】Zhou G J, Lu M K, Yang Z S. Aqueous Synthesis of Copper Nanocubes and Bimetallic Copper/Palladium Core-Shell Nanostructures [J]. Langmuir, 2006, 22: 5900-5903.
    【56】郭红霞,刘根起,宁光辉,赵晓鹏. Ni/PSt/TiO2多层芯-壳结构电磁响应[J].无机材料学报, 2003, 18(4): 787.
    【57】Burda C, Chen X B, Narayanan R, Mostafa A. El-Sayed. Chemistry and Properties of Nanocrystals of Different Shapes [J]. Chem. Rev. 2005, 105: 1025-1102.
    【1】Santra K, Sarkar C K, Mukherjee M K. Copper oxide thin films grown by plasma evaporation method [J]. Thin Solid Films 1992, 213: 226.
    【2】Borgohain K, Murase N, Mahamuni S. Synthesis and properties of Cu2O quantum particles [J]. J. Appl. Phys. 2002, 92: 1292-1297.
    【3】Kong X H, Li Y D. High sensitivity of CuO modified SnO2 nanoribbons to H2S at room temperature [J]. Sens. Actuators, B. 2005, 105:449-453.
    【4】Choi J K, Choi G M, Man G. Electrical and CO gas sensing properties of layered ZnO-CuO sensor [J]. Sens. Actuators, B 2000, 69: 120-126.
    【5】Chowdhuri A, Gupta V, Sreenivas K, etc. Response speed of SnO2-based H2S gas sensors with CuO nanoparticles [J]. Applied Physics Letters, 2004, 84: 1180-1182.
    【6】Chowdhuri A, Gupta V, Sreenivas K. Fast response H2S gas sensing characteristics with ultra-thin CuO islands on sputtered SnO2 [J]. Sens. Actuators, B Chemical. 2003, 93: 572-579.
    【7】Chowdhuri A, Sharma P, Gupta V, et al. H2S gas sensing mechanism of SnO2 films with ultrathin CuO dotted islands [J]. Journal of Applied Physics, 2002, 92: 2172-2180.
    【8】Koumoto K, Koduka H, Seo W S. Thermoelectric properties of single crystal CuAlO2 with a layered structure [J]. J. Mater. Chem. 2001, 11: 251.
    【9】Zhang J, Liu J, Peng Q. Nearly Monodisperse Cu2O and CuO Nanospheres: Preparation and Applications for Sensitive Gas Sensors [J]. Chem. Mater. 2006, 18: 867.
    【10】Zhu C L, Chen C N, Chen Z Y. In-situ preparation of 1D CuO nanostructures using Cu2(OH)2CO3 nanoribbons as precursor for sacrifice-template via heat-treatment [J]. Solid State Commun. 2004, 130: 681.
    【11】Chen S, Chen X, Xue Z. Solvothermal preparation of Cu2O crystalline particles [J]. J. Cryst. Growth 2002, 246: 169.
    【12】Kaur M, Muthe K P, Despande S K. Growth and branching of CuO nanowires by thermal oxidation of copper [J]. J. Cryst. Growth 2006, 289: 670.
    【13】Zhu J, Li D, Wang X. Highly dispersed CuO nanoparticles prepared by a novel quick-precipitation method [J]. Mater. Lett. 2004, 58: 3324.
    【14】Wang H, Xu J, Zhu J. Preparation of CuO nanoparticles by microwave irradiation [J]. J. Cryst. Growth 2002, 244: 88.
    【15】Xu J F, Ji W, Shen Z X. Preparation and Characterization of CuO Nanocrystals [J]. J. Solid State Chem. 1999, 147: 516.
    【16】Li D, Leung Y H, Djurisic A B. CuO nanostructures prepared by a chemical method [J]. J. Cryst. Growth 2005, 282: 105.
    【17】Liu B, Zeng H C. Mesoscale Organization of CuO Nanoribbons: Formation of "Dandelions" [J]. J. Am. Chem. Soc. 2004, 126: 8124.
    【18】Hou H, Xie Y, Li Q. Large-Scale Synthesis of Single-Crystalline Quasi-Aligned Submicrometer CuO Ribbons [J]. Cryst. Growth Design 2004, 5: 201.
    【19】Jiang X, Herrics T, Xia Y. CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air [J]. Nano Lett. 2002, 2: 1333.
    【20】Xiong Y, Li Z, Xie Y. From Complex Chains to 1D Metal Oxides: A Novel Strategy to Cu2O Nanowires [J]. J. Phys. Chem. B 2003, 107: 3697.
    【21】Yao W T, Yu S H, Zhou Y. Formation of Uniform CuO Nanorods by Spontaneous Aggregation: Selective Synthesis of CuO, Cu2O, and Cu Nanoparticles by a Solid-Liquid Phase Arc Discharge Process [J]. J. Phys. Chem. B 2005, 109: 14011.
    【22】Chen Z, Shi E, Zheng Y. Growth of hex-pod-like Cu2O whisker under hydrothermal conditions [J]. J. Cryst. Growth 2003, 249: 294.
    【23】Yang M, Zhu J. Spherical hollow assembly composed of Cu2O nanoparticles [J]. J. Cryst. Growth 2003, 256: 134.
    【24】Wang Z, Chen X, Qian Y. Room temperature synthesis of Cu2O nanocubes and nanoboxes [J]. Solid State Commun. 2004, 130: 585.
    【25】Wu Z, Shao M, Zhang W. Large-scale synthesis of uniform Cu2O stellar crystals via microwave-assisted route [J]. J. Cryst. Growth 2004, 260: 490.
    【26】Zhang J, Liu J, Dong Y. Nearly Monodisperse Cu2O and CuO Nanospheres: Preparation and Applications for Sensitive Gas Sensors [J]. Chem. Mater. 2006, 18: 867.
    【27】Luo F, Wu D, Gao L. Shape-controlled synthesis of Cu2O nanocrystals assisted by Triton X-100 [J]. J. Cryst. Growth 2005, 285: 534.
    【28】Chang Y, Zeng H. C. Manipulative Synthesis of Multipod Frameworks for Self-Organization and Self-Amplification of Cu2O Microcrystals [J]. Cryst. Growth Des. 2004, 4: 273.
    【29】Gou L, Murphy C J. Solution-Phase Synthesis of Cu2O Nanocubes [J]. Nano Lett. 2003, 3: 231.
    【30】Teichgraber J, Dechert S, Meyer F. Dicopper(I) oxalate complexes as molecular precursors for the deposition of copper compounds [J]. J Organomet. Chem. 2005, 690: 5255.
    【31】徐甲强,张全法,范福玲.传感器技术(下册)[M].哈尔滨:哈尔滨工业大学出版社. 2004, 92-95.
    【32】Gao X P, Bao J L, Pan G L, et al. Preparation and Electrochemical Performance of Polycrystalline and Single Crystalline CuO Nanorods as Anode Materials for Li Ion Battery [J]. J. Phys. Chem. B 2004, 108(18): 5547-5551.
    【33】Chang Y, Lye M, Zeng H C. Large-scale synthesis of high-quality ultralong copper nanowires [J]. Langmuir. 2005, 21: 3746-3748.
    【34】Liu B, Zeng H C. Mesoscale Organization of CuO Nanoribbons: Formation of "Dandelions" [J]. J. Am. Chem. Soc. 2004, 126: 8124-8125.
    【35】Chang Y, Teo J, Zeng H C. Formation of Colloidal CuO Nanocrystallites and Their Spherical Aggregation and Reductive Transformation to Hollow Cu2O Nanospheres [J]. Langmuir 2005, 21: 1074-1079.
    【36】Wen X, Xie Y, Choi C, Wan K, Li X, Yang S. Copper-based nanowire materials: Templated synthesis, characterizations, and applications [J]. Langmuir 2005, 21: 4729-4737.
    【37】Zhao Y, Zhu J, Hong J, Bian N, Chen H. Microwave-induced polyol-process synthesis of copper and copper oxide nanocrystals with controllable morphology [J]. Eur. J. Inorg. Chem. 2004, 20: 4072-4080.
    【38】Gou L, Murphy C J. Solution-phase synthesis of Cu2O nanocubes [J]. Nano.Lett. 2003, 3: 231-234.
    【39】Cao H L, Qian X F, Wang C, Ma X D, Yin J, Zhu Z K. High Symmetric 18-Facet Polyhedron Nanocrystals of Cu7S4 with a Hollow Nanocage [J]. J. Am. Chem. Soc. 127:16024-16025.
    【40】Wang D, Mo M, Yu D, Xu L, Li F, Qian Y T. Large-scale growth and shape evolution of Cu2O cubes [J]. Crys. Growth Des. 2003, 3: 717-720.
    【41】Lu C, Qi L, Yang J, Wang X, Zhang D, Xie J, Ma J. One-Pot Synthesis of Octahedral Cu2O Nanocages via a Catalytic Solution Route [J]. Adv. Mater. 2005, 17: 2562-2567.
    【42】Muramatsu A, Sugimoto T. Synthesis of uniform spherical Cu2O particles from condensed CuO suspensions [J]. J. Colloid Interface Sci. 1997, 189: 167-173.
    【43】Orel Z C, Matijevi? E, Goia D V. Conversion of uniform colloidal Cu2O spheres to copper in polyols [J]. J. Mater. Res. 2003, 18: 1017-1022.
    【44】Shen P, Gao H. Size-controlled preparation of Cu2O octahedron nanocrystals and studies on their optical absorption [J]. J.Colloid Interface Sci. 2005, 284: 510-515.
    【45】Liu Y, Chu Y, Zhuo Y J, Li M Y, et al. Anion-Controlled Construction of CuO Honeycombs and Flowerlike Assemblies on Copper Foils [J]. Crys. Growth Des. 2007, 7(3): 467-470.
    【46】Chang Y, Zeng H C. Controlled Synthesis and Self-Assembly of Single-Crystalline CuO Nanorods and Nanoribbons [J]. Crys. Growth Des. 2004, 4(2): 397-402.
    【47】Zhong Z Y, Ng V, Luo J Z, Teh S P, et al. Manipulating the Self-Assembling Process to Obtain Control over the Morphologies of Copper Oxide in Hydrothermal Synthesis and Creating Pores in the Oxide Architecture [J]. Langmuir 2007, 23: 5971-5977.
    【48】Liu B, Zeng H C. Mesoscale Organization of CuO Nanoribbons: Formation of “Dandelions”[J]. J. Am. Chem. Soc. 2004, 126: 8124-8125.
    【49】Zhong Z Y, Vivien N, Luo J Z, Teh S P, et al. Manipulating the Self-Assembling Process to Obtain Control over the Morphologies of Copper Oxide in Hydrothermal Synthesis and Creating Pores in the Oxide Architecture [J]. Langmuir 2007, 23: 5971.
    【50】Song X Y, Sun S X, Zhang W M, et al. Synthesis of Cu(OH)2 Nanowires at Aqueous-Organic Interfaces [J]. J. Phys. Chem. B 2004, 108: 5200.
    【51】Xu Y Y, Chen D R, Jiao X L. Fabrication of CuO Pricky Microspheres with Tunable Size by a Simple Solution Route [J]. J. Phys. Chem. B 2005, 109: 13561.
    【52】Liu J P, Huang X T, Li Y Y, et al. Self-Assembled CuO Monocrystalline Nanoarchitectures with Controlled Dimensionality and Morphology [J]. Cryst. Growth Des. 2006, 6: 1690.
    【53】Liu J P, Huang X T, Li Y Y. et al. Hierarchical nanostructures of cupric oxide on a copper substrate: controllable morphology and wettability [J]. J. Mater. Chem. 2006, 16: 4427.
    【54】Zhang Z P, Shao X Q, Yu H D, et al. Morphosynthesis and Ornamentation of 3D Dendritic Nanoarchitectures [J]. Chem. Mater. 2005, 17: 332.
    【55】Liu Y, Chu Y, Zhuo Y J, et al. Anion-Controlled Construction of CuO Honeycombs and Flowerlike Assemblies on Copper Foils [J]. Cryst. Growth Des. 2007, 7: 467.
    【56】Zhang Z P, Sun H P, Shao X Q, et al. Three-dimensionally oriented aggregation of a few hundred nanoparticles into monocrystalline architectures [J].Adv. Mater. 2005, 17: 42.
    【57】Nakamoto K, Infrared and Raman Spectra of Inorganic and Coordination Compounds [M]. Chemical Industry Press, Beijing, 1991, p 251.
    【58】Bernson A, Lindgren G, Huang W, Frech R. Coordination and conformation in PEO,PEGM and PEG systems containing lithium or lanthanum triflate [J]. Polymer 1995, 36: 4471.
    【59】Nyquist R A, Kagel R O. Infrared Spectra of Inorganic Compounds [M], Academic Press, New York and London, 1971, p 220.
    【60】Lu C H, Qi L M, Yang J H, et al. Simple Template-Free Solution Route for the Controlled Synthesis of Cu(OH)2 and CuO Nanostructures [J]. J. Phys. Chem. B 2004, 108: 17825.
    【61】Banfield J F, Welch S A, Zhang H Z, et al. Aggregation-Based Crystal Growth and Microstructure Development in Natural Iron Oxyhydroxide Biomineralization Products [J]. Science 2000, 289: 751.
    【62】Wang Y, Tang X, Yin L, Huang W, et al. Sonochemical Synthesis of Mesoporous Titanium Oxide with Wormhole-like Framework Structures [J]. Adv. Mater. 2000, 12: 1183.
    【63】Zhong Z, Ang T P, Luo J, et al. Synthesis of One-Dimensional and Porous TiO2 Nanostructures by Controlled Hydrolysis of Titanium Alkoxide via Coupling with an Esterification Reaction [J]. Chem. Mater. 2005, 17: 6814.
    【64】倪良,张莉,王学宝. W/O乳状液模板法制备纳米MnO2微球[J].无机材料学报, 2007, 22(1):167-169.
    【65】Fang X S, Zhang L D. Controlled growth of one-dimensional oxide nanomaterials [J]. J. Mater. Sci. Technol. 2006, 22: 1.
    【66】Fang X S, Ye C H, Peng X S, et al. Temperature-controlled growth ofα-Al2O3 nanobelts and nanosheets [J]. J. Mater. Chem. 2003, 13: 3040.
    【67】Fang X S, Ye C H, Zhang L D. et al. Adv. Funct. Mater. 2005, 15: 63.
    【68】Pan Z W, Dai S, Beach D B, et al. Temperature Dependence of Morphologies of Aligned Silicon Oxide Nanowire Assemblies Catalyzed by Molten Gallium [J]. Nano Lett. 2003, 3: 1279.
    【69】Kim F, Connor S, Song H. et al. Angew. Chem. Int. Ed. 2004, 43: 3673.
    【70】Liu Y, Chu Y, Li M Y, et al. In situ synthesis and assembly of copper oxide nanocrystals on copper foil via a mild hydrothermal process [J]. J. Mater. Chem. 2006, 16: 192.
    【71】Liang J B, Liu J W, Xie Q, et al. Hydrothermal Growth and Optical Properties of Doughnut-Shaped ZnO Microparticles [J]. J. Phys. Chem. B 2005, 109: 9463.
    【72】Xu Y Y, Chen D R, Jiao X L. Fabrication of CuO Pricky Microspheres with Tunable Size by a Simple Solution Route [J]. J. Phys. Chem. B 2005, 109: 13561.
    【73】Xu J S, Xue D F. Fabrication of Malachite with a Hierarchical Sphere-like Architecture [J]. J. Phys. Chem. B 2005, 109: 17157.
    【74】Song X Y, Yu H Y, Sun S X. J. Colloid Interface Sci. [J], 2005, 289: 588.
    【75】Lee S H, Her Y S, Matijevic E. J. Colloid Interface Sci. [J], 1997, 186: 193.
    【76】Chang Y, Zeng H C. Controlled Synthesis and Self-Assembly of Single-Crystalline CuO Nanorods and Nanoribbons [J]. Cryst. Growth Des. 2004, 4: 397.
    【77】Hou H W, Xie Y, Li Q. Large-Scale Synthesis of Single-Crystalline Quasi-Aligned Submicrometer CuO Ribbons [J]. Cryst. Growth Des. 2005, 5: 201.
    【78】Wang W Z, Varghese O K, Ruan C M, et al. Synthesis of CuO and Cu2O crystalline nanowires using Cu(OH)2 nanowire templates [J]. J. Mater. Res. 2003, 18: 2756.
    【79】Lu C H, Qi L M, Yang J H, et al. Simple Template-Free Solution Route for the Controlled Synthesis of Cu(OH)2 and CuO Nanostructures [J]. J. Phys. Chem. B 2004, 108: 17825.
    【80】Wen X G, Zhang W X, Yang S H, et al. Solution Phase Synthesis of Cu(OH)2 Nanoribbons by Coordination Self-Assembly Using Cu2S Nanowires as Precursors [J]. Nano Lett. 2002, 2: 1397.
    【81】Liu J P, Huang X T, Li Y Y, et al. Self-Assembled CuO Monocrystalline Nanoarchitectures with Controlled Dimensionality and Morphology [J]. Cryst. Growth Des. 2006, 6(7): 1690-1696.
    【82】Tsunekawa S, Fukuda T, Kasuya A. Blue shift in ultraviolet absorption spectra of monodisperse CeO2–x nanoparticles [J]. J. Appl. Phys. 2000, 87: 1318.
    【83】Wang H, Xu J Z, Zhu J J, Chen H Y. J. Cryst. Growth 2002, 244: 88.
    【84】Yang J P, Meldrum F C, Fendler J H. Epitaxial growth of size-quantized cadmium sulfide crystals under arachidic acid monolayers [J]. J. Phys. Chem. 1995, 99: 5500.
    【1】Gao C, Donath E, Mohwald H, Shen J. Adv. Mater. 2002, 14: 3789.
    【2】Mio C, Marr D W M. Tailored Surfaces Using Optically Manipulated Colloidal Particles [J]. Langmuir 1999, 15: 8565.
    【3】Wang D, Caruso F. Chem. Comm. 2001, 489.
    【4】Wu X Y, Wang D B, Hu Z S, Gu G H. Synthesis ofγ-AlOOH (γ-Al2O3) self-encapsulated and hollow architectures [J]. Materials Chemistry and Physics, 2008, 109: 560-564.
    【5】Lu Q Y, Hu J Q, et al. Synthesis of Nanocrystalline CuMS2 (M = In or Ga) through a Solvothermal Process [J]. Inorg. Chem. 2000, 39(7): 1606-1607.
    【6】Oliver S, Kuperman A, et al. Lamellar aluminophosphates with surface patterns that mimic diatom and radiolarian microskeletons [J]. Nature 1995, 378(6552): 47-49.
    【7】Yang J, Zeng J H, Yu S H, et al. Formation Process of CdS Nanorods via Solvothermal Route[J]. Chem. Mater. 2000, 12(11): 3259-3263.
    【8】Hu J Q, Lu Q Y, Tang K B, et al. Synthesis and Characterization of SiC Nanowires through a Reduction-Carburization Route [J]. J. Phys. Chem. B. 2000, 104(22): 5251-5254.
    【9】Marqusee J A, Ross J J. Kinetics of phase transitions: Theory of Ostwald Ripening [J]. Chem. Phys. 1983, 79: 373.
    【10】Dadyburjor D B, Ruckenstein E. Kinetics of Ostwald ripening [J]. J. Cryst. Growth 1977, 40: 279.
    【11】Digne M, Sautet P, Raybaud P, Toulhoat H, Artacho E. Structure and Stability of Aluminum Hydroxides: A Theoretical Study [J]. J. Phys. Chem. B 2002, 106: 5155.
    【12】Zhu Y F, Fan D H, Shen W Z. Template-Free Synthesis of Zinc Oxide Hollow Microspheres in Aqueous Solution at Low Temperature [J]. J. Phys. Chem. C 2007, 111: 18629.
    【13】Pan B F, Cui D X, Ozkan C, et al. DNA-Templated Ordered Array of Gold Nanorods in One and Two Dimensions [J]. J. Phys. Chem. C 2007, 111: 12572.
    【14】Xiao H M, Zhu L P, et al. Anomalous ferromagnetic behavior of CuO nanorods synthesized via hydrothermal method [J]. Solid State Communications 2007, 141: 431.
    【15】Kuan W H, Wang M K, Huang P M, et al. Effect of citric acid on aluminum hydrolytic speciation [J].Water Research. 2005, 39: 3457-3466.
    【16】Feng T L, Gurian P L, Healy M D, et al. Aluminum citrate: isolation and structural characterization of a stable trinuclear complex [J]. Inorg. Chem. 1990, 29: 408.
    【17】Atzapetakis M, Raptopoulou C P, Terzis A. et al. Synthesis, Structural Characterization, and Solution Behavior of the First Mononuclear, Aqueous Aluminum Citrate Complex [J]. Inorg. Chem. 1999, 38: 618.
    【18】Chen X Y, Lee S W. pH-Dependent formation of boehmite (γ-AlOOH) nanorods and nanoflakes [J].Chemical Physics Letters 2007, 438: 279.
    【19】Chen X Y, Huh Hyun sue, Soon W lee. Hydrothermal synthesis of boehmite (γ-AlOOH) nanoplatelets and nanowires: pH-controlled morphologies [J]. Nanotechnology, 2007, 18:285608.
    【20】Pan B F, Cui D X, Ozkan C. et al. DNA-Templated Ordered Array of Gold Nanorods in One and Two Dimensions [J]. J. Phys. Chem. C 2007, 111: 12572.
    【21】Xu Y Y, Chen D R, Jiao X L. Fabrication of CuO Pricky Microspheres with Tunable Size by a Simple Solution Route [J]. J. Phys. Chem. B 2005, 109: 13561.
    【22】Bavykin D V, Parmon V N, Lapkin A A. et al. The Effect of Hydrothermal Conditions on the Mesoporous Structure of TiO2 Nanotubes [J]. J. Mater. Chem. 2004, 14: 3370.
    【23】Sing K S W, Everett D H, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J]. Pure Appl. Chem. 1985, 57: 603.
    【24】Yu J, Yu H, Cheng B, Traplis C. J. Mol. Catal. A. 2006, 249: 135.
    【25】Zhang M, Zhang R, Xi G C, et al. From sheet to fibers: A novel approach toγ-AlOOH andγ-Al2O3 1D nanostructures [J]. J. Nanosci. & Nanotech. 2006, 6: 1437-1440.
    【26】Wang X, Li Y D. Synthesis and Formation Mechanism of Manganese Dioxide Nanowires/Nanorods [J]. Chem. Eur. J. 2003, 9(1): 300-306.
    【27】Zhang L C, Liu Z H, Lv H, et al. Shape-Controllable Synthesis and Electrochemical Properties of Nanostructured Manganese Oxides [J]. J. Phys. Chem. C 2007, 111: 8418-8423.
    【28】Zhong L S, Hu J S, Liang H P, et al. Self-Assembled 3D Flowerlike Iron Oxide Nanostructures and Their Application in Water Treatment [J]. Adv. Mater. 2006, 18: 2426.
    【29】Chen X Y, Qiao M H, Xie S H, et al. Self-Construction of Core-Shell and Hollow Zeolite Analcime Icositetrahedra: A Reversed Crystal Growth Process via Oriented Aggregation of Nanocrystallites and Recrystallization from Surface to Core [J]. J. Am. Chem. Soc. 2007, 129: 13305-13312.
    【30】Li H X, Bian Z F, Zhu J, et al. Mesoporous Titania Spheres with Tunable Chamber Stucture and Enhanced Photocatalytic Activity [J]. J. Am. Chem. Soc. 2007, 129: 8406-8407.
    【31】Zhu L P, Xiao H M, Zhang W D. et al. One-Pot Template-Free Synthesis of Monodisperse and Single-Crystal Magnetite Hollow Spheres by a Simple Solvothermal Route [J]. Crys. Growth Des. 2008, 8(3): 957-963.
    【32】Li X L, Lou T J, Sun X M, et al. Highly Sensitive WO3 Hollow-Sphere Gas Sensors [J]. Inorg. Chem. 2004, 43: 5442-5449.
    【33】Inoue M, Kimura M, Inui T. Alkoxyalumoxanes [J]. Chem. Mater. 2000, 12(1): 55-61.
    【34】Feripat J J, Bosmans H, Rouxhet P G. Proton mobility in solids. I. Hydrogenic vibration modes and proton delocalization in boehmite [J]. J. Phys. Chem. 1967, 71: 1097.
    【35】Wickersheim K A and Korpi G K. J. Chem. Phys. 1965, 42: 579.
    【36】Ram S. Infrared Phys. Technol. 2001, 42: 547.
    【37】YarbroughW A and Roy R J. Mater. Res. 1987, 2: 494.
    【38】Rosso K A and Rustad J R. Am. Mineral. 2001, 86: 312.
    【39】Holm C H, Adams C R. Ibers J A. The Hydrogen Bond in Boehmite [J]. J. Phys. Chem. 1958, 62: 992.
    【40】Frost R L, Kloprogge J T, Russell S C and Szetu J. Appl. Spectrosc. 1999, 53: 572.
    【41】Buining P A, Pathmananoharan C, Jansen J B H and Lekkerkerker H N W. J. Am. Ceram. Soc. 1991, 74: 1303.
    【42】Colomban P H. J. Mater. Sci. Lett. 1988, 7: 1324.
    【43】Priya G K, Padmaja P, Warrier K G K, Damodaran A D and Aruldhas G. J. Mater. Sci. Lett. 1997, 16: 1584.
    【44】Cross A D. An Introduction to Practical IR Spectroscopy [M]. 1964, 2nd edn (London: Butterworth).
    【45】Zhong Q Y, Chong X W, Xiao T G. Cun L. Photoluminescent properties of boehmite whisker prepared by sol-gel process [J]. Journal of Luminescence 2004, 106: 153-157.
    【46】Chen X Y, Soon W L. pH-dependent formation of boehmite (γ-AlOOH) nanorods and nanoflakes [J]. Chemical Physics Letters, 2007, 438: 279-284.
    【1】Karakas Y, et a1. British Ceram Trans, 1994, 93(2).
    【2】李芳宇,刘维平.纳米粉体制备方法及其应用前景[J].中国粉体技术, 2000, 6(5): 29-32.
    【3】顾立新,成庆堂,石劲松.纳米Al2O3——一种前景广阔的新型化工材料[J].化工新型材料, 2000, 28(11): 20-21.
    【4】马荣骏,邱电云,马文骥.湿法制备纳米级氧化铝[J].湿法冶金,1999, 70 (2): 31-35.
    【5】Morinaga K, Torikai T, et al. Fabrication of fineα-alumina powders by thermal decomposition of ammonium aluminum carbonate hydroxide (AACH) [J], Acta Mater. 2000, 48(18-19): 4735-4741.
    【6】Chen N Y, Lu W C, Yang J, Li G Z. Support vector machine in chemistry [M]. Singapore: World Scientific Publishing Company, 2004.
    【7】陆文聪,陈念贻,叶晨洲,李国正.支持向量机算法和软件ChemSVM介绍[J].计算机与应用化学, 2002, 19(6): 697-702.
    【8】李继光,孙旭东等.碳酸铝铵热分解制备α-Al2O3超细粉[J].无机材料学报, 1998, 13(6):803-807;
    【9】付高峰,毕诗文等.碳酸铝铵热分解制备α-Al2O3微粉[J].中国有色金属学报, 1998, 8(2):64-66;
    【10】林元华,张中太等.前驱体热分解法制备高纯超细α-Al2O3粉体[J].硅酸盐学报, 2000, 28(3):268-271.
    【1】时钧,袁权等.膜技术手册[M].北京:化学工业出版社, 2001。
    【2】徐南平,邢卫红,赵宜江.无机膜分离技术和与应用[M].北京:化学工业出版社, 2003.
    【3】Burggraaf A J, Cot L. Fundamentals of Inorganic Membrane Science and Technology [M]. Elsevier Science B.V., 1996.
    【4】Larbot A, Young D, Guizard C, Paterson R, Cot L. Alumina nanofiltration membrane from sol-gel process [J]. Key Engineering Materials. 1991, 61&62: 395-398.
    【5】Egger C. Supported alumina membranes from modified Al-alkoxides [J]. Key Engineering Materials, 1991, 61&62: 429-432.
    【6】larbot A, Alami Y S, Persin M, Sarrazin J, Cot L. Preparation of aγ-alumina nanofiltration membrane [J]. Journal of Membrane Science, 1994, 97: 167-173.
    【7】Yang W P, Shyu S S, Lee E S. Effects of poly(vinyl alcohol) content and calcinations temperature on the characteristics of unsupported alumina membrane [J]. Separation Science and Technology, 1996, 31: 1327-1343.
    【8】Christine K L, Richard D G. Effect of binder addition on the properties of unsupported γ-Al2O3 membrane [J]. Materials Letters, 1999, 38: 145-149.
    【9】Yang W P, Shyu S S, Lee E S, Chao A C. Effect of PVA content and calcination temperature on the properties of PVA/boehmite composite film [J]. Materials Chemistry and Physics, 1995, 45: 108-113.
    【10】Chen Y Y, Wei W C. Formation of thin mullite film via a sol-gel process with polyvinylpyrrolidone additives [J]. Journal of the European Ceramic Society, 2001, 21: 2535-2540.
    【11】Uhlhorn R J R, Huis Veld M B J, Keizer K, et al. Synthesis of ceramic membranes part 1: Synthesis of non-supported and supportedγ-alumina membranes without defects [J]. J. Mater. Sci., 1992, 27: 527-537.
    【12】陆文聪等.支持向量机算法和软件ChemSVM介绍[J].计算机与应用化学, 2002, 19(6): 697-702.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700