用户名: 密码: 验证码:
水下结构物在水下冲击波载荷作用下的动态响应数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水下爆炸是一个非常复杂的能量转换过程。由于水和空气物理性质的不同,使得水下爆炸的物理现象和载荷作用方式与空气中的爆炸有很多不同之处。对水下爆炸问题的研究其不仅涉及爆炸的物理现象和载荷作用方式,还涉及到结构响应及复杂的流固耦合问题,通过详细的理论研究和建立精确数学模型得到水下爆炸问题的解析解是非常困难的,而数值模拟计算方法需要试验数据进行比对验证。
     本文首先研究了水下爆炸冲击波载荷的加载方式和传播方式,确定了背空板在水下爆炸冲击载荷作用下的动态响应。利用ABAQUS软件,建立背空板在水下爆炸冲击载荷作用下的数值计算模型。通过与试验值对比发现数值模拟计算结果与试验结果基本一致,从而验证了数值计算方法的准确性。在此基础上对影响数值计算精度的部分参数进行敏感性分析,为大规模数值模型的仿真计算提供了参考。
     其次,在数值模拟计算的精度得到验证后,对某水下实际结构进行水下爆炸冲击响应计算,得到不同时刻的水域压力和结构应力变化;并对沿结构长度和高度方向上不同测点的响应进行分析,获得了结构整体的动态响应。
     通过分析水下爆炸引起的空化效应,结果表明:空化区域的溃灭会对水下结构物产生二次加载作用,且二次加载对水下结构响应产生较大影响,在进行水下爆炸数值仿真计算时空化效应不可忽略。
     最后,介绍了水下爆炸试验评估方法,基于此方法建立的“水下爆炸评估系统”可以对数值模拟计算的结果进行评估,确定舰艇的抗冲击和毁伤等级。
Underwater explosion is a complex energy conversion process.The differences between water and air in physical properties make the explosion in these two media behave so different in physical phenomenon and loading mode.Besides these, the study of underwater explosion also involves the response of structure and the complex interaction between fluid and structure.It is difficult to obtain the analytical solution though theoretical research and mathematical model,while the accuracy of numerical simulation must be validated by compared with experimental data.
     Firstly, in this paper the loading and propagation mode of underwater shock are analyzed and the response of air-backed plate subjected to underwater shock is studied.By using ABAQUS, the numerical model of a plate subjected to underwater shock is set up and calculated in the same condition with experiment. The results turn out to be in good agreement with experimental data. The accuracy of simulation is validated.Based on this, some of the parameters which affect the results are analyzed to provide reference for large-scale model.
     Secondly, after the validation of numerical simulation method,a real underwater structure subjected to underwater shock is modeled and calculated.From the simulation result, the plots of water pressure and structural stress at different time can be given.The response of the whole structure can also be got though the analysis of the result.
     The analysis of cavitation proves that there will be secondary loading when the area of cavition near strurcture collapes, and it turns out that the secondary loading has a great influence on structure response which make it significant in simulation calculation and should not be ignored.
     Finally, underwater explosion evaluation method and "Underwater Explosion Evaluation System" are introduced.In this system,the simulation results could be used to evaluate the damage range of warship.
引文
[1]林如镛,张数吉.***舰生命力优化设计研究.船舶系统工程部科技报告,北京,1992.
    [2]Cole R H. Underwater explosion[M].Princeton:Princeton University Press,1948.
    [3]Zamyshlyayev B V,1973,"Dynamic Loads in Underwater Explosion",AD-757183.
    [4]Keil A H. The response of ships to underwater explosions.Transactions of societyof Naval Architects and Marine Engineers.1961,69,366-410.
    [5]Michael M. Explosion Effects and Properties:Part Ⅱ Explosion Effects in the Water AD-A 056694,1978.
    [6]Holt M. Final Report on Contract [R].N00014-75-C-0151.AD-A098318,1979
    [7]John F Goarrnor,et al.The Interaction Between Explosion and the Ocean Surface [R].AD-75037A
    [8]颜事龙,张金城,工业炸药水下爆炸能量估算.爆破器材,1993(2),1-4.
    [9]符松,王智平,张兆顺等.近水面水下爆炸的数值研究.力学学报,1995年5月第27卷第3期265-276.
    [10]B. G.Craig.Experimental Observations of Underwater Detonations Near the Water Surface. Report.of U. S. Atomic Energy Tamarin Committee,1974.
    [11]John M. Brettm,George Yiannako Poulos and Paul J.van der Sehaaf Tlme-resolved measurement of the deformation of submerged cylinders subjected to loading from a nearby explosion,Impact the Engineering.24(2000),pp999-321
    [12]颜事龙,集中药包与条形药包水下爆炸能量测试.爆破器材.第32卷第1期,23-27,2003.
    [13]T. Saito, M, Marumoto,H. Yamashita et al.Experimental and numerical studies of underwater shock wave attenuation. Shock Waves,13:139-148,2003.
    [14]H.G.Snay.The scaling of underwater explosion phenomena. AD-271468,July 1961.
    [15]赵琳,李兵,闫吉杰等.炸药能量测试的水下爆炸方法.声学技术,2003,22(2).
    [16]Hallquist J.O. User's manual forDYNA2D-An explicit two dimensional hydrodynamic finite element code with interactive rezoning and graphical display.Lawrence Livermore National Laboratory.1988
    [17]Lunca LA. Pan YEt Response of stiffened and unstiffened phtes subjected to blast loading Eng Stmct 1998;20(12),pp1079-86
    [18]MSC. Dylran基础培训教程.2002
    [19]MSC. Dytran基础培训练习.2002
    [20]MSC. Dytran Theory Manual 1995
    [21]P. L Roe. Approximate RiemannSolvers,parmeter vectors,and difference scheme.J. Comp. Phys.1981,vol 43,p357-372
    [22]P. L Roe and J.Pike.Efficient construction and utilisafion of approximate Riemann solutions.Computing Methods in Appfied Sciences and Engineering(Ⅳ),INRIA 1984
    [23]姚熊亮,王玉红,史冬岩,侯健,圆筒结构水下爆炸数值试验研究.哈尔滨工程大学学报,第23卷第2期,2002年2月.
    [24]Monon S.Experimental and Numerical Studies of Underwater Explosions [R]. AD-A317378,1996.
    [25]Z. Zong, Dynamic plastic response of a submerged free-free beam to underwater gas bubble. Acta Mechanica 161,179-194(2003).
    [26]张阿漫,许维军,姚熊亮,赵新水下爆炸作用下船体大开口结构的强度校核.造船技术,2008-1(281).
    [27]张振华,朱锡,冯刚等.关于圆柱壳在水下爆炸冲击波作用下二次加载现象的数值模拟研究.解放军工程大学学报,第16卷第6期,93-96,2004年12月.
    [28]S.K. Chart.An improvement in the modified finite element procedure for underwater shock anaslysis.Proceeding of 62nd Shock and Vibmfion Symposium;Oct,1992.
    [29]姚熊亮,陈建平,任慧龙.水下爆炸气泡脉动压力下舰船动态响应分析.哈尔滨工程大学学报,2000,21(1).
    [30]汪玉,周璞,刘东岳等.考虑流固耦合作用的舰船抗冲击仿真计算.振动与冲击,2006,28(4):743-47
    [31]Lewis F M. The inertia of the water surrounding a vibrating ship. Transaction of society of naval architects and marine engineers.1929.37,1-20.
    [32]S.Piperno.Staggered time.integration methods for a one.dimensional Euler aeroelastic problem[Z].cERMICS-949-33,1994.
    [33]Hirt G W, Amsden A A, Cook K L. An arbitrary Lagrangian-Eulerian computing method for all flow speeds.J Comput Phys,1974,14(3):227-253
    [34]Donea J, Giuliani S.Halleux J P. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interaction.Comput Methods-Appl Mech Engrg,1982,33:698-723
    [35]Ramaswamy B,Kawahara M. Arbitrary Lagrangian-Eulerian finite element method for unsteady, convective, incompressible visous free surface fluid flow. Int J for Numerical Methods in Fluid,1987,7(10):1053-1075
    [36]黄典贵.理想流场中流固耦合作用下叶片的动态特性研究[J].汽轮机技术,1998,40(4):235-241.
    [37]黄典贵.粘性流场中叶片的动态特性研究[J].汽轮机技术,1998,40(5):292-296.
    [38]陈佐一.流体激振[M].北京:清华大学出版社,1998.1
    [39]R. D. Mindlin, H. H. Bleich. Response of am elastic cylindrical shell to a transverse, step shock wave[N].J. Appl.Mech.20,1953,189-195.
    [40]Cbertock G.Transient Flexural Vibrations of ship-like structures Exposed to Underwater Explosion[N].J. Acoust.Am.1970,48(1),170-180.
    [41]T. L. Geers.Residual Potential and Approximate Methods for Three Dimensional Fluid-Stricture Interaction Problem[N].J. Acoust.Soc. Am.1971,Vol.49, pp.1505-1510.
    [42]Huang H. A. Qualitative Appraisal of the Doubly Asymptotic Approximation for Transient Analysis of Submerged Structures Exited by Weak Shock Waves[R].AD-A015941.1975
    [43]T.L. Geers.Double Asymptotic Approximations for Transient Motions of Submerged Structures[N].J. Acoust.Soc.Am.1978;Vol.64(5),pp.1500-1508.
    [44]Felippa C A and DeRuntz J A.Finite Element Analysis of Shock-Induced Hull Cavitation [N].Comp.Meths. in Appl.Mech.& Engng.44(3),1984, pp.297-337
    [45]Huang H,Everstine.G C and Wang Y F. Retarded Potential Techniques for the analysis of Submergerd Structures Impinged by Weak Shock Waves in:Belytschko T and Geers T L eds.,Computational Methods for Fluid-Structure Interaction Problems[J].ASME Applied Mechanics Symposia Series AMD-Vol.26(ASME,New York),1977,pp.983-93.
    [46]Waldo.Jr.G V.An Approximate Model for the pressure That Develops When an Acoustic Wave Interacts with a Curved and Compliant Surface.Proceedings of the 65th Shock and Vibration Symposium[C].Naval Command,Control & Ocean Surveillance Center,1994, Oct.31 Nov.3, Vol. Ⅱ,pp.185-198,
    [47]吕振华,姜利泉基于液—固耦合有限元分析方法的气-液型减振器补偿阀性能研究[J].工程力学,2006,23(11):163-170.
    [48]David A.Johnston.Charles J.Cross.J.Mitch Wolff.An Architecture for Fluid Structure Interaction Analysis of Turbo Machinery Blading [J].AIAA,2005:4013.
    [49]Damn Isaac,Michael Iverson.Automated Fluid-structure Interaction Analysis[R].F0461 1-99-C-0002.ATK Thiokol Propulsion.2003-07-02.
    [50]Xuedong Zhou,J.Mitch Wolff.Transonic Compressor IGV/Rotor Interaction. Analysis Including Fluid Structure interaction[J].AIAA,2004-5292.
    [51]灵活性与实践性相融合--ANSYS 10.0重要新功能[J].CAD/CAM与制造业信息化,2005(11):61-63.
    [52]非线性显式有限元软件--Msc Dytran[J].CAD/CAM与制造业信息化,2005(10).
    [53]COMSOL Muhiphysics软件介绍手册,中仿科技.
    [54]梁琳.科学研究与工程数值模拟的必备工具--FEMLAB[J].CAD/CAM与制造业信息化,2004(10).
    [55]Coupled acoustic-structural medium analysis.ABAQUS Theory Manual.
    [56]CostanzoFA,GordonJ,1983,"A Solution to Axisymmetric Bulk Cavitation Problem",The Shock and Vibration Bulletin,V ol.53,pp 33-51
    [57]Snay H G.Loading due to an incident dilatational wave field, ABAQUS Theory Manual
    [58]Fox P K.The Dynamic Response of Cylindrieal shells Subjected to Underwater Explosions[C].Ms.Thesis of Naval Post Graduate School,USA,1992.
    [59]江淼,舰船结构水下非接触爆炸下动力响应研究,2007
    [60]Mindlin R D,Bleich H H.Response of an Elastic Cylindrical Shell to aTransverse. Step Shock Wave,J. Appl.Mech,1953,20;189-195P
    [61]Geers T L.Excitation ofan Elastic Cylindrical Shell by a Transient Acoustic Wave.J Appl Mechs,1969,36:459--469P
    [62]Huang H.Transient interaction of Plane Acoustic Waves with a Spherical Elastic Shell.J Acoust Soc Am,1969,45:661-670P
    [63]Loading due to an incident di latational wave field.ABAQUS Theory Manual.
    [64]Kirkwood, J. G.,Richardson, J. M.:The Plastic Deformation of Circular Diaphragms under Dynamic Loading by an Underwater Explosion Wave.OSRD 4200(1944).
    [65]姚熊亮,张阿漫,许维军.声固耦合方法在舰船水下爆炸中的应用[J].哈尔滨工程大学学报,2005年12月第26卷第6期,707-712.
    [66]Makinen. Cavitation Models for Structures Excited by a Plane Shock Wave[J].Journal of Fluids and Structures,1998,12:85-101
    [67]李海涛,朱锡,黄晓明等.水下爆炸冲击波作用下空化区域形成的特性研究[J].高压物理学报,2008,22(2):181-186.
    [68]Rajendran.Reloading effects on plane plates subjected to non-contact underwater explosion[J].Journal of Materials Processing Technology,2008,206:275-281.
    [69]Felippa C A,DeRuntz J A. Finite element analysis of shock-induced hull cavitation. Computer Methods in Applied Mechanics and Engineering,1984,44:297-337P
    [70]Felippa C A,DeRuntz J A. Acoustic fluid volume modeling by the displacement potential formulation,with emphasis on the wedge element.Computers and Structures,1991, 41(4):669-686P.
    [71]J. E. van Aanhold et al.Underwater shock response analysis of a floating vessel [J]. Shock and Vibration,1998,5:53-59
    [72]张振华,朱锡,冯刚等.关于圆柱壳在水下爆炸冲击波作用下二次加载现象的数值模拟研究[J].海军工程大学学报,2004,16(6):93-96.
    [73]Stevent L W. Cavitation Effects on a Ship-Like Box Structure Subjected to an Underwater Explosion [D].California:Naval Postgraduate School,1998.
    [74]姚熊亮,曹宇等.水面舰船的冲击环境与相关参数分析[J],哈尔滨工程大学学报,2005.26(1),24-29
    [75]GJB4000-2000,舰船通用规范[S].北京:国防科工委军标出版发行部,2000.
    [76]王杰德,杨永谦.船体强度与结构设计[M].北京:国防工业出版社,1995:7-99
    [77]Hughs OF,张祥孝.船舶结构设计[M].广州:华南理工大学出版社,1988:93-106
    [78]美军标MIL-S-901C(1)-63装舰机械、设备、系统的冲击试验要求

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700