用户名: 密码: 验证码:
高粱抗旱机制及评价指标的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验于2011~2012年在沈阳农业大学农学院试验基地进行,采用人工气候箱培养,PEG-6000溶液模拟干旱胁迫环境,在萌发期以4个不同浓度PEG-6000水溶液处理31个高粱品种,旨在根据高粱品种萌发期对不同干旱胁迫程度的响应,筛选出具有抗旱能力的高粱品种并探讨高粱萌发期抗旱性鉴定的方法。室外盆栽条件下,以4个不同抗旱性高粱品种为对象,研究农艺和生理生化指标与高粱抗旱性的关系,从多方面揭示高粱的抗旱机制,并对高粱的抗旱性进行鉴定和指标筛选,以期提供简单易行的农艺和生理生化指标对高粱抗旱性进行有效的评价,同时为丰富高粱抗旱性的研究内容、建立高粱抗旱鉴定指标体系及为抗旱育种提供理论依据和方法。本试验主要研究结果如下:
     1、采用人工气候箱内培养,PEG-6000溶液模拟干旱胁迫环境,在萌发期以80g/L、120g/L、150g/L、175g/L PEG-6000水溶液处理31个高粱品种,旨在根据高粱品种萌发期对不同干旱胁迫程度的响应,筛选出具有抗旱能力的高粱品种并探讨高粱萌发期抗旱性鉴定的方法。通过主成分分析法(PCA)和神经网络自组织映射(SOM)聚类分析法对各品种进行抗旱性综合分析与评定。PCA结果表明,相对芽长、相对根长和相对萌发抗旱指数载荷量最大,将其作为萌发期高粱抗旱性筛选的主要评价指标,对31个高粱品种抗旱性进行了排序。最后通过SOM聚类分析将31个高粱品种按抗旱性强弱分为5类,吉杂305等4个品种为高度抗旱品种,HL5等4个品种为抗旱品种,辽杂10等8个品种为中等抗旱品种,锦杂103等7个品种为干旱敏感品种,锦杂93等8个品种为高度干旱敏感品种。研究认为,相对芽长、相对根长和相对萌发抗旱指数等指标可以作为高粱品种抗旱性鉴定的重要指标;SOM聚类分析可作为品种抗旱性分类的重要方法。
     2、干旱胁迫下,高粱叶片自由水含量、束缚水含量、相对含水量和离体叶片失水速率等水分状况在不同生育时期均呈下降趋势,吉杂305(高度抗旱品种)的下降幅度显著低于吉杂127(高度干旱敏感品种),锦杂106(中等抗旱品种)和锦杂103(干旱敏感品种)介于二者之间。抗旱性品种具有较高的过氧化物酶(POD)、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性,而丙二醛(MDA)含量少,具有较好的清除自由基的能力,脯氨酸、可溶性糖和可溶性蛋白含量较高,细胞水势较低。相关性分析表明,叶片温度可以直接或间接的反映干旱胁迫下高粱植株的水分状况及叶片保护性酶和渗透调节物质变化状况,能够体现出高粱抗旱性的强弱。叶温差可以作为高粱抗旱性筛选的一个重要指标,应用远红外热成像技术在高粱抗旱性的鉴定上具有可行性。
     3、干旱胁迫下,高粱叶片最大光合效率(Fv/Fm)、表观电子传递速率(ETR)、实际光合效率(ΦPSⅡ)、光化学淬灭系数(qL)和净光合速率(Pn)在不同生育时期均呈下降趋势,而Fo和NPQ则呈升高趋势,作物叶片光系统PSⅡ反应中心遭到破坏,但与干旱敏感性品种(锦杂103和吉杂127)相比,抗旱性品种(吉杂305和锦杂106)表现出较高的Pn、ETR和ΦPSⅡ和qL。干旱胁迫下,抗旱性高粱品种叶片具有较高的净光合速率和电子传递速率是其适应干旱胁迫的主要光合生理基础。4个高粱品种的叶片正面和背面气孔密度、长度、宽度和长宽比,在3个时期对干旱胁迫的响应不同,但均为抗旱性品种气孔状况对干旱胁迫不敏感,而干旱敏感性品种受干旱胁迫影响较大。叶温差、Pn、气体交换参数和气孔性状相关性分析表明,Pn与气孔导度(Gs)、蒸腾速率(Tr)、正面气孔长度和宽度极显著正相关,与叶片背面气孔长度显著相关。叶温差与背面气孔密度极显著正相关,与正面气孔宽度显著正相关。
     4、高粱在干旱胁迫下地上部分干重和根系均较对照有所降低,但根冠比升高,并且抗旱性品种升幅较大。与旱敏感性品种相比,在干旱胁迫下,抗旱性品种总根长、表面积、平均直径和根体积均升幅较大,籽粒产量受干旱胁迫影响较小。经灰色关联度分析,高粱叶片Pn、Tr和叶干重等指标与高粱抗旱性关系较密切。
The test was conducted at the experiment station of Shenyang Agricultural University during2011to2012. PEG-6000was used to simulate drought stress environment in artificial climate chamber for studying the effects of different concentrations of PEG-6000on the response of31sorghum cultivars at the seed germination stage. And the purpose of this dissertation is to filter sorghum cultivars with better drought-resistance based on responses of sorghum cultivars at the seed germination stage with different drought stress, and the same time to explore suitable identifying methods for sorghum drought-resistance. Under outdoor potted conditions,4sorghum cultivars with different drought-resistance were used to study relationships among agricultural technology, physiologic and biochemical index and sorghum cultivars drought-resistance, and to reveal drought-resistant mechanism in many aspects. Drought-resistance identification and indicator selection were also studied to supply simple and allowable agricultural technology and physiologic and biochemical index, which could evaluate sorghum drought-resistant efficiently. Meanwhile, the study established sorghum drought-resistant identification indicator system to enrich research content of sorghum drought-resistant. And the study also supplied theory and method of breeding for drought-resistant in sorghum. And the main results were as followed:
     1. PEG-6000was used to simulate drought stress environment in artificial climate chamber for studying the effects of different concentrations of PEG-6000(80g/L,120g/L,150g/L,175g/L) on the response of31sorghum cultivars at the seed germination stage, with the objectives of screening drought-resistant cultivars and exploring suitable identifying methods for sorghum's drought-resistance. Through principal component analysis (PCA) and Self-Organizing-Map (SOM) cluster analysis, the drought-resistance of31sorghum cultivars was evaluated. PCA showed that the payloads of relative bud length, relative root length and drought-resistance index during germination had the maximum values, and were used as the main evaluating indexes to identify drought-resistance capability of sorghum, and based on which the drought-resistant capabilities of31sorghum cultivars were ranked. Five groups of drought-resistance capabilities of31sorghum cultivars were divided based on SOM cluster analysis:4cultivars including Jiza305as highly drought-resistant,4cultivars including HL8as drought-resistant,8cultivars including LiaozalO as medium drought-resistant,7cultivars including Jinza103as drought-sensitive and8cultivars including Jinza93as highly drought-sensitive. It was concluded that parameters such as relative bud length, relative root length and germination drought-resistance index can be used as criteria for identifying sorghum's drought-resistance, and that SOM cluster analysis is an important method for classifying drought-resistance.
     2. Results from this research indicated that drought tolerant cultivar was comparatively resistant to water stress owing to the greater increased in peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities with lower malondialdehyde (MDA) content. Findings showed that the greater drought tolerant capacity was resulted from the superior ability to lower increase in free radicals along with higher increase in proline, water soluble sugar, and protein. Correlation analysis showed that leaf temperature serves an important role in influencing the sorghum water retention capacity, protective enzyme activity, as well as osmotic adjustment substance, resulting in the differential water stress responses between cultivars. This suggests that the leaf temperature might be useful as a critical criterion in selecting drought resistance sorghum. Additionally, there appears to be potential for using far infrared thermal imaging technology to appraise the capability of sorghum drought-resistant.
     3. The maximum photosynthetic efficiency (Fv/Fm), the apparent electron transport rate(ETR), actual photosynthetic efficiency (ΦPSⅡ) photochemical quenching coefficient (qL) and net photosynthetic rate (Pn) of sorghum leaves at different growth stages showed a downward trend, while the initial fluorescence (Fo) and non-photochemical quenching (NPQ) showed an upward trend, Photosystem Ⅱ (PS Ⅱ) reaction center of leaf was destroyed, resulting in a reduction of energy conversion efficiency of primary light. The Pn, ETR,(ΦPSⅡ and relative electron transfer rate (Pm) of drought-resistant cultivars (Jiza305and Jinza106) were higher than those of drought-sensitive cultivars (Jinza103and Jizal27), and their abilities of conversion of light energy were greater. The chlorophyll fluorescence parameters of ΦPSⅡ and relative electron transfer rate (Pm) in sorghum leaves of drought-resistant cultivars are important physiological characteristics for the drought-resistant sorghum cultivars.
     4. There had different trends of stomatal density, length, width and length/width on leaf ventral and back of4sorghum cultivars within drought stress at three different growth stages, but all that showed drought-resistant sorghum cultivars were less sensitive to drought stress, and drought sentitive sorghum cultivars were sensitive to drought stress. Correlation analysis indicated Pn was greatly positively correlated with stomatal conductance (Gs), transpiration rate (Tr), stomatal length and width on leaf ventral and back, and significantly positively correlated with length on the back. Meanwhile, leaf temperature different was greatly positively correlated with stomatal density on back and significantly positively correlated with width on ventral.
     With drought stress, the dry weights of above-ground and root of sorghum were decreased slightly, but the ratio of that was increased and which was significant in drought-resistant sorghum cultivars. Comparing with drought-sensitive cultivars, there was largely increased in total root length, total surface area, average diameter and root volume of drought-resistant sorghum cultivars and no obvious changes in yield of that with drought stress. The results of grey correlation analysis showed that the physiological characteristics of leaf, such as Pn、Tr and leaf dry weight, were closely related to sorghum drought resistance.
引文
[1]安永平,强爱玲,张媛媛,等.2006.渗透胁迫下水稻种子萌发特性及抗旱性鉴定指标研究.植物遗传资源学报,7(4):421-426.
    [2]王冰,崔日鲜,王月福.2011.基于远红外成像技术的花生苗期抗旱性鉴定.中国油料作物学报,33(6):632-636.
    [3]白文明.2002.灌溉对干旱沙区紫花苜蓿生物学特性的影响.生态学报,22(8):1247-1253.
    [4]白向立.2009.玉米抗旱机制及鉴定指标筛选的研究.沈阳:沈阳农业大学博士学位论文,60-68.
    [5]柴丽娜,路苹,王金淑.1996.干旱胁迫冬小麦幼苗根冠比的动态变化与品种抗旱性关系的研究.北京农学院学报,11(2):19-23.
    [6]陈家伟,陈清华,尹春华,等.2006.SOM与中国不同地区人力资本构成分析.北京师范大学学报(自然科学版),42(1):107-110.
    [7]陈建明,俞晓平,程家安.2006.叶绿素荧光动力学及其在植物抗逆生理研究中的应用.浙江农业学报,18(1):51-55.
    [8]陈善福,舒庆尧.1999.植物耐干早胁迫的生物学机理及其基因工程研究进展.植物学通报,16(5):555-560.
    [9]陈绍光,李燕南,王沙生.1996.空气和土壤干旱对不同杨树种类无性系生长及光合的影响.北京林业大学学报,18(3):34-41.
    [10]陈志强,陈建飞.2007.基于SOM的漳浦样曲土壤分类研究.吉林师范大学学报(自然科学版),(2):4-6.
    [11]崔江慧,李霄,常金华.2011.PEG模拟干旱胁迫对高粱幼苗生理特性的影响.中国农学通报,27(9):160-165.
    [12]董喜存,李岩,李文建,等.2010.聚乙二醇模拟干旱对甜高粱幼苗丙二醛、脯氨酸含量的影响.云南农业大学学报,25(4):726-730,736.
    [13]冯广龙,刘昌明,王立.1996.土壤水分对作物根系生长及分布的调控作用.生态农业研究,4(3):5-9.
    [14]冯晓敏,张永清.2012.水分胁迫对糜子植株苗期生长和光合特性的影响.作物学报,38(8):1513-1521.
    [15]付学琴,贺浩华,文飘,等.2012.东乡野生稻回交重组系的抗旱性评价体系.应用生态学报,23(5):1277-1285.
    [16]高福元,赵成章,卓玛兰草.2012.高寒山地甘肃臭草斑块特征与土壤水分的关系.应用与环境生物学报,18(4):571-574.
    [17]高三基,罗俊,张华,等.2006.甘蔗抗旱性生理生化鉴定指标.应用生态学报,17(6): 1051-1054.
    [18]高雁,李春,娄恺.2011.甜菜碱对干旱胁迫下棉花幼苗生理特性的影响.植物营养与肥料学报,17(2):513-516.
    [19]关长艾,孟庆伟,邹琦.2001.叶黄素循环及其调控.植物生理学通讯,(1):1-5.
    [20]关义新,戴俊英,徐世昌等.1997.玉米花期干旱及复水对植株补偿生长及产量的影响.作物学报,23(6):740-745.
    [21]韩苗苗,张仁和,朱永波,等.2008.不同玉米品种对干旱胁迫的响应.种子,27(10):49-55.
    [22]韩亚东,张文忠,杨梅,等.2006.孕穗期水稻叶温与水分状况关系的研究.中国农学通报,22(2):214-216.
    [23]郝建军,刘延吉.2001.植物生理学实验技术.沈阳:辽宁科学技术出版社,21-180.
    [24]贺亚川,俎伟华,王琴,等.2010.6种多浆植物耐旱性初步比较.西北农业学报,19(3):127-130.
    [25]侯彩霞,砖新建,李荣.1998.甜菜碱稳定PSⅡ放氧中心外周多肽机理.中国科学,28(4):355-361.
    [26]胡标林,李名迪,万勇,等.2005.我国水稻抗旱性鉴定方法与指标研究进展.江西农业学报,17(2):56-61.
    [27]黄瑞冬.1991.植物根系研究方法的发展.沈阳农业大学学报,22(2):164-168.
    [28]戢林,李廷轩,张锡洲,等.2012.氮高效利用基因型水稻根系形态和活力特征.中国农业科学,45(23):4770-4781.
    [29]姬谦龙.2002.不同基因型美国黑核桃对干旱胁迫的适应机制研究.山东:山东农业大学博士论文,12-20.
    [30]冀天会,张灿军,杨子光,等.2005.冬小麦叶绿素荧光参数与品种抗旱性的关系.麦类作物学报,25(4):64-66.
    [31]贾正茂,崔远来,刘方平,等.2012.不同水分条件下棉花径流、叶温及茎粗变化规律.中国农村水利水电,(6):73-77.
    [32]姜慧芳,任小平.2004.干旱胁迫对花生叶片SOD活性和蛋白质的影响.作物学报,30(2):169-174.
    [33]接玉玲,赵海洲,张伟.2006.甜菜碱对干旱胁迫下湖北海棠超微弱发光及抗氧化能力的影响.应用生态学波,17(12):2394-2398.
    [34]景蕊莲,胡荣海,朱志华,等.1997.冬小麦不同基因型幼苗形态性状遗传力和抗旱性的研究.西北植物学报,17(2):152-157.
    [35]李翠,梁燕,张纪涛.2011.渗透胁迫对番茄种子萌发特性的影响.干旱地区农业研究,29(2):173-179.
    [36]李合生.2000.植物生理生化实验原理和技术.北京:高等教育出版社,184-196.
    [37]李吉跃.1991.植物耐旱性及其机理.北京林业大学学报,13(3):92-96.
    [38]李倩,王明,王雯雯,等.2012.华山新麦草光合特性对干旱胁迫的响应.生态学报,32(13):4278-4284.
    [39]李霞,焦德茂,戴传超.2005.转育PEPC基因的杂交水稻的光合生理特性.作物学报,31(4):10-15.
    [40]李岩,潘海春,李德全.2000.土壤干旱条件下玉米叶片内源激素含量及光合作用的变化.植物生理学报,26(4):301-305.
    [41]李彦瑾,赵忠,孙德祥,等.2008.干旱胁迫下柠条锦鸡儿的水分生理特征.西北林学院学报,23(3):14.
    [42]李秧秧,上官周平,陈培元.1993.快速干旱下钾对玉米叶片光合作用的影响.西北农业学报,2(3):48-53.
    [43]林世青,许春辉,张其德,等.1992.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用.植物学通报,9(1):1-16.
    [44]林叶春,曾昭海,任长忠,等.2012.局部根区灌溉对裸燕麦光合特征曲线及叶绿素荧光特性的影响.作物学报,38(6):1062-1070.
    [45]刘长利,王文全,崔俊茹,等.2006.干旱胁迫对甘草光合特性与生物量分配的影响.中国沙漠,26(1):142-145.
    [46]刘殿英,石立岩,黄炳茹等.1993.栽培措施对冬小麦根系及其活力和植株性状的影.中国农业科学,26(5):51-56.
    [47]刘建新,王鑫,王凤琴.2005.水分胁迫对苜蓿幼苗渗透调节物质积累和保护酶活性的影响.草业科学,22(3):18-21.
    [48]刘瑞显,王友华,陈兵林,等.2008.花铃期干旱胁迫下氮素水平对棉花光合作用与叶绿素荧光特性的影响.作物学报,34(4):675-683.
    [49]刘鑫,迟道才,吴萍.2008.基于MATLAB的SOM网络的干旱聚类分析.沈阳农业大学学报,39(1):61-64.
    [50]刘亚,丁俊强,Subhash C,等.2008.两个玉米自交系苗期叶温的干旱响应研究.作物杂志,(6):62-65.
    [51]刘亚,丁俊强,苏巴钱德,等.2009.基于远红外热成像的叶温变化与玉米苗期耐旱性的研究.中国农业科学,42(6):2192-2201.
    [52]刘亚,丁俊强,Subhash C,等.2008.两个玉米自交系苗期叶温的干旱响应研究.作物杂志,(6):62-65.
    [53]罗俊,林彦栓,张木清,等.2000.甘蔗叶绿素a荧光参数对干旱胁迫的响应.甘蔗糖业,(2):15-20.
    [54]吕金印,郭涛.2010.水分胁迫对不同品种甜高粱幼苗保护酶活性等生理特性的影响.干旱 地区农业研究,28(4):89-93.
    [55]马斌,周志宇,张丽莉,等.2007.阿拉善荒漠区土壤因子与白沙蒿人工种群生长的主成分分析.西北植物学报,27(5):859-863.
    [56]马瑞昆,刘淑贞,贾秀领,等.1995.高产节水小麦基因型生理特性及综合评价.中国农业科学,28(6):32-39.
    [57]马秀芳,沈秀瑛,杨德光,等.2002.不同耐旱性玉米品种对干旱的生理生化反应.沈阳农业大学学报,33(3):167-170.
    [58]马延臣,于蓉蓉,陈荣军,等.2010.PEG-6000模拟干旱对水稻苗期根系形态和部分生理指标影响的研究.中国农学通报,26(8):149-156.
    [59]马原松,王启明,吴诗光,等.2005.干旱胁迫下大豆生理生化指标的研究.安徽农业科学,33(6):974-976.
    [60]孟庆立,关周博,冯佰利.2009.谷子抗旱相关性状的主成分与模糊聚类分析.中国农业科学,42(8):2667-2675.
    [61]慕自新,张岁岐,梁爱华,等.2005.玉米根系形态特征与空间分布对其水分利用的调控.生态学报,25(11):2895-2900.
    [62]牛庆良,黄丹枫.2006.人工气候室用于测定作物群体光合作用的方法.植物生理学通讯,42(4):700-704
    [63]潘相文,李文滨,李艳华,等.2006.主成分分析在大豆抗旱性评价上的应用.大豆科学,25(4):379-384,389.
    [64]裴冬,张喜英,王峻.2002.高粱、谷子根系发育及其抗旱性研究.中国生态农业学报,10(4):28-30.
    [65]彭立新,李德全,束怀瑞.2002.植物在渗透胁迫下的渗透调节作用.天津农业科学,8(1):40-43.
    [66]齐华,许晶,孟显华,等.2009.水分胁迫下燕麦萌芽期抗旱指标的研究.种子,28(7):7-10.
    [67]齐伟,王空军,张吉旺,等.2009.干旱对不同耐早性玉米品种干物质及氮素积累分配的影响.山东农业科学,7:35-38.
    [68]齐伟,张吉旺,王空军,等.2010.干旱胁迫对不同耐旱性玉米杂交种产量和根系生理特性的影响.应用生态学报,21(1):48-52.
    [69]钱永强,周晓星,韩蕾,等.2011.cd2+胁迫对银芽柳PSⅡ叶绿素荧光光响应曲线的影响.生态学报,31(20):6134-6142.
    [70]山仑.1983.植物水分亏缺和半干旱地区农业生产中的植物水分问题.植物生理生化进展,(2):108-119.
    [71]山仑,陈培元.1998.旱地农业生理生态基础.北京:科技出版社:1-18.
    [72]山仑.2007.植物抗旱生理研究与发展半干旱地农业.干旱地区农业研究,25(1):1-5.
    [73]山仑,徐炳成.2009.论高粱的抗旱性及在早区农业中的地位.中国农业科学,42(7):2342-2348.
    [74]夏尚光,张金池,梁淑英,等.2008.水分胁迫下3种榆树幼苗生理变化与抗旱性的关系.南京林业大学学报(自然科学版),32(3):131-134.
    [75]邵艳军,山仑,李广敏.2006.干旱胁迫与复水条件下高粱、玉米苗期渗透调节及抗氧化比较研究.中国生态农业学报,14(1):68-70.
    [76]时立文.2012.SPSS 19.0统计分析从入门到精通.北京:清华大学出版社,290-305.
    [77]宋凤斌,戴俊英.2005.玉米茎叶和根系的生长对干旱胁迫的反应和适应性.干旱区研究,22(2):256-258.
    [78]宋凤斌,徐世昌,戴俊英.1994.水分胁迫对玉米光合作用的影响.玉米科学,2(3):66-70.
    [79]孙存华,李扬,贺鸿雁,等.2005.藜对干旱胁迫的生理生化反应.生态学报,25(10):2556-2561.
    [80]孙景宽,张文辉,张洁明,等.2006.种子萌发期4种植物对干旱胁迫的响应及其抗旱性评价研究西北植物学报,26(9):1811-1818.
    [81]孙璐,周宇飞,汪澈,等.2012.高粱品种萌发期耐盐性筛选与鉴定.中国农业科学,45(9):1714-1722.
    [82]田伯红,王素英,李雅静,等.2008.谷子地方品种发芽期和苗期对NaCl胁迫的反应和耐盐品种筛选.作物学报,34(12):2218-2222.
    [83]王冰,崔日鲜,王月福.2011.基于远红外成像技术的花生苗期抗旱性鉴定.中国油料作物学报,33(6):632-636.
    [84]王德权.2012.持绿型高粱、玉米对干旱胁迫响应的生理机制比较研究.沈阳:沈阳农业大学博士学位论文,59-78.
    [85]王贺正,马均,李旭毅.2007.水稻开花期一些生理生化特性与品种抗旱性的关系.中国农业科学,40(2):399-404.
    [86]王建程,严昌荣,卜玉山.2005.不同水分与养分水平对玉米叶绿素荧光特性的影响.中国农业气象,26(2):95-98.
    [87]王空军,郑洪建,刘开昌,等.2001.我国1950s-1990s玉米品种更替过程中根系时空分布特性的演变.植物生态学报,25(4):472-475.
    [88]王空军,董树亭,胡昌浩,等.2002.我国玉米品种更替过程中根系生理特性的演进Ⅰ-根系保护性酶和膜质过氧化作用的变化.作物学报,28(3):384-388.
    [89]王空军,胡昌浩,董树亭,等.2002.我国玉米品种更替过程中根系生理特性的演进Ⅱ-根系保护酶活性及膜脂过氧化作用的变化.作物学报,28(3):384-388.
    [90]王连敏,王立志,张国民,等.1999.苗期低温对玉米体内脯氨酸、电导率及光合作用的影 响.中国农业气象,20(2):28-30.
    [91]王茅雁,邵世勤,张建华,等.1995.水分胁迫对玉米保护酶系活力及膜系统结构的影响.华北农学报,10(2):43-49.
    [92]王琼,宋桂龙,韩烈保,等.2008.5种野生护坡植物的抗早综合性评价.福建农林大学学报(自然科学版),37(2):153-157.
    [93]王士强,胡银岗,佘奎军.2007.小麦抗旱相关农艺性状和生理生化性状的灰色关联度分析.中国农业科学,40(11):2452-2459.
    [94]王晓磊,于海秋,夏乐,等.2008.干旱胁迫下不同耐旱性玉米自交系根形态特性差异.现代农业科学,15(12):17-19.
    [95]王征宏,邓西平,刘立生,等.2009.干旱对不同抗旱性冬小麦旗叶光合及主茎干物质转运的影响.干旱地区农业研究,27(5):166-172.
    [96]魏晓东,陈国祥,施大伟,等.2012.干旱胁迫对银杏叶片光合系统Ⅱ荧光特性的影响.生态学报,32(23):7492-7500.
    [97]武宝轩,Glenn W T.2001.全国植物光合作用、光生物学及其相关的分子生物学学术研讨会论文摘要汇编.北京:中国作物学会,57-59.
    [98]吴春旭,鲍满园,苟清龙.2010.自组织映射聚类算法在电信客户细分中的应用.计算机系统应用,19(8):168-172.
    [99]吴子恺.1994.玉米抗旱育种.玉米科学,2(1):6-9.
    [100]徐炳成,山仑,黄瑾.2003.柳枝稷和白羊草苗期水分利用与根冠比的比较.草叶学报,12(4):73-77.
    [101]徐芦.2010.荞麦抗旱指标鉴定与利用.杨凌:西北农林科技大学硕士毕业论文.
    [102]徐世昌,戴俊英,沈秀瑛,等.1995.水分胁迫对玉米光合性能及产量的影响.作物学报,21(3):356-363.
    [103]徐蕊,王启柏,张春庆,等.2009.玉米自交系抗旱性评价指标体系的建立.中国农业科学,42(1):72-84.
    [104]薛吉全,任建宏,马国胜,等.2000.玉米不同生育期水分胁迫条件下脯氨酸变化与抗旱性的关系.西安联合大学学报(自然科学版),2000,3(2):21-25.
    [105]燕辉,刘广全,李红生.2010.青杨人工林根系生物量表面积和根长密度变化.应用生态学报,21(11):2763-2768.
    [106]阎素红,杨兆生,王俊娟,等.2002.不同类型小麦品种根系生长特性研究.中国农业科学,35(8):906-910.
    [107]杨春杰,张学昆,邹崇顺,等.2007.PEG-600模拟干旱胁迫对不同甘蓝型油菜品种萌发和幼苗生长的影响.中国油料作物学报,29(4):425-430.
    [108]杨国虎.2002.玉米抗旱性的鉴定指标及遗传育种研究进展.甘肃农业科技,(10):19-21.
    [109]杨梅.2007.中国气象学会2007年年会生态气象业务建设与农业气象灾害预警分会场论文集.广州:中国气象学会,364-371.
    [110]杨晓青,张岁岐,梁宗锁,等.2004.水分胁迫对不同抗旱类型冬小麦幼苗叶绿素荧光参数,的影响.西北植物学报,(25):812-816.
    [111]余叔文,汤章城.1998.植物生理与分子生物学(第2版).北京:科学出版社.
    [112]张光灿,刘霞,贺康宁,等.2004.金矮生苹果叶片气体交换参数对土壤水分胁迫的响应.植物生态学报,28(1):66-72.
    [113]张国芳,孟林,毛培春.2007.偃麦草和中间偃麦草种质材料苗期抗旱性鉴定研究.华北农学报,22(3):54-59.
    [114]张丽雯,张永清.2011.4种旱作谷类作物根系发育规律的研究.中国农业科学,44(11):2244-2251.
    [115]张明生,彭忠华,谢波,等.2004.甘薯离体叶片失水速率及渗透调节物质与品种抗旱性的关系.中国农业科学,37(1):152-156.
    [116]张娜,赵宝平,郭若龙,等.2012.水分胁迫对不同抗旱性燕麦品种生理特性的影响.麦类作物学报,3(1):150-156.
    [117]张仁和,薛吉全,浦军,等.2011.干旱胁迫对玉米苗期植株生长和光合特性的影响.作物学报,37(3):521-528.
    [118]张守仁.1999.叶绿素荧光动力学参数的意义及讨论.植物学报,16(4):444-448.
    [119]张岁岐,李秧秧.1996.施肥促进作物水分利用机理及对产量影响研究.水土保持,3(1):185-191.
    [120]张岁岐,徐炳成.2010.根系与植物高效用水.北京:科学出版社,75-76.
    [121]张涛,沈宗根,姚春燕,等.2011.基于叶绿素荧光技术的紫菜光适应特征研究.海洋学报,3(3):140-147.
    [122]张宪政.1992.作物生理研究法.北京:农业出版社,117-123.
    [123]张修真.1999.南水北调-中国可持续发展的支撑工程.北京:中国水利水电出版社.
    [124]张卫星,赵致,柏光晓,等,2007.不同玉米杂交种对水分和氮胁迫的响应及其抗逆性.中国农业科学,40(7):1361-1370.
    [125]张正斌.2003.作物抗旱节水的生理遗传育种基础.北京:科学出版社,1-2.
    [126]张智猛,万书波,戴良香,等.2009.花生萌芽期水分胁迫品种适应性及抗旱性评价.干旱地区农业研究,27(5):173-182.
    [127]张智猛,戴良香,宋文武,等.2012.干旱胁迫对花生品种叶片保护酶活性和渗透物质含量的影响.作物学报,39(3):21-26.
    [128]赵博生,衣艳君,刘家.2001.外源甜菜碱对干旱、盐胁迫下的小麦幼苗生长和光合功能的改善.植物学通报,18(3):378-380.
    [129]赵丽英,邓西平,山仑.2005.渗透胁迫对小麦幼苗叶绿素荧光参数的影响.应用生态学报,16(7):1261-1264.
    [130]赵晓彤,韩亚东,高继平,等.2011.水稻穗分化期不同土壤水势叶温及生理性状变化.湖北农业科学,50(1):33-36.
    [131]郑有飞,赵泽,吴荣军,等.2010.臭氧胁迫对冬小麦光响应能力及PSⅡ光能吸收与利用的影响.生态学报,30(24):6771-6780.
    [132]张立新,李生秀.2004.甜菜碱与植物抗旱/盐性研究进展.西北植物学报,24(9):1765-1771.
    [133]张振平.2008.玉米抗旱性鉴定及指标筛选研究.沈阳:沈阳农业大学博士学位论文,25-42.
    [134]张晓艳,杨惠敏,侯宗东,等.2003.土壤水分和种植密度对春小麦叶片气孔的影响.植物生态学报,27:133-136.
    [135]章英才,闰天珍.2003.花花柴叶片解剖结构与生态环境关系的研究.宁夏农学院学报,24(1):31-34.
    [136]周朝彬,宋于洋,王炳举,等.2009.干旱胁迫对胡杨光合和叶绿素荧光参数的影响.西北林学院学报,(04):5-9.
    [137]朱春燕,黄丹枫,蔡保松,等.2010.甜瓜品种资源萌发期耐盐性及其指标评价.上海交通大学学报(农业科学版),28(6):504-508.
    [138]Allakhverdiev S I, Los D A, Mohanty P, et al.2007. Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystemⅡ during photoinhibition. Biochim Biophys Acta,2007,1767:1363-1371.
    [139]Aroca R, Irigoyen J J, Sanchez-Diaz M.2003. Drought enhances maize chilling tolerance.Ⅱ. Photosynthetic traits and protective mechanisms against oxidative stress. Physiologia Plantarum,117(4):540-549.
    [140]Baker N R, Rosenqvist E.2004. Application of chlorophyll fluorescence can improve crop production strategies:an examination of future possibilities. Journal of Experimental Botany, 55:1607-1621.
    [141]Blum A, Mayer J, Gozlan G 1982. Infrared thermal sensing of plant canopies as a screening technique for dehydration avoidance in wheat. Field Crops Research,5:137-146.
    [142]Blum A., Johnson J. W.1993. Wheat cultivars respond differently to drying top soil and a possible nonhydraulic root signal. Journal of Experimental Botanl,44:1149-1153.
    [143]Bosabalidis A M, Kofidis G.2002.ComParative effects of drought stress on leaf anatomy of two olive cultivars. Plant Science,163:375-79.
    [144]Boyer J S.1982. Plant productivity and environment. Science,218:443-448.
    [145]Calatayud A, Iglesias D J, Talon M, et al.2003. Effects of 2-month ozone exposure in spinach leaves on photosynthesis, antioxidant systems and lipid peroxidation. Plant Physiology and Biochemistry,41(9):839-845.
    [146]Cohen I, Knopf J A, Irihimovitch V, et al.2005. A proposed mechanism for the inhibitory effeets of oxidative stress on rubisco assembly and its subunit expression.Plant Physiology, 137:376-387.
    [147]Davis W J, Zhang J.1991. Root signals and the regulation of growth and development of plants in drying soil. Annual Review of Plant Physiology and Plant Molecular Biology,42: 55-76.
    [148]Eissenstat D M, Wells C E, Yanai R D.2000. Building roots in a changing environment: Implicantions for root longevity. New Phytologist,147(1):32-42.
    [149]Ephrath J E.1991. The effects of drought stress on leaf elongation, photosynthesis and transpiration rate in maize leaves. Photosynthetica,25:607-619.
    [150]Ghulama A, Li ZH L, Qin Q M, et al.2008. Estimating crop water stress with ETM NIR and SWIR data. Agricultural and Forest Meteorology,148(11):1679-1695.
    [151]Gullo M L, Nardini A, Salleo S, et al.1998. Changes in root hydraulic conductance (KR) of Olea oleaster seedlings following drought stress and irrigation. Nes Phytologist,140(1):25-31.
    [152]Guo D L, Mitchell R J, Hendricks J J.2004. Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia,140(3):450-457.
    [153]Himmelbauer M L, Puschenreiter M, Schnepf A, et al.2006. Root morphology of Thlaspi goesingense Halacsy grown on a serpentine soil. Journal of Plant Nutrition and Soil Science, 168(1):138-144.
    [154]Jones M M, Turner N C.1978. Osmotic adjustment in leaves of sorghum in response to water deficits.Plant Physiol,61:122-126.
    [155]Klaper R, Thomas M A.2004. At the cross roads of genomics and ecology:The promise of a canary on a chip. Bio Science,54(5):403-412.
    [156]Manivannan P, Jaleel C A, Somasundaram R, et al.2011. Osmoregulation and antioxidant metabolism in drought-stressed Helianthus annuus under triadimefon drenching. Comptes Rendus Biologies,331(6):418-425.
    [157]Michel B E, Kaufmann M R.1973. The osmotic potential of polyethylene glycol 6000. Plant Physiology,51:914-916.
    [158]Molina A, Acedo C, Llamas F.2006. The relationship between water availability and anatomical characters in Carex hirta. Aquatic Botany,85:257-262.
    [159]Motzor.1993. Genotypic variation in durum wheat root systems at different stage of development in a Mediterranean environment. Euphytica,66:197-206.
    [160]O'Tool J C, Bland W L.1987. Genotypic variation in crop plant root systems.41:91-145.
    [161]Smucker A J M, Aiken R M.1992. Dynamic root responses to water deficits. Soil Science,154 (4):281-289.
    [162]Hlavinka P, Trnka M, Semeradova D, et al.2009. Effect of drought on yield variability of key crops in Czech Republic. Agricultural and Forest Meteorology,149:431-442.
    [163]Li Y P, Ye W, Wang M, et al.2009. Climate change and drought:a risk assessment of crop-yield impacts. Climate Research,39(1):31-46.
    [164]Lobell D B, Field C B.2007. Global scale climate-crop yield relationships and the impacts of recent warming. Environmental Research Letters,2:1-7.
    [165]Lu Y L, Hao Z F, Xie C X.2011. Large-scale screening for maize drought resistance using multiple selection criteria evaluated under water-stressed and well-watered environments. Field Crops Research,124(1):37-45
    [166]Platt T, Gallegos C L, Harrison W G. 1980. Continuous recording of pho-tochemical and non photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynthesis research,10:51-62.
    [167]Romano G, Zia S, Spreer W, et al.2011. Use of thermography for high throughput phenotyping of tropical maize adaptation in water stress. Computers and Electronics in Agriculture,79(1): 67-74.
    [168]Schauf C L, Wilson K J.1987. Effects of abscisic acid on K+ channels in vicia faba guard cell protoplasts. Biochem Biophys Research Comm,1987,145:285-290.
    [169]Toshiyuki T, Masahiro Y, Toshio Y.2010. Canopy temperature on clear and cloudy days can be used to estimate varietal differences in stomatal conductance in rice. Field Crops Research, 115(2):165-170.
    [170]Wang G P, Hui Z, Li F, et al.2010. Improvement of heat and drought photosynthetic tolerance in wheat by overaccumulation of glycinebetaine. Plant Biotechnology Reports,4(3):213-222.
    [171]Wang Q C, Sun Z H, Zhang H, et al.2003. Adaptive responses of acer ginnala, pyrusussuriensis and prunus davidiana seedlings to soil moisture stress. Journal of Forestry Research,14(4):280-284.
    [172]Yoshiji O, Teruo S, Masashi T.1984. Turgor regulation in a brackish charophyte. Plant & Cell Physiology,25:572-581.
    [173]Zobayed S M A, Afreen F, Kozai T.2007. Phytochemical and physiological changes in the leaves of St. John's wort plants under a water stress condition. Environ Experimental Botany, 59:109-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700