用户名: 密码: 验证码:
ESWL粉碎结石的力学机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1980年诞生的体外冲击波粉碎结石技术ESWL(Extracorporeal Shock Wave Lithotripsy)是医疗技术领域一项重大成就。ESWL通过水下放电或爆炸产生冲击波,利用聚焦冲击波的高能量密度和空化作用粉碎患者体内肾结石,因其使用便捷,粉碎效率高,无外科手术侵入创伤和低廉的治疗费用等特性,自出现后即迅速成为治疗尿路结石的最常用临床手段。尽管如此,ESWL也有需要完善之处。在临床和实验研究中均发现伴随着ESWL的不同形式损伤,例如血尿、慢性出血、多重肾软组织内的血肿、以及肾水肿等。在冲击波医疗技术中,医疗效率和安全性同等重要。为了ESWL碎石效率最优化和组织损伤最小化,确定聚焦冲击波的动力学焦点,研究负压的演化过程以及空化显得极为重要。本文在国家自然科学基金(20472316)和教育部博士点专项基金(20070611004)的资助下,完成了冲击波聚焦过程、空化效应产生和负压演化过程的数值模拟,为提高压电式和液电式ESWL碎石机的碎石效率和减少副作用,以及设计制造和临床应用方面提供了科学的参考依据。
     冲击波是一种非线性波。对于它,关于线性波的Snell反射定律等物理定律不再成立。水下冲击波聚焦的数值研究需要考虑水的可压缩性。本文采用Tait状态方程来描述水的特性,并假设水是无粘的、运动中无热传导和热辐射。这样就可以借助空气动力学中研究冲击波的一系列方法,来研究ESWL中的水下冲击波传播、反射和聚焦。一般认为ESWL冲击波的负压波段是引起水空化的主要原因。
     CCW(Chester-Chisnell-Whitham)方法即Whitham的激波动力学方法,是一种近似方法,在一定条件下对激波面的追踪计算简单而有效,可完整地描述波阵面的演化过程。本文编写了CCW方法的程序,完成了球面压电陶瓷型ESWL的冲击波传播的波阵面的数值追踪,为压电陶瓷式ESWL碎石机的设计制造和临床应用提供了科学依据。
     CE/SE(Space-time Conservation Element and Solution Element)方法即时空守恒元和解元方法,1995年被提出,具有稳定性好、计算量小、计算结果精度高和对间断分辨率高等特点,已被美国NASA列为第二代CFD程序中的主要算法之一。本文通过适当改造张增产等的改进CE/SE方法来离散Euler方程,建立了研究ESWL中的水下聚焦冲击波的二维数学模型,分别对于球面压电陶瓷型和液电式机型ESWL的在单侧和双侧波源情况下,冲击波传播过程完成了数值模拟。本文还利用CE/SE方法,用连续模型来描述空化流动,分别以Liu model和Cut-off model作为状态方程,对一维管道中不同初始条件下发生空化流动时的压强、速度、和密度的分布进行了数值模拟。
     数值结果表明:1.ESWL中冲击波的动力学焦点(非线性焦点)一般并非几何焦点(线性焦点),而是有所偏移。因此,在临床应用球面压电陶瓷型ESWL粉碎结石时,实际焦点应当规定为压力最大的点,而不是简单地就将几何焦点选为轰击的靶点。2.本文首次将CE/SE方法应用于空化问题的研究。数值结果表明CE/SE方法是研究空化问题的一种有效方法。3. ESWL产生的冲击波聚焦时出现空化是不可避免的。所以在EWSL的设计制造及临床应用中,都不可忽视空蚀。
     除了使用通用作图软件外,本文中所有数值模拟程序都是作者用Fortran语言自行编写的。
Extracorporeal Shock Wave Lithotripsy (ESWL) invented in 1980 is one of the most significant achievements of modern medical treatment technology. The kidney stone inside the patient can be broken down into small fragments, by firing shock waves with high energy density and cavitation effect by underwater discharge or explosion during the ESWL treatment. Since ESWL emerged, due to its convenience of the treatment, high efficiency of the stone comminution, without invasive damages of surgery, less clinical costs and etc., it has rapidly become the most common clinical treatment of kidney stone disease. However, ESWL still should be improved, because the side effects, different short- and long-term damages, are observed by the clinical use and laboratory researches of ESWL.
     A common side effect of the ESWL treatment is the presence of blood in the urine (hematuria). There are others too, such as chronic hemorrhage, hematoma in kidney parenchyma, kidney edema and etc.. Therefore, both efficiency and security of the treatment are very important for the shock wave therapy. In order to maximize the efficiency of stone comminutions and minimize the side effects in the ESWL treatment, it is especially meaningful to locate exactly the dynamical focus of shock waves and to gain good insight in the evolution of the negative pressure as well as the cavitation effect. With the support of National Natural Science Foundation of China(20472316)and Doctoral Fund of Ministry of Education of Chin(a20070611004), we completed the numerical simulations of the process about shock wave focusing and negative pressure evolution, and the numerical simulations of cavitation. In this paper some important scientific data to maximize stone comminution and decrease tissue damage of the piezoelectric and the electro-hycaulic ESWL are shown. The data are relevant to design, manufacture and clinical applications of ESWL.
     Shock wave is a nonlinear wave, for which some physical laws of the linear waves, such as Snell reflection law, are valid no more. For the numerical research of focusing of underwater shock waves the compressibility of water must be considered. In this paper, the characters of water were described by Tait’s state equation. It was also supposed that water was inviscid and there was no heat conduction or radiation during the movement. So by the help of the methods of shock wave of gas dynamics, we could investigate the propagating, reflecting and focusing of the underwater shock waves in ESWL. The negative pressure waves of the underwater shock wave in ESWL are generally considered as the main cause of the cavitations.
     CCW (Chester-Chisnell-Whitham) method of Whitham’s shock wave dynamics is an approximation. It is simple but effective in the tracing the shock wave fronts under some conditions. CCW method can be utilized to describe all the nonlinear process of the shock wave front. In this paper, a numerical code of the geometric shock wave dynamics method CCW was made and applied to track the successive positions of the fronts of shock waves of the spherical piezoelectric ESWL. Some important scientific results to design, manufacture and clinical application of the piezoelectric lithotripter were given.
     CE/SE (space-time conservation element and solution element) method, proposed in 1995, is already become one of the primary methods in the second generation of the CFD scheme of NASA, due to its good stability, calculation accuracy and high resolution. Based on the appropriate transformation to Zhang’s modified CE/SE method in order to discrete Euler equations, in this paper a two-dimensional numerical model of the studying to the underwater focusing shock wave of ESWL was supposed, and the flow fields of shock waves were numerically simulated for one-side source and both-side wave sources of both piezoelectric and electric-hydraulic ESWL. In this paper, moreover, by the CE/SE method the cavitation flow was described with the continuous model, using Liu model and Cut-off model as the state equation respectively, to the numerical simulation of the pressure, speed, and density distribution of the one-dimensional channels in different initial conditions when there were cavitation flow.
     Numerical results show that: 1. The dynamic (non-linear) focus of the shock wave is generally different from the geometric (linear) focus in ESWL, there is often some deviation. Therefore, in the clinical treatment of spherical piezoelectric ESWL, the actual focus should be defined as the greatest pressure point and located as the target of firing, rather than the geometric focus. 2. It is the first time to apply CE / SE method to the problems of cavitation in this paper. The numerical results show that the CE / SE method is an effective method to study of cavitation. 3. The cavitations are inevitable during the focusing of shock waves in EWSL, therefore, for the design, manufacture and clinical applications of EWSL cavitation can not be ignored.
     All the numerical simulation programs except graphic software are written by the author with the FORTRAN.
引文
[1]陈景秋,韦春霞,邓艇,田祖安,张晓燕.体外冲击波碎石技术的力学机理的研究[J].力学进展. 2007, Vol.37,No.4,Nov.25, 590-600.
    [2]陈景秋,王宗笠.冲击波聚焦粉碎人体结石过程中的空化现象的数值模拟[J].中国生物医学工程学报. 2001, 20(1):53-55.
    [3]陈景秋,赵万星,曾忠. ESWL实际焦点位置的理论和数值分析[J].中国生物医学工程学报. 2004,23(3):247-251.
    [4]张永祥,陈景秋,韦春霞等.球面压电陶瓷型ESWL的冲击波聚焦点对球心的偏移[J].中国生物医学工程学报. 2007, 26(2):177-181.
    [5]韦春霞,张永祥,陈景秋.球面压电式ESWL聚焦的实际焦点的数值分析.重庆大学学报. 2009, vol.32,No.1,21-26.
    [6]张永祥.应用时空守恒元和解元方法数值研究溃坝洪水波和ESWL中的聚焦冲击波,重庆大学博士学位论文. 2007.6.
    [7]李玉兰,陈景秋.现代医学手段诱发空蚀的形成及其影响[J].重庆大学学报. 2002,25(12): 114-118.
    [8]韩见知,吴开俊.体外冲击波碎石技术[M].人民卫生出版社. 2004.
    [9] Michel Tanguay. Computation of bubbly cavitating flow in shock wave lithotripsy[D]. California Institute of Technology, 2004.
    [10] Andreas Skolarikos, Gerasimos Alivizatos, Jean de la Rosette. Extracorpeal shock wave lithotripsy 25 year later: Complications and their prevention [J].European Urology: 2006, 1207:1-10
    [11] Delius M. Lithotripsy. Ultrasound Med Biol 2000;26 Suppl 1:S55-58.
    [12] Evan A., Willis L.R., Lingeman J.E. ,et al. Renal trauma and the risk of long-term complications in shock wave lithotripsy. Nephron,1998, 78: 1-8.
    [13] Teichman J.M.H., Portis A.J., Cecconi P.P. ,et al. In vitro comparison of shock wave lithotripsy machines, J. Urol.,2000,164:1259-1264.
    [14] Mueller M, Stosswellenfokusierung in Wasser, Dissertation der RWTH Aachen. Germany. 1988.
    [15] Bailey M.R., Blackstock D.T., Cleveland R.O., and Crum L.A., Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. II. Acoustic fields[J]. J. Acoust. Soc. Am., 1999,104:2517-2524.
    [16] Chaussy C., Brendel W., Schmiedt E. Extracorporesally induced destruction of kidney stonesby shock waves. Lancet 1980;2(8207):1265-1268.
    [17] Chaussy C., Schmiedt E., Jocham D V, et. First clinical experience with extracorporeally induced destructionofstones by shock waves.J Urol, 1982,27:417-420.
    [18] Chaussy C., and Fuchs G.J. Current state and future developments of noninvasive treatment of human urinary stones with extracorporeal shock wave lithotripsy. J.Urol,1989,141:782-792.
    [19] Gavestein D. Extracorporeal shock wave lithotripsy and percutaneous nephrolithotomy. Anesthesiol Clin North America 2000; 18(4):953-971.
    [20] Delius M., Medical applications and bioeffects of extracorporeal shock waves. Shock Waves,1994, 4: 55-72.
    [21] Evan A.P., and Mcteer J.A., Q-effects of shock wave lithotripsy, Kindey Stones:Mecical and Surgical Management(Coe F.L, Favus M.J., Pak C.Y.C.,Parks J.H., Preminger G.M.edited):Philadelphoia, Lippincott-Raven Press, 1996, 549-570.
    [22] Delius M., Enders G., Xuan Z., Liebich H., et al. Biological effects of shock waves: Kindey damage by shock waves in dogs-Dose dependence: Ultrasound in Med. & Biol., 1988 ,14:117-122.
    [23] Blomgren P., Connors B.A., Lingeman J.E.,et al.Quantitation of shock wave lithotripsy- induced lesion in small and large pig kidneys, Aatomical Rec., 1997, 249:341-348.
    [24]中华人民共和国行业标准YY0001-90体外冲击波碎石机通用技术条件.国家医药管理局发布. 1990:1-2.
    [25]孙西钊.医用冲击波[M].北京:中国科学技术出版社. 2006.
    [26] Sturtevant B, Kulkarny V A. The focusing of weak shock waves[J]. Journal of Fluid mechanics, 1976,73(4):651-671.
    [27] Sommerfeld M & Mueller M. Experimental and numerical studies of shock wave focusing in water. Experiments in Fluids,1988; 6:209-216.
    [28] Chen Jingqiu. Ein Bicharakteristikenverfahren zur Berechnung der Druckwellenfocusie- rung in kompressiblen Fluiden. Dissertation der RWTH Aachen. Germany. 1988:29-63.
    [29] Cole RH. Underwater Explosions. Dover Publication Inc. 1965:70-146.
    [30] Cole RH. Underwater Explosions. Princeton University Press,1948.
    [31] Courant R and Friedrichs R. Supersonic flow and shock waves. New York. Springer Verlag.1948:327-331.
    [32] Hamilton, M. Transient axial solution for the reflection of a spherical wave from a concave ellipsoidal mirror[J]. Journal of the Acoustical Society of America, 1993, 93(3):1256-1266.
    [33] Christopher T. Modeling the Dornier HM3 lithotripter[J]. Journal of the Acoustical Society of America, 1994,96(5):3088-3095.
    [34] Coleman A M, Choi, J Saunders. Theoretical predictions of the acoustic pressure generated by a shock wave lithotripter[J]. Ultrasound in Medicine and Biology, 1991,17:245-255.
    [35] Averkiou M, R Cleveland. Moldeling of an electrohydraulic lithotripter with the KZK equation[J]. Journal of the Acoustical Society of America, 1999, 106(1):102-112.
    [36] Cates J. B Sturtevant. Shock wave focusing using geometrical shock dynamics[J]. Physics of Fluids, 1997,9(10), 3058-3068.
    [37] S. Barre.,J. Rolland. et al. Experiments and modeling of cavitating flows in venture: attached sheet cavitation[J].European Joural of Mechnics B/Fluids 28(2009):444-464.
    [38] Jung H. Seo., Young J. Moon., Byeong Rog Shin. Prediction of cavitating flow noise by direct numerical simulation. Journal of Computational Physics 227(2008):6511–6531.
    [39] Sohrab Behnia. et al. Nonlinear transitions of a spherical cavitation bubble. Chaos,Solitons and Fractals 41(2009):818–828
    [40] P.Kosinski, A.Kosinska, A.C.Hoffmann. Simulation of solid particles behaviour in a driven cavity flow. Powder Technology 191(2009):327–339.
    [41] Loske,Achim M. et al. Tandem shock waves for extracoracorporeal shock wave lithotripsy.
    [42] S.aus der Wiesche. The collapse of micro cavitation bubbles. Forsch Ingenieurwes (2008) 72:175–182.
    [43] Jun Cai, et al. Numerical simulation on enhancement of natural convection heat transfer by acoustic cavitation in a square enclosure. Applied Thermal Engineering 29(2009):1973–1982.
    [44] Eric Goncalves, Regiane Fortes Patella. Numerical simulation of cavitating flows with homogeneous models. Computers & Fluids (2009).
    [45] Christopher E.Brennen. Cavitation and Bubble Dynamics[M].Oxford University Press,1995:18-25.
    [46] Jens J.Rassweiler, Geert G.Tailly, Christian Chaussy. Progress in Lithotriptor Technology[J]. EAU Update Series, 2005,3: 17-36.
    [47] Songlin Zhu, Franklin H.Cocks. The role of stress waves and cavitation in stone comminution in shock wave lithotripsy[J]. Ultrasound in Med.& Biol., 2002, 28(5):661-671.
    [48] Xi X, Zhong P. Dynamic photoelastic study of transient stress field in solids during shock wave lithotripsy[J]. J Acoust Soc Am 2001;109(3):1226-39.
    [49] Sapozhnikov OA, Khoklova VA, Bailey MR, et al. Effect of overpressure and pulse repetition frequency on cavitation in shock wave lithotripsy[J]. J Acoust Soc Am 2002, 3:45-82.
    [50] Huber P, Debus J, Jochle K, et al. Control of cavitation activity by different shockwave pulsing regimes[J]. Phys Med and Biol 1999; 44(6): 1427-37.
    [51] Sokolov DL, Bailey MR, Crum LA. Use of a dual-pulse lithotripter to generate a localized andintensified cavitation field[J]. J Acoust Soc Am, 2001,110: 1685-95.
    [52] A J Coleman. M J Choi, J E Sauders . and T G Leighton. Acoustic emission and sonoluminescence due to cavitation at the beam focus of an electrohydraulic shock wave lithotripter[J]. Ultrasound Med. Biol., 1992,18:267-281.
    [53] Matula, T., Hilmo P., Storey B.,et al (2002). Radial response of individual bubbles subjected to shock wave lithotripsy pulses in vitro. Physics of Fluids 14(3):913-921.
    [54] Church, C.(1989). A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter. Journal of the Acoustical Society of America 86(1): 215-227.
    [55] Vogel A, Lauterborn W. Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries. J Acoust Soc Am 1988; 84(2): 719-731.
    [56] Lokhandwalla, M.(2001). Damage mechanisms in shock wave lithotripsy. Ph. D. thesis, California Institute of Technology.
    [57] Morgan TR, Laudone VP, Heston WD,et al. Free radical production by high energy shock waves: Comparison with ionizing radiation. J Urol 1988; 139:186-189.
    [58] Benjamin TB, Ellis AT. The collapse of cavitation bubbles and the pressures there by produced against solid boundaries. Phil Trans Roy Soc Series A 1966;260:221-240.
    [59] Crum LA. Nucleation and stabilization of microbubbles in liquids. Appl Sci Res 1982b;38:101-15.
    [60] Naude CF, Ellis AT. On the mechanism of cavitation damage by nonspherical cavities collapsing in contact with a solid boundary. Trans. ASME D: J Basic Eng 1961;83:648-656.
    [61] Walters JK, Davidson JF. The initial motion of a gas bubble formed in an inviscid liquid. Part 1. The two-demensional bubble. J Fluid Mech 1962; 12:408-416.
    [62] Walters JK, Davidson JF. The initial motion of a gas bubble formed in an inviscid liquid. Part 2 The three-demensional bubble and the toroidal bubble. J Fluid Mech 1963; 17:321-336.
    [63] Sirotiuk M. Elasticity and strength of stable gas bubbles in water. Sov Phys Acoustics 1971; 16:484-484.
    [64] Yount DE. Skons of variable permeability: a stabilization mechanism for gas cavitation nuclei. J Acoust Scoust Soc Am 1979;65:1429-39.
    [65] Leighton TG. The Acoustic Bubble. London: Academic Press I,1994.
    [66] Apfel RE. The role of impurities in cavitation-threshold dynamics. J Acoust Soc Am 19701;48:1179-1186.
    [67] Atchley AA, Prosperetti A. The crevice model of bubble nucleation. J Acoust Soc Am 1989;86:1056-1084.
    [68] Crum LA. Tensile strength of water. Nature 1979; 278(5700):148-149.
    [69] Coleman, A., J. Saunders, (1993). A review of the physical-properties and biological effects of the high amplitude acoustic fields used in extracorporeal lithotirpsy. Ultrasonics 31(2):75-89.
    [70] Crum, L.(1988). Cavitation microjets as a contributory mechanism for renal calculi disintegration in ESWL. Journal of Urology 140:1587-1590.
    [71] Cleveland, R., M. Bailey, N. Fineberg,et al(2000). Design and characterization of a electrohydraulic lithotripter patterned after the Dornier HM3. Review of Scientific Instruments 71:2514-2525.
    [72] Zhong P., Cioanta I., Cocks F.H. ,et al. Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy. J Acoust. Soc. Am., 1997, 2940-2950(1997).
    [73] Coleman, A., J. Saunders, R. Preston,et al .(1987).Pressure waveforms generated by a Dornier extra-corporeal shock-wave lithotripter. Ultrasound in Medicine and Biology 13:651-657.
    [74] Lifshitz, D., J. Williams, B. Sturtevant,et al (1997). Quantitation of shock wave cavitation damage in vitro. Ultrasound Medical Biology 23(3):461-471.
    [75] Philipp A., Delius M, Scheffczyk C., ,et al. Interaction of lithotripter-generated shock waves with air bubbles. J. Acoust. Soc. Am., 93:2496-2509(1993).
    [76] Debus J, spoo J. Jenne J,et al. Sonochemically induced radicals generated bypulsed high-energy ultrasound in vitro and in vivo. Ultrasound Med Biol 1999; 25(2):301-6.
    [77] Yufeng Zhou. Optimization of pressure waveform, distribution and sequence in shock wave lithotripsy[D].Department of Mechanical Engineering and Materials Science Duke University, 2003.
    [78] Y. Chen, S.D. Heister, A numerical treatment for attached cavitation, J. Fluid Eng, 116,1994:613-618.
    [79] M. Deshpande, J. Feng, C.L.Merkle, Cavity flow predictions based on the Euler equations, J.Fluid Eng, 116,1994:36-44.
    [80] M. Deshpande, J. Feng, C.L. Merke, Numerical modeling of the thermodynamic effects of cavitation, J. Fluid Eng,119,1997:420-427.
    [81] V. Ahuja, A. Hosangadi, S. Arunajatesan, Simultion of cavitation flows using hybrid unstructured meshes, J. Fluid Eng. 123,2001:331-340.
    [82] Delannoy, J.L. Kueny, Two phase flow approach in unsteady cavitation modeling, Cavitation Multiphase Flow Forum, FED98,1990:152-158.
    [83] D. Jamet, O. Lebaigue, N. Coutris, J.M. Delhaye, The second gradient method for the direct numerical simulation of liquidvapour flows with phase change, J. Comput. Phys. 169,2001:624-651.
    [84] A.Kubota, H. Kato, H. Yamaguchi, A new modeling of cavitating flows:a numerical study of unsteady cavitation on a hydrofoil section, J. Fluid Mech.204,1992:59-96.
    [85] R.F. Kunz, D.A. Boger, D.R. Stinebrin, T.S. Chyczewski, J.W. Lindau, H.J. Gibeling, S.Venkateswaran, T.R. Govindan, A preconditioned Navier-Stokes method for two-phase flows with application prediction, Comp. Fluids 29,2000:849-875.
    [86] Senocak, W. Shyy, A pressure-based method for turbulent cavitating flow computations, J.Comput. Phys.176,2002:363-383.
    [87] S. Venkateswaran, J.W. Lindau, R.F. Kunz, C.L. Merkle, Computation of multiphase mixture flows with compressible effects, J. Comput. Phys.180,2002:54-77.
    [88] Y.Ventikos, Tzabiras, A numerical method for the simulation of steady and unsteady cavitating flows, Comp. Fluids.29,2000:63-88.
    [89] R. Saurel, O.Lemetayer, A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation, J. Fluid Mech.431,2001:239-271.
    [90] G. Allaire, S. Clerc, S. Kokh, A five-equation model for the simulation of interfaces between compressible fluids, J. Comput. Phys.181,2002:577-616.
    [91] S. Evje, K.K. Fjelde, Hybrid flux-splitting schemes for a two-phase flow model, J. Comput. Phys.175,2002:674-701.
    [92] E.H. Van Brummelen, B. Koren, A pressure-invariant conservative Godunov-type method for barotropic two-fluid flows, J. Comput. Phys.185,2003:289-308.
    [93] R. Saurel, R. Abgral, A multiphase Godunov method for compressible multifluid an multiphase flows, J. Comput. Phys.150,1999:425-467.
    [94] D.P. Schmidt, C.J. Rutland, M.L. Corradini, A fully compressible, two-dimensional model of small, high speed, cavitating nozzles, Atomization Sprays.9,1999:255-276.
    [95] H.S. Tang, D. Huang, A second-order accurate capturing scheme for 1D in viscid flows of gas and water with vacuum zones, J. Comput. Phys.128,1996:301-318.
    [96] Liu T. G., Khoo B.C., Xie W.F. Isentropic one-fluid modelling of unsteady cavitating flow [J]. Journal of Computational Physics, 2004, 201(1):80–108.
    [97]吴望一.流体力学[M].北京:北京大学出版社. 2000.
    [98]张兆顺,崔桂香.流体力学[M].北京:清华大学出版社. 1999.
    [99]周光炯,严宗毅等.流体力学[M].北京:高等教育出版社. 2003.
    [100]陈景秋,王宗笠.多维双曲波问题的双特征方法[M].重庆:重庆大学出版社. 2001
    [101] Z.Jiang, K. Takayama. Reflection and focusing of toroidal shock waves from coaxial annular shock tubes[J]. computer & fluids, 1998,27:553-562.
    [102] Hwan-Seok Choi, Je-Hyun Beak. Computations of nonlinear wave interaction in shock-wavefocusing process using finite volume TVD schemes[J]. computer & fluids, 1996,25:509-525.
    [103]谭炜.水激波聚焦数值计算[D].绵阳:中国空气动力学研究与发展中心. 1991.
    [104] T G Liu, B C Khoo, W F Xie. Isentropic one-fluid modeling of unsteady cavitating flow[J]. Journal of Computational Physics, 2004,201:80-108.
    [105] W.F. Xie, T.G. Liu, B.C. Khoo. Application of a one-fluid model for large scale homogeneous unsteady cavitation: The modified Schmidt model[J]. Computers & Fluids, 2006, 35:1177–1192.
    [106] Holl R. Wellenfokussierung in Fluiden [D]. Dissertation der RWTH Aachen.Germany: bewahrt in der Bibliothek der RWTH Aachen. Germany , 1982.
    [107] Wolfgang Eisenmenger. The mechanisms of stone fragmentation in ESWL[J]. Ultrasound in Medicine & Biology, 2001,27(5): 683-693.
    [108] Lokhandwall M, Sturtevant B. Fracture mechanics model of stone comminution in ESWL and implications for tissue damage[J]. Phys Med Biol, 2000,45:1923-1940.
    [109]谭维炎.计算浅水动力学——有限体积法的应用[M].北京:清华大学出版社. 1998.
    [110]王保国,刘淑艳,黄伟光.气体动力学[M].北京:北京理工大学出版社. 2005.
    [111]刘儒勋,舒其望.计算流体力学的若干新方法[M].北京:科学出版社. 2003.
    [112]陶文铨.计算传热学的近代进展[M].北京:科学出版社. 2000.
    [113]陶文铨.数值传热学[M].第2版.西安:西安交通大学出版社. 2001.
    [114] G.B.Whitham编.庄峰青,岳曾元译.线性与非线性波[M].北京:科学出版社. 1986.
    [115] S.C.Chang. The method of space-time conservation element and solution element-a new approach for solving the Navier-Stokes and Euler equations[J]. J Comput Phys 1995; 119:295-324.
    [116]张永祥,陈景秋.用守恒元和解元法数值模拟二维溃坝洪水波.水利学报. 2005, 36(10): 1224-1229.
    [117]陈景秋,张永祥,韦春霞.二维溃坝洪水波的演进绕流和反射的数值模拟.水利学报. 2005, 36(5):569-574.
    [118]张增产,沈孟育.改进的时空守恒元和解元方法[J].清华大学学报. 1997, 37(8):65-68.
    [119]张增产,沈孟育.用时空守恒方法求带源项及刚性源项的守恒律方程[J].清华大学学报. 1998, 38(11):87-90.
    [120]张增产,沈孟育.一种严格保证时-空守恒律的数值方法[J].计算物理. 1997, 14(6):835-840.
    [121]张增产,沈孟育.求解二维Euler方程的时-空守恒格式[J].力学学报. 1999, 31(2):152-158.
    [122]张增产,沈孟育.一般坐标系下的二维Euler方程时-空守恒格式[J].应用力学学报.1999, 16(1):10-14.
    [123]张增产.一般形式的二维时-空守恒格式[J].计算力学学报. 1997, 14(4):377-381.
    [124]张增产.二维时-空守恒格式及其在激波传播计算中的应用.爆炸与冲击. 1999, 19(1): 7-12.
    [125] ZC Zhang, ST John Yu, SC Chang. A space-time conservation element and solution element method for solving the two- and three-dimensional unsteady Euler equations using quadrilateral and hexahedral meshes[J]. J Comput Phys 2002; 175:168-199.
    [126] XY Wang, SC Chang. A 2D non-splitting unstructured triangular mesh Euler solver based on the space-time conservation element and solution element metho[J]d, Comput. Fluid Dyn. J 1999; 8:309-315.
    [127] S Jerez, JV Romero. A Semi-Implicit space-time CE-SE method to improve mass conservation through tapered ducts in internal combustion engines[J]. Mathematical and computer modeling 2004; 40:941-951.
    [128] Y Guo, AT Hsu, J Wu. Extension of CE/SE method to 2D viscous flows[J]. computers and fluids 2004; 33:1349-1361.
    [129] XY Wang, SC Chang. Accuracy Study of the Space-Time CE/SE Method for Computational Aeroacoustics Problems Involving Shock Waves[J]. AIAA, 2000,0474:1-4.
    [130] YH.Guo, Andrew T. Hsu. Extension of CE/SE method to 2D viscous flows[J]. Computers and Fliods, 2004, 33:1349-1361.
    [131] Zeng-chan Zhang, S.T. John Yu. Direct calculations of two and three- dimensional detonations by an extended CE/SE method[J]. AIAA, 2001-0476.
    [132] S.C. Chang, X.Y.Wang, W.M. To. Application of the space-time conservation element and solution element method to one-dimensional convection-diffusion problems[J]. J. Com. Phy. 2000, 165:189-215.
    [133] Ching Y. Loh, Cleveland OH. Noise computation of a shock-containing supersonic axisymmetric jet by the CE/SE method[J]. AIAA, 2000-0475.
    [134] Ching Y. Loh, Lennart S. Hultgren. Near field screech noise computation for an underexpanded supersonic jet by the CE/SE method[J]. AIAA, 2001-2252
    [135] Philip C.E. Jorgenson, Ching Y.Loh. computing axsymmetric jet screech tones using unstructured grids[J]. AIAA, 2000-3889.
    [136] Zhang Moujin, Yua S.-T. John, Li S.C. Henry, et al. Solving the MHD equations by the space–time conservation element and solution element method. Journal of Computational Physics, 2006, 214(2): 599-617.
    [137] H.S. Tang, D. Huang, A second-order accurate capturing scheme for 1D inviscid flow of gasand water with vacuum zones, J. Comput. Phys. 185(2003)289-308.
    [138] Brennen C E. Cavitation and Bubble Dynamics. Oxford University Press, New York/ Oxford 1995.
    [139] Chwarwe W. The quasi-cylindrical shock tube[M]. phil. Mag. 1954.
    [140] Chisnell R. F. The normal motion of a shock wave through a nonuniform one-deminsional medium[J]. Proc Roy. Soc. 1955. A232:350-370.
    [141]王继海.二维非定常流和激波[M].北京:科学出版社. 1994: 149-183
    [142] Whitham G. B. Linear and Norlinear Waves [J]. New York. Interscience Publ John Wiley and Sons. 1974.
    [143] Whitham G. B. On the propagation of shock wave through regions of nonuniform area of flow [J]. J.Fluid Mech. 1960.8(2):193-209.
    [144]彭荣强.几何激波动力学在激波绕射反射和聚焦中的应用.四川工业学院学报.1996.15(1):50-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700