用户名: 密码: 验证码:
ZnO和ZnO/CdSe的可控合成及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料是21世纪科技发展的重要内容,纳米材料的制备和性能研究是纳米材料研究的重点.纳米材料因其所具有的优异性能,越来越多的引起人们的关注,在物理学、化学、生物医学和界面科学等学科均有广泛的应用。
     ZnO是一种典型的直接带隙半导体材料,在常温下的禁带宽度为3.37eV,同时其激子结合能达到了60meV,所以有很高的应用价值。ZnO化学性质非常的稳定,同时具有非常特殊的导热和导电性能,因其具有极高的工作稳定性,在短波发光器件方面具有很高的应用价值。ZnO的应用非常广泛,在太阳能电池、光催化、压电材料、气敏材料和激光发射方面都有很高的利用价值。最近通过可控制备各种形貌的ZnO来提高其性能成为研究的热点。
     本文的主要工作如下:
     1.以硝酸锌和六次甲基四胺作为反应物,乙二胺作为表面活性剂,制备具有不同形貌的ZnO纳米材料。在该反应体系中,通过改变NaOH的加入量来改变溶液的PH值,得到具有“片状、哑铃状、双子结构和花状结构”形貌的ZnO纳米材料。通过XRD,SEM等物相表征方式证明得到了纯净的ZnO。分析了产物的构成,推测出了反应机理,并利用上述不同形貌的ZnO样品进行光催化降解亚甲基蓝实验,结果表明样品的形貌与光催化效率有直接关系,在光催化降解的对比中,具有最好光催化降解效率的是“花状”的ZnO,其次是“哑铃状”ZnO,而后是“片状”和“双子”结构的ZnO,光催化效果最差的是“无定形”的ZnO颗粒。推断出不同形貌的样品不同比表面积对光催化性能造成影响。
     2.通过水溶液直接沉淀法,在室温条件下,使用乙酸锌和氢氧化钾制备了具有绒线球结构的ZnO。通过分析不同反应时间下所生成的ZnO的形貌,推测出了产物的生长机理。使用X射线衍射仪、扫描电子显微镜、透射电子显微镜和高倍透射电子显微镜对产物进行了物相分析和表征,在XRD图谱中看以看出除了ZnO的特征衍射峰外没有其他杂质峰的出现,说明说生成了纯净的ZnO。样品的SEM图显示绒线球状ZnO是由厚度为50nm的ZnO纳米片交错叠加构成的,在该结构中形成许多孔洞,可以作为载流子和小分子的通道作用。通过光催化降解亚甲基蓝实验证明了产物具有优良的光催化性能,并且光催化循环反应进行6次以后,样品的形貌和结构仍然保持完好,说明样品作为光催化剂具有良好的稳定性和耐久性。
     3.ZnO的禁带宽度比较宽,在电子激发后具有较高的氧化还原电位,可以很好地降解有机污染物,但是过宽的禁带宽度只能利用紫外光,而对可见光没有响应,降低了光的使用效率。通过窄带半导体CdSe的复合,可以拓宽材料对光的响应范围,通过在可见光的照射下对比有机染料亚甲基蓝在以ZnO/CdSe复合物、P25、商业ZnO为光催化剂的降解速率得出ZnO/CdSe复合物具有更加优异的光催化性能,同时样品对光的响应由紫外光区扩展到可见光区,更加有效的利用了光能。我们水溶液法制备ZnO/CdSe复合物的方法具有能耗低、便捷、环境友好等优点,可以大范围推广使用。在反应的过程中,不加入任何有机的表面活性剂,只是通过改变反应的温度、稳定剂和ZnO的量得到负载量和微观结构不同的ZnO/CdSe复合物。本实验方法具有普适性,可以用来制备其他的半导体复合材料。
Nanomaterials with superior performance, more and more cause for concern. Nanomaterials is an important part of the21st century scientific and technological development Preparation and properties of nanomaterials is the focus of the study of nanomaterials and cross-use of the disciplines of physics, chemistry, biomedical and interface science.
     ZnO is a key semiconductor for short wavelength electrooptical denices and low-voltage due to its large exciton binding energy of60meV and wide band gap(3.2eV). ZnO nanomaterials exhibit more optical properties and prominent electronic, and has been applied in solar cell, catalyst, piezoelectricity, gas sensor, laser generator and so on. At present, the research on applications and research on controllable synthesis of ZnO nanomaterials become attractive. The main contents of this thesis are listed as below:
     1. ZnO with different morphology was prepared by changing pH in the reaction system consisting of Zn(NO3)2·6H2O, Hexamethylene tetramine and CH3COONH4The morphologies and structures of the prepared materials were detailedly characterized by SEM, XRD。 The photocatalytic activities of as-prepared ZnO samples were characterized by photodegradation of Methylene blue
     2. In this paper, an efficient and simple route combined with a subsequent calcining process to synthesize pompon-like ZnO microstructures at room-temperature (25℃) has been developed. The samples were intensively investigated by SEM, TEM, HRTEM, XRD. The results indicate that the well-crystallized pompon-like ZnO is assembled by interlaced nanoplates with uniform thickness of about50nm. The photocatalytic trials confirm that the pompon-like ZnO exhibits excellent degradation efficiency under UV light. Moreover, the as-prepared ZnO samples show superior durability and stability after six photodegradation cycling runs. Finally, a mechanism was proposed to elucidate the photodegradation reaction of the pompon-like ZnO.
     3. Semiconductor based nanoscale heterostructures are promising candidates for photocatalytic andphotovoltaic applications with the sensitization of a wide bandgap semiconductor with a narrow bandgap material being the most viable strategy to maximize the utilization of the solar spectrum. Here,we present a simple wet chemical route to obtain nanoscale heterostructures of ZnO/CdSe without usingany molecular linker. We show that the heterostructures with the lowest CdSe loading exhibit an exceptionally high activity for the degradation of methylene blue (MB) under solar irradiation conditions; In particular. the absence of any molecularlinker at the interface makes our method appealing for photovoltaic applications where faster rates of electron transfer at the heterojunctions are highly desirable.
引文
[1]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2002
    [2]Pan J S, Huang X H, Gu S X. Classification of nanometer materials and its basis. Materials Review, 2001, (11):28-29
    [3]Penn S G. He L.Natan M J. Nanoparticles for bioanalysis. Current Opinion in Chemical Biology,2003,7: 609-615
    [4]Zhang Z T, Lin Y H, Tang Z L, et al. Nanometer materials and nanotechnology and their application prospect. J. Mater. Engin.,2000,3:42-47
    [5]Lin Y H, Zhang Z T, Huang S L, et al. Preparation of nanometer rutile TiO2 power and its characteristics. Journal of Inorganic Materials,1999,8(2):60-64
    [6]Palummo M, Bruno M, Palic O, et al. Ab-initio electronic and optical properties of low dimensional systerms:From single particle to many-body approaches. Surface Science,2007,601:2696-2701
    [7]Wan Q, Wang T H, Zhao J C. Enhanced photocatalytic activity of ZnO nanotetrapods. Applied Physics Letters,2005,87:083105
    [8]Dai Y, Zhang Y, Bai Y Q, et al. Bicrystalline zinc oxide nanowires. Chemical Physics Letters,2003,375: 96-101
    [9]Phung X, Groza J, Stach E A, et al. Surface characterization of metal nanoparticles. Materials Science and Engineering:A,2003,359:261-268
    [10]Hoenlein W, Kreupl F, Duesberg G S, er al. Carbon nanotubes for microelectroics. Status and future prospects. Materials Science and Engineering:C,2003,23:663-669
    [11]Jiang G H, Jiang J S. Preparation and application of metal oxides nanowires/rods. Materials Science and Engineering,2003,23:753-758
    [12]戴英.ZnO纳米材料的控制合成、生长机理与光学性能:博士后研究工作报告.北京:北京科技大学,2002
    [13]Huang Y H, Bai X D, Zhang Y. In situ mechanical properties of individual ZnO nanowires and mass measurement of nanoparricles. J. Phys. Condens. Matter.,2006,18(15):L179-L184
    [14]Huang Y H, Bai X D, Zhang Y, et al. Field emission properties of individual ZnO nanowires by in situtransmission electron microscope, J. Phys. Condens. Matter.,2007,19:176001
    [15]Gao P, Wang Z Z, Liu K H, et al. Photoconducting response on bending of individual ZnO nanowires. J. Matter. Chem.,2009,19:1002-1005.
    [16]http://www.nanotechnik.com/
    [17]Zyvex Instrcments, USA IC Nanoprobing Application Manual,2008
    [18]Yu M F, Laurie O, Dyer M J,et al. Strength and breaking mechanism of multiwalled carbon nanorubes under tensile load. Science,2000,287:637-640
    [19]Wan Q, Wang T H, Zhao J C. Enhanced photocatalytic activity of ZnO nanoneedles. Applied Physics Letters,2005,87:083105
    [20]Yan Z X, Deng J, Wanf Y M, et al. Comparative study of activity of different agings of aluminum nanopowders[J]. Chinese Physics Letters,2009,26(8):086101
    [21]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001
    [22]于建祺等编著.光电子能谱.北京:国防工业出版社,1997
    [23]Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science,2001,291:1948-1949
    [24]Lee C J, Lee T J, Lyu S C, et al. Field emission from well-aligned zinc oxide nanowires grown at low temperature. Applied Physics Letters,2002,81(19):3648-3650
    [25]Dai Y, Zhang Y, Wang Z L. The octa-twin tetraleg ZnO nanostructures. Solid State Communications, 2003,126:629-633
    [26]Yuan H J, Xie S S, Liu D F, et al. Characterization of zinc oxide crystal nanowires grown by thermal evaporation of ZnS prodders. Chemical Physics Letters,2003,371:337-341
    [27]Recio J M, Blanco M A, Luana V et al. Compressibility of the high-pressure rocksalt phase of ZnO. Phys Rev B,1998,58:8949-8954
    [28]Wang Z L,Kong X Y, Ding Y, et al. Semiconducting and piezoelectric oxide nanostructures induced by polac surfaces. Advanced Functional Materials,2004,14:943-956
    [29]Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006,312:242-246.
    [30]Wang X D, Song J H, Liu J, et al. Direct-current nanotenerators driven by ultrasonic waves. Science, 2007,316:102-105
    [31]Qin Y, Wang X D, Wang Z L. Microfibre-nanowire hybrid structure for energy scavenging. Nature, 2008,451:809-813
    [32]Huang Y H, Zhang Y, Gu Y S, et al. Field emission of a single in-doped ZnO nanowire. J. Physical Chemical C,2007, 111(26):9039-9043
    [33]Huang Y H, Bai X D, Zhang Y. In situ mechanical properties of individual ZnO nanowires and the nass measurement of nanoparticles. J. Phys.:Condens. Matter.,2006,1(1):72-84
    [34]Zhang J, Yu W Y, Zhang L D. Fabrication of semiconducting ZnO nanobelts using a halide source and their photoluminescence properties.Physics Letters A,2002,299:276-281
    [35]Geng B Y, Wang G Z, Jiang Z, et al.Snthesis and optical properties of s-dope ZnO nanowires. Applied Physics Letters,2003,82(26):4791-4793
    [36]Ren S, Bai Y F, Chen J, et al. Catalyst-free synthesis of ZnO nanowire arraus on zinc substrate by low temperature thermal oxidation. Materials Letters,2007,61(3):666-670
    [37]Wang X, Li Q W, Liu Z B, et al. Low-temperature growth and properties of ZnO nanowires. Applied Physics Letters,2004,84(24):4941-4943
    [38]Dai Y, Zhang Y, Bai Y Q,et al. Bicrystalline zinc oxide nanowires. Chemical Physics Letter,2003,375: 96-101
    [39]Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowires nanolasers. Science,2001, 292:1897-1899
    [40]Huang M H, Wu Y Y, Feick H, et al. Caralytic growth of zinc oxide nanowires by vapor transport. Advanced Materials,2001,13(2):113-116
    [41]Heo Y W, Varadarajan V, Kaufman M, et al. Site-specific growth of ZnO nanorods using catalysisdriven molecular-beam epitaxy. Applied Physics Lttters,2002,81(16):3046-3048
    [42]Wang H T, Kang B S, Ren F, et al. Hydrogen-selective sensing at room temperature with ZnO nanorods. Applied Physics Letters,2005,86(24):243503
    [43]Dai Y, Zhang Y, Li Q K, et al. Synthesis and optical properties of terrapod-like zinc oxide nanorods. Chemical Physics Letters,2002,358(1,2):83-86
    [44]Dai Y, Zhang Y, Wang Z L, The octa-twin tetraleg ZnO nanostructures. Solid State Communications, 2003,126:629-633
    [45]Huang Y H, Zhang Y, Liu L, et al. Controlled synthesis and field emission properties of ZnO nanostructures with different morphologies. Journal of Nanoscience and Nanotechnology,2006,6(3): 787-790
    [46]Zhu Z, Chen T L, Gu Y, et al. Zinc oxide nanowires grown by vapor-phase transport using selected a metal catalysts:A comparative study. Chem. Mater.,2005,17(16):4227-4234
    [47]Jeong J S, Lee J Y, Cho J H, et al. Single-crystalline ZnO microtubes formed by coalescence of ZnO nanowires using a simple metal-vapor deposition method. Chem. Mater.2005,17(10):2752-2756
    [48]Zhang Y, Huang Y H,He J, et al. Quasi one dimensional ZnO nanostrures fabricated without catalyst at lower temperature. Frotiers of Physics in china,2006,1(1):72-84
    [49]Qi J J, Zhang Y, Huang Y, et al. Doping and characterization of In-doped zinc oxide nanodisks. Applied Physics Letter,2006,89:252115
    [50]Liu J, Zhang Y, Qi J J, et al. Fabrication and characterization of In-doped zinc oxide nanodisks. Solid state Phenomena,2007,121-123:127-130
    [51]Cao B, Li Y, Duan G, et al. Growth of ZnO nanoneedle arrays with strong ultraviolet emissions by an electrochemical deposition method. Cryst. Growth Des.,2006,6(5):1091-1095
    [52]Huang Y H, He J, Zhang Y, et al. Morphology, structures and properties of ZnO nanobelts fabricated by Zn-powder evaporation without catalyst at lower temperature. J. Matter. Sci.,2006,41(10): 3057-3062
    [53]Huang H, Xie T, Peng X S, et al. Controllable assembly of aligned ZnO nanowires/belts arrays. J. Physics Chemical B,2005,109(44):20746-20750
    [54]Pan ZW, Dai Z R, Wang Z L. Nanobelts of semiconducting pxides. Science,2001,291:1947-1949
    [55]Xu C, Kim D, Chun J, et al. Temperature-controlled growth of ZnO nanowires and nanoplates in the temperature range 250-300℃. J. Physics Chemical B,2006,110(43):21741-21746
    [56]Yao B D, Chan Y F, Wang N. Formation of ZnO nanostructures by a simple way of chemal evaporation. Applied Phycics Letters,2002,81(4):757-759
    [57]Huang Y H, Zhang Y, He J, et al. Fabrication and characterization of ZnO comb-like nanostructures. Ceramics International,2006,32(5):561-566
    [58]Lao J Y, Huang J Y, Wang D Z, et al. ZnO Nanobridges and Nanonails. Nano Letters,2003,3(2): 235-238
    [59]Lao J Y, Wen J G, Ren Z F. Hierarchical ZnO nanostructures. Nano Letters,2002,2(11):1287-1291
    [60]黄延伟,姚宁,张兵临.纳米氧化锌材料的制备方法及结构表征.显微与测量,2006,3,46-50
    [61]Xu C K, Xu G D, Liu Y K, et al. A simple and novelroute for the preparation of ZnO nanorods. Aolid state Communications,2002,22(3,4):175-179
    [62]Geng B Y, Xie T, Peng X S, et al. Large-scale synthesis of ZnO nanowires using a low-temperature chemical route and their photoluminescense properties. Applied Physics A:Materials Science & Processing,2003,77(3/4):363-366
    [63]Na H T, Chen B, Li J, et al. Optical properties of single-crystalline ZnO nanowires on m-sappire. Applied Physics Letters,2003,82(13):2023-2025
    [64]Chen Y X, Lewis M, Zhou W L, ZnO nanostructures fabricated through a double-tube vapor-phase transport synthesis. Journal of Crystal Growtd,2005,282(1,2):85-93
    [65]Prasad V, Souza C D, Yadav D, et al. Spectroscopic characterization of zinc oxide nanorods synthesized by solid-state reaction. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2005, 65(1):173-178
    [66]Hou X M, Zhou F, Liu W M. A facile low-cost synthesis of ZnO nanorods via a solid-stste reaction at low temperature. Materials Letters,2006,60(29,30):3786-3788
    [67]Zhong H M, Wang J B, Pan M, et al. Preparation and photoluminescence of ZnO nanorods. Materials Chemistry and Physics,2006,97(2,3):390-393
    [68]张彦甫,刘见祥,聂登攀等.纳米氧化锌的制备及应用.贵州化工,2008,33:24-27
    [69]Hench L. L., West J. K. The sol-gel process[J]. Chemical Reviews,1990,90(1):33-72
    [70]易回阳.液相法制备纳米微粒的研究进展.化学世界,2002,7:385-388
    [71]Wu H Q, Wei X W, Shao M W, et al. Synthesis of zinc oxide nanorods using carbon nanotubes as templates. Journal of Crystal Growth,2004,265(1,2):184-189
    [72]Wu G S, Xie T, Yuan X Y, et al. Controlled synthesis of ZnO nanowires or nanotubes via sol-gel template process. Solid State Comnunications,2005,134(7):485-489
    [73]Greene L E, Yubas B D, Law M, et al. Solution-grown zinc oxide nanowires. Inorg. Chem., 2006,45(19):7535-7543
    [74]Shingo H, Nobuo T, Shu S, et al. Room-temperature nanowire ultraviolet lasers:An aqueous pathway for zinc oxide nanowires with low defect density. Journal of Applied Physics,2005,98(9):094305
    [75]Pal U, Serrano J G, Santiago P, et al. Synthesis and optical peoperties of ZnO nanostructures with different morphologies, Optical Materials,2006,29(1):65-69
    [76]Liao Q L, Yang Y, Xia L S, et al. High intensity plasma-inducedemission form Large area ZnO nanorod array cathodes. Physics of Plasmas,2008,15:114505
    [77]Wang N, Cai Y, Zhang R Q. Growth of nanowires[J]. Materials Science & Engineering P-Reports,2008, 60(1-6):1-51
    [78]Cushing B L, Kolesnichenko V L, Connor C J. Recent advances in the liquid-phase synthses of inorganic nanoparticles [J]. Chemical Reviews,2004,104(9):3893-3946
    [79]Masala O, Seshadri R. Synthesis routes for large volumes of nanoparticles[J]. Annual Review of Materials Research,2004,34(1):41-81
    [80]Byrappa K, Adschiri T. Hydrothermal technology for nanotechnology[J]. Progress in Crystal Growth and Characterization of Materials,2007,53(2):117-166
    [81]Kurmoo M, Magnetic metal-organic frameworks[J]. Chemical Sciety Reviews,2009,38(5):1353-1379
    [82]马先正,韩跃新,郑龙熙等.纳米氧化锌的制备于应用研究进展.矿物保护与利用,2002,1:37-43
    [82]Kim J H, Choi W C, Kim H Y et al。 Preparation of mono-dispersed mixed metal oxide micro hollow spheres by homogeneous precipitation in amicro precipitator. Powder Techol,2005,153:166-175
    [83]Y.C. Kong, D.P. Yu, B. Zhang, et al. Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach [J].J. Appl. Phys. Lett.2001,78:407-409.
    [84]林艳红.ZnO纳米粒子的制备及其表面光电特性的研究.吉林大学博士学位论文,2006
    [85]Qin Y, Wang X D, Wang Z L. Mircrofibre-nanowire hybrid structure for energy scavenging. Nature, 2008,451(7180):809-813
    [86](a) A. P. Alivisatos, Science,1996,271,933; (b) F. Caruso, Adv.Mater.,2001,13,11.
    [87]U.Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov,S. Doan, V. Avrutin, S. J. Cho and H. J. Morkoc, Appl. Phys.Lett,2005,98,041301.
    [88]X. Wang, G. Liu, Z. G. Chen, F. Li, L. Wang, G. Q. Lu and H. M. Cheng, Chem. Commun.,2009,3452.
    [89]W. T. Sun, Y. Yu, H. Y. Pan, X. F. Gao, Q. Chen and L. M. Peng, J. Am. Chem. Soc,2008,130,1124.
    [90]H. Y. Si, Z. H. Sun and H. L. Zhang, Colloids Surf., A,2008,313-314,604.
    [91]X. F. Gao, H. B. Li, W. T. Sun, Q. Chen, F. Q. Tang andL. M. Peng, J. Phys. Chem. C,2009,113,7531.
    [92]C. Ratanatawanate, Y. Tao and K. J. Balkus, J. Phys. Chem. C,2009,113,10755.
    [93]J. M. Feng, J. J. Han and X. J. Zhao, Prog. Org. Coat.,2009,64,268.
    [94]L. M. Peter, K. G. U. Wijayantha, D. J Riley and J. P. Waggett,J. Phys. Chem. B,2003,107,8378.
    [95]K. Hara, Sol. Energy Mater. Sol. Cells 2000,64,115.
    [96]P. P. Sahay and R. K. Nath, Sens. Actuators B 133,222 (2008).
    [97]H. Yumoto, T. Inoue, S. J. Li, T. Sako, K. Nishiyama, Thin Solid Films 1999,345,38.
    [98]Wu XD, Wang DP. Preparation and characterization of stearate-capped titanium dioxide nanoparticles. J. Colloid Interf.Sci.2000; 222:37-40.
    [99]Wan Q, Wang T H, Zhao J C. Enhanced photocatalytic activity of ZnO nanotetrapods. Applied Physics Letters,2005,87:083105
    [100]C. L. Carnes and K. J. Klabunde, "Synthesis, Isolation and Chemical ReactivityStudies of Nanocrystalline Zinc Oxide," Langmuir,16,3764-72 (2000).
    [101]L. Wang and M. Muhammed, "Synthesis of Zinc Oxide Nanoparticles with Controlled Morphology," J. Mater. Chem.,9,2871-78 (1999).
    [102]Tierui Zhang, Wenjun Dong, Mary Keeter-Brewer, Sanjit Konar, Roland N. Njabon, and Z. Ryan Tian* "Site-Specific Nucleation and Growth Kinetics in Hierarchical Nanosyntheses of Branched ZnO Crystallites" J. AM. CHEM. SOC.2006,128,10960-10968
    [103]M. R. Hoffmann, S. T. Martin, W. Choi,and D. W. Bahnemann, "Environmental Applications of Semiconductor Photocatalysis ", Chem ReV.95,69 (1995).
    [104]J. S. Hu, L. L. Ren, Y. G. Guo, H. P. Liang, A. M. Cao, L. J. Wan,and C. L. Bai, "Mass production and high photocatalytic activity of ZnS nanoporous", Angew Chem Int Ed.44,1269 (2005).
    [105]P. Periyat, S. C. Pillai, D. E. McCormack, J. Colreavy,and S. J. Hinder, "Improved high-temperature stability and sun-light-driven photocatalytic activity of sulfur-doped anatase TiO2", J Phys Chem C. 112,7644(2008).
    [106]X. W. Duan, G. Z. Wang, H. Q. Wang, Y. Q. Wang, C. Shen,and W. P. Cai, "Orientable pore-size-distribution of ZnO nanostructures and their superior photocatalytic activity,CrystEngComm", Cryst Eng Comm.12,2821 (2010).
    [107]T. J. Sun, J. S. Qiu,and C. H. Liang, "Controllable fabrication and photocatalytic activity of ZnO nanobelt arrays ", J Phys Chem C.112,715 (2008).
    [108]C. H. Ye, Y.Bando, G. Z. Shen,and D. Golberg,"Thickness-dependent photocatalytic performance of ZnO nanoplatelets", J Phys Chem B.110,15146 (2006).
    [109]Z. W. Deng, M. Chen, G. X. Gu,and L. M. Wu, "A facile method to fabricate ZnO hollow spheres and their photocatalytic property", J Phys Chem B.112,16 (2008).
    [110]L. Y. Zhang, L. W. Yin, C. X. Wang, N. Lun,and Y. X. Qi, "Sol-gel growth of hexagonal faceted ZnO prism quantum dots with polar surfaces for enhanced photocatalytic activity", Appl Mater Interfaces. 2,1769(2010).
    [111]H. Q.Wang, G. H. Li, L. C. Jia, G. Z. Wang,and C. J. Tang, "Controllable preferential-etching synthesis and photocatalytic activity of porous ZnO nanotubes", J Phys Chem C.112,11738 (2008).
    [112]Y. H. Zhen, C. Q. Chen, Y. Y. Zhan, X. Y. Lin, Q. Zheng, K. M. Wei, J. F. Zhu,and Y. J. Zhu, "Luminescence and photocatalytic activity of ZnO nanocrystals:Correlation between structure and property ", Inorg Chem.46,6675 (2007).
    [113]C. Hariharan, "Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited ", Revisited Appl Cata A.304,55 (2006).
    [114]W. W. Lu, S. Y. Gao,and J. J. Wang, "One-pot synthesis of Ag/ZnO self-assembled 3D hollow microshperes with enhanced photocatalytic performance", J Phys Chem C.112,16972 (2008).
    [115]D. F. Zhang, L. D. Sun, J. Zhang, Z. G. Yan,and C. H. Yan, " Hierarchical construction of ZnO architectures promoted by heterogeneous nucleation", Crtst Growth Des.8,3609 (2008).
    [116]F. Lu, W. P. Cai,and Y. G. Zhang, "ZnO Hierarchical Micro/Nanoarchitectures:Solvothermal Synthesis and Structurally Enhanced Photocatalytic Performance", Adv Funct Mater.18,1047 (2008).
    [117]L. L. Xu, Z. M. Li, Q. H. Cai, H. X. Wang, H. Gao, W. Lv,and J. Liu, "Precursor template synthesis of three-dimensional mesoporous ZnO hierarchical structures and their photocatalytic properties",Cryst Eng Comm.12,2166 (2010).
    [118]J. Z. Yin, Q. Y. Lu, Z. N. Yu, J. J. Wang, H. Pang,and F. Gao, "Hierarchical ZnO nanorod-assembled hollow superstructures for catalytic and photoluminescence applications ",Crtst Growth Des.10,40 (2010).
    [110]Z. Q. Wang, J. F. Gong, Y. Su, Y. W. Jiang,and S. G. Yang, "Six-fold-symmetrical hierarchical ZnO nanostructure arrays:synthesis, characterization, and field emission properties", Crtst Growth Des.10, 2455(2010).
    [120]E. S. Jang, J. H. Won, S. J. Hwang,and J. H. Choy, "Fine Tuning of the Face Orientation of ZnO Crystals to Optimize Their Photocatalytic Activity",Adv Mater.18,3309 (2006).
    [121]Z. L. Wang, X. Y. Kong,and J. M. Zou," Induced Growth of Asymmetric Nanocantilever Arrays on Polar Surfaces", Phys Rev Lett.91,185502 (2003).
    [122]C. Xu, X. Sun, Z. Dong, Y.,Cui and B. Wang, "Nanostructured Single-Crystalline Twin Disks of Zinc Oxide", Crtst Growth Des.7,541 (2007).
    [123]B. X. Li,and Y. F. Wang, "Facile Synthesis and Enhanced Photocatalytic Performance of Flower-like ZnO Hierarchical Microstructures", J Phys Chem C.114,890 (2010).
    [124]K. Ishibashi, A. Fujisjima, T. Watanabe,and K. Hashimoto, "Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique", Electrochem. Commun.2,207 (2000).
    [125]D. Wang, Y. Duan, Q. Luo, X. Li,and L. Bao, "Visible light photocatalytic activities of plasmonic Ag/AgBr particles synthesized by a double jet method", Desalination.270,174 (2011).
    [126]P. Sun, W. Zhao, Y. Cao, Y. Guan, Y. F. Sun,and G. Y. Lu, "Porous SnO2 hierarchical nanosheets: hydrothermal preparation, growth mechanism, and gas sensing properties", Crys Eng Comm.13,3718 (2011).
    [127]D. F. Zhang, L. D. Sun, J. Zhang, Z. G. Yan,and C. H. Yan, "Hierarchical construction of ZnO architectures promoted by heterogeneous nucleation", Cryst Grow Des.8,3609 (2008).
    [128]1. A. Shkrob,and M. C. Sauer, "Hole scavenging and photo-stimulated recombination of electron-hole paris in aqueous TiO2 nanoparticles",J Phys Chem B.108,12497 (2004).
    [129]C. Minero, G. Mariella, V. Maurino, D. Vione,and E. Pelizzetti, Langmuir.16,8964 (2000).
    [130]Chen M, Gao L. From Cd(OH)2 nanoflakes to CdSe nanochains:Synthesis and characterization[J]. Journal of Crystal Growth,2006,286(2):282-234
    [131]Kamat, P. V. J. Phys. Chem. C 2008,112,18737-18753.
    [132]Gerischer, H.; Luebke, M. J. Electroanal. Chem.1986,204,225-7.
    [133]Vogel, R.; Pohl, K.; Weller, H. Chem. Phys. Lett.1990,174,241-6.
    [134]Vogel, R.; Hoyer, P.; Weller, H. J. Phys. Chem.1994,98,3183-3188.
    [135]Saurez, R.; Nair, P. K.; Kamat, P. V. Langmuir 1998,14,3236-3241.
    [136]Peter, L. M.; Wijayantha, K. G. U.; Riley, D. J.; Waggett, J. P. J.Phys. Chem. B 2003,107,8378-8381.
    [137]Farrow, B.; Kamat, P. V. J.Am. Chem. Soc.2009,131,11124-11131.
    [138]Liu, D.; Kamat, P. V. J. Phys. Chem.1993,97,10769-73.
    [139]Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P. V. J. Am. Chem.Soc.2006,128,2385-2393.
    [140]Lee, H. J.; Yum, J.-H.; Leventis, H. C; Zakeeruddin, S. M.; Haque,S. A.; Chen, P.; Seok, S. I.; Gra”tzel, M.; Nazeeruddin, M. K. J. Phys. Chem.C 2008,112,11600-11608.
    [141]Zaban, A.; Micic, O. I.; Gregg, B. A.; Nozik, A. J. Langmuir 1998,14,3153-3156.
    [142]Lucas M, Mai W J, Yang R S, et al. Aspect ratio dependence of the elastic properties of ZnO nanobelts, Nano Letters,2007,7(5):1314-1317
    [143]Song J H, Wang X D, Riedo E, et al. Elastic property of vertically aligen nanowires. Nano Letters, 2005,5(10):1954-1958
    [144]Huang Y H, Bai X D, Zhang Y, et al. Field-emission properties of indinidual ZnO nanowires studied in situ bu transmission clectron microscopy. J. Phys.:Condens. Matter.,2007,19:176001
    [145]Huang Y H, Zhang Y, Gu Y S, et al. Field-emission of A Single In-doped ZnO Nanowire. J. Physics Chemical C,2007,111:9039-9043
    [146]Heo Y W, Tien L C, Norton D P, et al. Electrical transport properties of single ZnO nanorods. Applied Physics Letters,2004,85(11):2002-2004
    [147]Keem K, Jeong D Y, Kim S. Fabrication and device characterization of omega-shaped-gate ZnO nanowire field-effect transistors. Nano Letters,2006,6:1454
    [148]Li Q H, Wan Q, Liang Y X, et al. Electronic transport through individual ZnO nanowires. Applied Physics Letters,2004,84(22):4556-4558
    [149]Yang L L, Zhao Q X, Willander M, et al. Annealing effects on optical peoperties of low temperature grown ZnO nanorod arrays. Journal of Applied Physics,2009,105:99053503
    [150]Cui J B, Gibson U. Thermal modification of magnetism in cobalt-doped ZnO nanowires grow at low temperatures, Phusical Review B,2006,74:045416
    [151]井立强,袁福龙,侯海鸽,等.ZnO纳米粒子的表面氧空位与其光致发光和光催化性质的关系.中国科学B辑化学,2004,48(2):101-111
    [152]Zhao J, Yan X Q, Zhang Y. Studies on photoluminescence and photocatalytic activity of Znl-xNixo nanowires, J. Physics Chemical C, Submitted
    [153]Fuijishima A, Honda K. Photolysis of water at a semiconductor electrode. Nature,1972,238:37,38
    [154]Yang J L, An S J, Park W. Photocatalysis using ZnO thin films and nanoneedles grown by metal-or-ganic chemical vapor deposition. Adv. Matter.,2004,16:1661-1664
    [155]Xiao Q, Zhang J, Xiao C, et al. photocatalytic decolorization of methylene blue over under visible light irradiation. Materials Science and Engineering B,2007,142:121-125
    [156]Y. Tak, H. Kim, D. Lee, et al. Type-Ⅱ CdS nanoparticle-ZnO nanowire heterostructure arrays fabricated by a solution process:enhanced photocatalytic activity [J]. Chem. Commun.,2008, 38:4585-4587.
    [157]K.S. Leschkies, R. Divakar, J. Basu, et al. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices [J]. Nano. Lett.,2007,7:1793-1798.
    [158]J.Y. Kim, F.E. Osterloh. ZnO-CdSe nanoparticle clusters as directional photoemitters with tunable wavelength [J]. J. Am. Chem. Soc.2005; 127:10152-10153.
    [159]Z. Liu, J. Deng, J. Deng, et al. Fabrication and photocatalysis of CuO/ZnO nano-composites via a new method [J].Mater. Sci. Engin. B,2008,150:99-104.
    [160]S. Sakthivel, S.U. Geissen, D.W. Bahnemann, et al. Enhancement of photocatalytic activity by semiconductor heterojunctions:a-Fe2O3, WO3 and CdS deposited on ZnO [J]. J. Photochem. Photobiol. A,2002,148:283-293
    [161]R. A. Caruso and M. Antonietti, Chem. Mater.,2001,13,3272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700