用户名: 密码: 验证码:
耕作和长期施肥对稻田土壤微生物群落结构及活性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻土固碳是当前我国农业应对全球温室气体减排的需求驱动下的前沿问题,其中所涉及的土壤-作物-微生物之间的相互作用可能是水稻土碳循环的特异性问题。因此,研究水稻土微生物群落结构与功能变化规律有利于充实和发展土壤碳循环理论。水稻土固碳能力比旱地农田土壤的潜力更大,而耕作和和施肥在很大程度上影响和调控着水稻土的固碳强度。然而,对土壤-作物-微生物相互作用过程及其在耕作和不同施肥条件下的变化还缺乏深入认识。因此,本论文主要围绕稻田耕作后有机碳变化过程中微生物群落区系和活性变化特点,以深入认识水稻耕作栽培对土壤微生物群落结构和功能的影响;围绕不同施肥对成熟水稻土功能微生物群落结构和活性的影响,以认识稻田土壤微生物群落及活性的短期变化,从而为了解稻田土壤微生物变化特征及其对生物地学过程的可能影响积累科学资料。
     以湖北荆江地区起源于河流湿地的水稻土为研究对象,采集代表性河流湿地和稻田耕层土壤样本,用氯仿熏蒸-硫酸钾提取法测定微生物生物量碳,用稀释平板菌落计数法和聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)研究微生物区系数量和群落结构多样性,并配合比色法测定土壤酶活性。以设在我国江苏太湖流域长达23年的肥料定位试验田的水稻土为研究对象,采用传统的平板菌落计数法与PCR-DGGE结合基因克隆和测序等方法,以amoA、Arch-amoA、nirK、nifH和cbbLR分别作为指示基因,研究了氨氧化细菌(AOB)、氨氧化古菌(AOA)、反硝化细菌(NRB)、固氮细菌和CO2固定细菌等5类微生物在无肥处理(NF)、NPK化肥处理(CF)、化肥配施猪粪(CFM)和化肥结合秸秆还田(CFS)4种不同施肥处理下群落结构的变化,并采用归一化处理土壤酶活性和土壤养分强度,分析探讨土壤有机质-微生物-功能活性的关系变化,主要研究结果和认识如下:
     1.湿地土壤耕垦为水田对土壤微生物群落及活性的短期变化
     稻田土壤有机碳含量比湿地提高了55.42%,微生物生物量碳提高了180%。细菌、真菌、放线菌和自生固氮菌的丰度与细菌和真菌多样性均未发生分异,但是稻田土壤蔗糖酶、脲酶和碱性磷酸酶活性比湿地分别提高了89%、70%和72%。微生物生物量碳和归一化的酶活性均与土壤有机碳呈显著正相关关系。因此,经过近30年的耕种,湿地起源水稻土有机碳含量显著提高,微生物生物量碳与酶活性也显著增强。表明起源于湿地的水稻土在发育过程中,随着有机质积累,微生物丰度和生物化学活性快速提高,从而加快养分周转从而能促进水稻土功能演进。
     2.长期不同施肥下稻田土壤氮循环功能群微生物群落结构的变化
     长期不同施肥处理显著改变了土壤固氮细菌的群落结构。与NF处理相比,CF处理、CFM处理和CFS处理均显著提高了自生固碳菌的数量,提高幅度分别为0.58倍、0.66倍和1.06倍,而且,三个施肥处理下nifH基因丰度的提高幅度分别为2.13倍、10.79倍和3.44倍。自生固氮细菌的数量与SOC含量之间具有显著的正相关(R2=0.9378,P=0.0319),nifH基因丰度与归一化的土壤养分呈显著正相关(R2=0.9707,P=0.0147)。与NF处理相比,CF处理和CFM处理下土壤微生物固氮酶活性均提高了2倍。但是,长期施肥下土壤固氮酶活性与可培养固氮细菌数量和nifH基因丰度之间均没有相关性。
     长期不同施肥处理显著改变了土壤氨氧化细菌、氨氧化古菌与反硝化细菌的群落结构。与NF处理相比,CF处理、CFM处理和CFS处理下硝化细菌amoA基因丰度的提高幅度分别为1.36倍、39.57倍和29.98倍,CFM处理和CFS处理下氨氧化古菌Arch-amoA基因丰度的提高幅度分别为446.97倍和88.19倍,反硝化细菌nirK基因丰度的提高幅度分别为0.51倍、2.81倍和0.80倍。不同施肥处理下的amoA基因的丰度与Arch-amoA基因丰度的变化趋势相同,但是后者的丰度值较前者低2-4个数量级。amoA基因丰度和nirK基因丰度均与归一化的土壤养分呈显著正相关(R2=0.9101,P=0.0460;R2=0.9910,P=0.0006),表明施用有机肥处理下土壤有机质积累较多与养分平衡有利于提高氨氧化细菌/古菌与反硝化细菌的丰度。土壤有机质(SOC)与硝化势之间具有显著的正相关关系(R2=0.9110,P=0.0470); CFM处理下有较低的反硝化势,而CFS处理下的反硝化势较高,表明猪粪有机肥处理有利于N2O减排。不过,不同施肥处理下的amoA/Arch-amoA基因丰度与土壤硝化势之间没有相关性,nirK基因丰度与土壤反硝化势之间也没有相关性。
     3.长期不同施肥对稻田土壤碳循环功能菌——CO2固定细菌群落结构变化
     长期不同施肥处理显著改变了土壤的丰度。与NF处理相比,CF处理、CFM处理和CFS处理下cbbLR基因丰度的提高幅度分别为2.13倍、10.79倍和3.42倍,cbbLR基因丰度与归一化的土壤养分呈显著正相关(R2=0.9707,P=0.0147)。
     综上所述,无论是湿地开垦为稻田后的微生物生物量及生物化学活性变化,还是长期施肥下成熟水稻土氮循环功能群丰度及多样性变化,均响应于土壤有机碳和养分条件的变化。无论是起源于湿地的水稻土土壤微生物区系总体生物量和酶活性,还是氮循环功能群的丰度和多样性,均与有机质含量变化具有正相关关系,且随着其含量提高,基因丰度和多样性大幅度提高,因此稻田有机质积累改变了微生物生存条件,有机质-微生物-酶活性关系呈演进性增强,从而促进土壤生物功能和农田生产力,有利于稻田生态系统的增强和稳定。另外,不同施肥处理下功能群微生物基因丰度与氮素转化的活性之间并没有观察到相应变化,说明有机质积累下微生物丰度的提高,增强了生态系统功能群微生物的冗余度,这可能预示生态系统功能的稳定性的内在机制,但尚需更多试验验证。本研究还表明,有机无机肥配施能够提高稻田土壤微生物的硝化活性和固氮活性,降低反硝化活性。
At present, carbon sequestration in a paddy soil is a front-line issue under the background of globle climate changing and of demanding for decreasing green-house-gas emission in our country's agriculture. The interaction among soil, rice and microbe involved in the process of carbon sequestration is maybe a special issue of carbon cycle in paddy soil. So, the study of microbial community structures and functional activities is needed which can encrich and develop the theory of soil carbon cycle. Both of rice cultivation and different fertilizations can largely affect the intensity of carbon sequestration in rice paddy where there was a higher potential of carbon sequestration than that in dryland. In this paper, two subjects are invesgated for understanding the changing of the interaction among soil, rice and microbe under rice cultivation and different fertilizations. One is what are changes of microbial floras and activities with soil organic carbon (SOC) in rice paddy cultivated from natural wetland. The other is what are changes of functional microbes under different fertilizations in a mature rice paddy. Probing the two problems can help us to understand the changing law of microbes in a paddy soil and can provide the scientific data for the law's application in bio-geo-process.
     In the first study, the topsoil samples were collected from natural wetlands and rice paddies in Jingjiang region, Hunbei, China. SOC and microbial biomass carbon (SMB-C) were examined with sulfate digestion method with potassium dichromate and chloroform fumigation combining extraction with lemery, respectely. Microbial flora numbers and community structure diversities were measured with plate counting method and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), respectely. Microbial activity was determined with soil enzyme assays as well. In the second study, the topsoil samples were collected from a23-year fertilizing paddy field in the Tai Lake region, Jiangsu, China where the fertilization treatments were designed as follows:no fertilizer application (NF), chemical fertilizers only (CF), chemical fertilizers plus pig manure (CFM), and chemical fertilizers plus rice straw return (CFS). The methods of plating and PCR-DGGE combining gene cloning and sequencing were adopted for investing the soil microbial communities of nitrifying, denitrifying, azotobacter and CO2-fixing under four treatments with amoA and Arch-amoA, nirK, nifH and cbbLR gene as the indicators of ammonia oxidizing bacteria (AOB) and archaeal (AOA), denitrifing bacteria (NRB) and azotobacter and CO2-fixing bacteria, respectively. Normalized method was using for charactering overall soil enzyme activities and soil nutrients richness, which is help for discussion the relativity changes of SOC, microbe and functional activity. The main results were as follows:
     1. Changes of soil microbial community and activity in a short time in a rice paddy cultivated from natural wetland.
     The SOC content increased by55.42%in rice soils compared to wetland. SMB-C was found as180%higher in paddy soil than in wetlands. There was no significant difference in abundance of the bacterial, fungi, actionmycetes and autotrophic azotobacter, and diversity of both bacterial and fungi between wetlands and paddy field. However, the observed microbial enzyme activities of invertase, urease and alkaline phosphatase enhanced by89%,70%and72%, respectively, in paddy field over wetlands. Statistical analysis revealed a significant correlation of SMB-C and normalized overall enzyme activity with soil organic carbon contents, respectively. These observations supported that the size of soil microbial biomass and microbial functional activity with enzymes were enhanced as SOC storage increased due to rice cultivation for several decades, which indicated that microbes promote SOC accumulation through accelerating nutrients turnover in a paddy' development.
     2. Changes of microbe communities involved in N-cycle in a rice paddy under long-term fertilization treatments
     The long-term fertilization treatments had changed community structure of Azotobacter. The clony forming unite (CFU) of Azotobacter under CF treatment, CFM treatment and CFS treatment were found as higher0.58,0.66and1.06times, respectively compared with that in NF treatment, the abundances of nifH as well as were found as higher2.13,10.79and3.44times. Statistical analysis revealed there was a significant correlation of the CFU of Azotobacter with SOC (R2=0.9378, P=0.0319), as well as the abundance of nifH with SNRN of SOC, T-N and T-P (R2=0.9707, P=0.0147). The soil nitrogen fixation activities under CFM and CFS treatments were found as higher204%and196%, respectively compared with that in NF treatment. However, there was not a significant correlation of the soil nitrogen fixation activity with the CFU of Azotobacter or the abundance of nifH gene.
     The long-term fertilization treatments had changed community structures of AOB AOA and denitrifier significantly. Compared with the microbial abundance in NF treatment, the abundances of amoA and nirK gene in CF, CFM and CFS treatment were as higher1.36,39.57and29.98times and0.51,2.81and0.80times, respectively, as well the abundances of Arch-amoA gene under CFM and CFS treatments were as higher446.97and88.19times, respectively. The abundance of amoA is two to four orders higher than the one of Arch-amoA though both are the same change trend across the four treatments. There were significant correlations of abundance of amoA and nirK with soil nutrient richness normalized (SNRN) of soil organic carbon (SOC) and total nitrogen (T-N)(R2=0.9101, P=0.0460) and of SOC, T-N and total phosphorus (T-P)(R2=0.9101, P=0.0460), respetively, which indicated that SOC accululation and nutrient richness under manure treatments can increase the abundances of AOB, AOA and denitrifier. There was higher soil nitrification potential under CFS treatment and a positive correlation between SOC and soil nitrification potential (R2=0.9110, P=0.0470). There was a highest denitrification potential in CFM treatment while a lowest one in CFS treatment, which indicated a large reducing potential of N2O emission under pig manure treatment. However, the abundances of amoA/Arch-amoA and nirK were decoupling with the soil nitrification potential and denitrification potential across four treatments, respectively.
     3. Changes of functional microbe involved in carbon cycle——CO2-fixing bacteria community in a paddy soil under long-term fertilization treatments
     The long-term fertilization treatments had changed community structure of microbe involved in carbon cycle. The abundances of cbbLR under CF treatment, CFM treatment and CFS treatment were found as higher2.13,10.79and3.42times, respectively compared with that in NF treatment. Statistical analysis revealed there was a significant correlation of the abundance of cbbLR with SNRN of SOC, T-N and T-P (R2=0.9920, P=0.0020).
     In summary, not only the changes of both soil microbial biomass and bio-chemical activities in a rice paddy reclaimed from wetland, but also th changes of both the abundances and structures of microbe involved carbon and nitrogen cycle under long-term fertilization response the changes of SOC and nutrients. Moreover, there was positive relationship between the above microbial charisteres and SOC content, which showed that there was a substantially increaseing of abundance and diversity along with SOC increasing. The above results indicated the SOC accumulation changed the living condition of microbe so that the relationship among SOC, microbe and enzyme activity was evolutionarily buding up, which enhanced soil bio-function and crop production and favored the rice paddy ecosystem stable. In addition, significantly coorelation between functional microbial abundances and activities involved in N transform under different fertilization treatments were not observed, which indicated that SOC accumulation increased the redundancy rate of functional genes. This is, therefore, probably inner mechanism of the stability of rice ecosystem which deserved the further study. In this study, the result showed that a decreasing denitrification activity but increasing avtivities of nitrification and nitrogen fixation under the CFM treatment in a rice paddy as well.
引文
Adesemoye A O, Kloepper J W. Plant-microbes interactions in enhanced fertilizer-use efficiency [J]. Applied Microbiology and Biotechnology,2009,85:1-12.
    Alden L, Demoling F, Baath E. Rapid method of determining factors limiting bacterial growth in soil [J]. Applied and Environmental Microbiology,2001,67:1830-1838.
    Andre F C, Chantal H, Keith H, Fernando S, Robert P Z. Thirty-seven years of soil nitrogen and phosphorus fertility management shapes the structure and function of the soil microbial community in a Brown Chernozem [J]. Plant and Soil,2009,315:173-184.
    Aulakh M S, Khera T S, Doran J W, Bronson K F. Denitrification, N2O and CO2 fluxes in rice-wheat cropping system as affected by crop residues, fertilizer N and legume green manure [J]. Biology and Fertility of Soils,2001,34:375-389.
    Avrahami S, Conrad R, Braker G. Effect of soil ammonium concentration on N2O release and on the community structure of ammonia oxidizers and denitrifiers [J]. Applied and Environmental Microbiology,2002,68:5685-569.
    Avrahami S, Conrad R. Patterns of community change among ammonia oxidizers in meadow soils upon long-term incubation at different temperatures [J]. Applied and Environmental Microbiology,2003, 10:6152-6164.
    Barta J, Melichova T, Vanek Daniel, Picek T Santrcukova H. Effect of pH and dissolved organic matter on the abundance of nirK and nirS denitrifiers in spruce forest soil [J]. Biogeochemistry,2010,101: 123-132.
    Belser L W. Population ecology of nitrifying bacteria [J]. Annual Review of Microbiology,1979,33: 309-333.
    Bossuyt H, Denef K, Six J, Frey S D, Merckx R, Paustian K. Influence of microbial populations and residue quality on aggregate stability [J]. Applied Soil Ecology,2001,16:195-208.
    Bridgham S D, Megonigal J P, Keller J K, Bliss N B, Trettin C. The carbon balance of North American wetlands [J]. Wetlands,2006,26:889-916.
    Cai Y J, Ding W X, Luo J F. Spatial variation of nitrous oxide emission between interrow soil and interrow plus row soil in a long-term maize cultivated sandy loam soil [J]. Geoderma,2012, 181-182:2-10.
    Coelho M R R, Marriel I E, Jenkins S N, Lanyon C V, Seldin L, O'Donnell A G. Molecular detection and quantification of nifH gene sequences in the rhizosphere of sorghum (Sorghum bicolor) sown with two levels of nitrogen fertilizer [J]. Applied Soil Ecology,2009,42:48-53.
    Chen X P, Zhang L M, Shen J P, Xu Z H, He J Z. Soil type determines the abundance and community structure of ammonia-oxidizing bacteria and archaea in flooded paddy soils. Journal of Soils Sediments [J].2010a,10:1510-1516.
    Chen X P, Zhu Y G, Xia Y, Shen J P, He J Z. Ammonia-oxidizing archaea:important players in paddy rhizosphere soil? [J]. Environmental Microbiology,2008,10:1978-1987.
    Chen Z, Luo X Q, Hu R G, Wu M N, Wu J S, Wei W X. Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil [J]. Microbial Ecology,2010b,60:850-861.
    Choudhury A T M A, Kennedy I R. Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production [J]. Biology and Fertility of Soils,2004,39:219-227.
    Chu H Y, Fujii T, Morimoto S, Lin X G, Yagi K, Hu J L, Zhang J B. Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil [J]. Applied and Environmental Microbiology,2007,73:485-491.
    Cruz A F, Hamel C, Hanson K, Selles F, Zentner R P. Thirty-seven years of soil nitrogen and phosphorus fertility management shapes the structure and function of the soil microbial community in a Brown Chernozem [J]. Plant and Soil,2009,315:173-184.
    Demoling F, Figueroa D, Baath E. Comparison of factors limiting bacterial growth in different soils [J]. Soil Biology and Biochemistry.2007,39:2485-2495.
    Di H J, Cameron K C, Shen J P, Winefield C S, O'Callaghan M, Bowatte S, He J Z. Ammonia-oxidizing bacteria and archaea growunder contrasting soil nitrogen conditions [J]. FEMS Microbial Ecology,2010,72:386-394.
    Dick R P. A review:long-term effects of agricultural systems on soil biochemical and microbial parameters [J]. Agriculture, Ecosystems and Environment,1992,40:25-36.
    Dodla S K, Wanga J J, De Launeb R D, Cook R L. Denitrification potential and its relation to organic carbon quality in three coastal wetland soils [J]. Science of the Total Environment,2008,407: 471-480.
    Dong Z, Layzell D B. H2 oxidation, O2 uptake and CO2 fixation in hydrogen treated soils [J]. Plant and Soil,2001,229:1-12.
    Dong L H, Cordova-Kreylos A L, Yang J S, Yuan H L, Scowb K M. Humic acids buffer the effects of urea on soil ammonia oxidizers and potential nitrification [J]. Soil Biology and Biochemistry,2009, 41:1612-1621.
    Enwall K, Philippot L, Hallin S. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization [J]. Applied and Environmental Microbiology,2005, 71:8335-8343.
    Hu J J, Wang L, Zhang S P, Fu X H, Le Y Q. Optimization anaerobic of electron donors to improve CO2 fixation efficiency by a non-photosynthetic microbial community under aerobic condition using statistical experimental design [J]. Bioresource Technology,2010,101:7062-7067.
    Francis C A, Roberts K J, Beman J M, Santoro A E, Oakley B B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean [J]. Proceedings of the National Academy of Science of the United Stated of America,2005,102:14683-14688.
    Hai B, Diallo N H, Sail S, Haesler F, Schauss K, Bonzi M, Assigbetse K, Chotte J-L, Munch J C, Schloter M. Quantification of key genes steering the microbial nitrogen cycle in the rhizosphere of sorghum cultivars in tropical agroecosystems [J]. Applied and Environmental Microbiology,2009, 75:4993-5000.
    Hallin S, Jones C M, Schloter M, Philippot L. Relationship between N-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment [J]. The ISME Journal,2009,3: 597-605.
    Henry S, Baudoin E, Lopez-Gutierrez J C, Martin-Laurent F, Brauman A, Philippot L. Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR [J]. Journal of Microbiological Methods,2004,59:327-335.
    Hill T C J, Walsh K A, Harris J A, Moffett B F. Using ecological diversity measures with bacterial communities [J]. FEMS Microbiology Ecology,2003,1:1-11.
    Hoshino Y T, Morimoto S. Comparison of 18S rDNA primers for estimating fungal diversity in agricultural soils using polymerase chain reaction-denaturing gradient gel electrophoresis [J]. Soil Science and Plant Nutrients,2008,54:701-710.
    Hussain Q, Liu Y Z, Jin Z J, Zhang A F, Pan G X, Li L Q, Crowley D, Zhang X H, Song X Y, Cui L Q. Temporal dynamics of ammonia oxidizer (amoA) and denitrifier (nirK) communities in the rhizosphere of a rice ecosystem from Tai Lake region, China [J]. Applied Soil Ecology,2011,48: 210-218.
    Huang S, Sun Y N, Zhang W J. Changes in soil organic carbon stocks as affected by cropping systems and cropping duration in China's paddy fields:a meta-analysis [J]. Climatic Change,2012,112: 847-858.
    Irisarri P, Gonnet S, Monza J. Cyanobacteria in Uruguayan rice fields:diversity, nitrogen fixing ability and tolerance to herbicides and combined nitrogen [J]. Jounal of Biotechnology.2001,91:95-103.
    Kandeler E, Deiglmayr K, Tscherko D, Bru D, Philippot L. Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland [J]. Applied and Environmental Microbiology,2006,72:5957-5962.
    Kennedy I R, Islam N. The current and potential contribution of a symbiotic nitrogen fixation to nitrogen requirements on farms:a review [J]. Australian Journal of Experimental Agriculture,2001,41: 447-457.
    Kleineidam K, Sharma S, Kotzerke A, Heuer H, Thiele-Bruhn S, Smalla K, Wilke B-M, Schloter M. Effect of sulfadiazine on abundance and diversity of denitrifying bacteria by determining nirK and nirS genes in two arable soils [J]. FEMS Microbial Ecology,2010,60:703-707.
    Kong A Y Y, Hristova K, Scow K M, Six J. Impacts of different N management regimes on nitrifier and denitrifier communities and N cycling in soil microenvironments [J]. Soil Biology and Biochemistry,2010,42:1523-1533.
    Lauber C L, Strickland M S, Bradford M A, Noah Fierer. The influence of soil properties on the structure of bacterial and fungal communities across land-use types [J]. Soil Biology and Biochemistry,2008,40:2407-2415.
    Ladha J K, Reddy P M. Nitrogen fixation in rice systems:state of knowledge and future prospects [J]. Plant and Soil,2003,252:151-167.
    Liesack W, Schnell S, Revsbech N P. Microbiology of flooded rice paddies [J]. FEMS Microbiology reviews,2000,24:625-645.
    Li Y L, Zhang Y L, Hu J, Shen Q R. Contribution of nitrification happened in rhizospheric soil growing with different rice cultivars toN nutrition [J]. Biology and Fertility of Soils,2007,43:417-425.
    Liu D W, Liu X Y, Li L Q, Pan G X, David Crowley, Tippkotter R. SOC accumulation in paddy soils under long-term agro-ecosystem experiments from South China. VI. Changes in microbial community structure and respiratory activity [J]. Biogeosci Discuss,2011,8:1-26.
    Maeda K, Morioka R, Hanajima D, Osada T. The impact of using mature compost on nitrous oxide emission and the denitrifier community in the cattle manure composting process [J]. FEMS Microbial Ecology,2010,59:25-36.
    Martens-Habbena W, Berube P M, Urakawa H, Torre J R de la, Stahl D A. Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria [J]. Nature,2009,15:976-981.
    Meyer C K, Baer S G, Whiles M R. Ecosystem recovery across a chronosequence of restored wetlands in the Platte River valley [J]. Ecosystems,2008,11:193-208.
    Miller M N, Zebarth B J, Dandie C E, Burton D L, Goyer C, Trevors J T. Crop residue influence on denitrification, N2O emissions and denitrifier community abundance in soil [J]. Soil Biology and Biochemistry,2008,40:2553-2562.
    Miltner A, Richnow H H, Kopinke F D, Kastner M. Assimilation of CO2 by soil microorganisms and transformation into soil organic matter [J]. Organic Geochemistry,2004,35:1015-1024.
    Miltner A, Kopinke F D, Kindler R, Selesi D, Hartmann A, Kastner M. Non-phototrophic CO2 fixation by soil microorganisms [J]. Plant and Soil,2005,269:193-203.
    Murphy B A, Grundy F J, Henkin T M. Prediction of gene function in methylthioadenosine recycling from regulatory signals [J]. Journal of Bacteriology,2002,184:2314-2318.
    Muyzer G, Brinkhoff T, Nubel U, Santegoeds C, Schafer H, and Wawer C. Denaturing gradient gel electrophoresis (DGGE) in microbial ecology,1997, p.1-27. In Akkermans A D L, van Elsas J D, and de Bruijn F J. (ed.), Molecular microbial ecology manual. Kluwer Academic Publishers, Dordrecht, The Netherlands.
    Muyzer G, De Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase China reaction-amplified genes coding for 16S rRNA [J]. Applied and Environmental Microbiology,1993,59:695-700.
    Nannipieri P, Kandeler E, Ruggiero P.2002. Enzyme activities and microbiological and biochemical processes in soil. In:Burns R, Dick R. (Eds.), Enzymes in the Environment:Activity, Ecology, and Application, Marcel Dekker, New York, pp.1-34.
    Nicolaisen M H, Ramsing N B. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria [J]. Journal of Microbiological Methods,2002,50: 189-203.
    Nicolaisen M H, Risgaard-Petersen N, Revsbech N P, Reichardt W, Ramsing N B. Nitrification-denitrification dynamics and community structure of ammonia oxidizing bacteria in a high yield irrigated Philippine rice field [J]. FEMS Microbial Ecology,2004,49:359-369.
    Nyberg K, Schnurer A, Sundh I, Jarvis A, Hallin S. Ammonia-oxidizing communities in agricultural soil incubated with organic waste residues [J]. Biology and Fertility of Soils,2006,42:315-323.
    Okano Y, Hristova K R, Leutenegger C M, Jackson L E, Denison R Ford, Gebreyesus B, Lebauer D, Scow K M. Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil [J]. Applied and Environmental Microbiology,2004,70: 1008-1016.
    Pan G X, Smith P, Pan W N. The role of soil organic matter in maintaining the productivity and yield stability of cereals in china [J]. Agriculture Ecosystems and Environment,2009a,129:344-348.
    Pan G X, Zhou P, Li Z P, Smith P, Li L Q, Qiu D S, Zhang X H, Xu X B, Shen S Y, Chen X M. Combined inorganic/organic fertilization enhances N efficiency and increases rice productivity through organic carbon accumulation in a rice paddy from the Tai Lake region, China [J]. Agriculture, Ecosystem and Environment,2009b,131:274-280.
    Pan G X, Li L Q, Wu L S, Zhang X H. Storage and sequestration potential of topsoil organic carbon in China's paddy soils [J]. Global Change Biology,2003,10:79-92.
    Patra A K, Abbadie L, Clays-Josserand A, Degrange V, Grayston S J, Guillaumaud N, Loiseau P, Louault F, Mahmood S, Nazaret S, Philippot L, Poly F, Prosser J I, Roux X L. Effects of management regime and plant species on the enzyme activity and genetic structure of N-fixing, denitrifying and nitrifying bacterial communities in grassland soils [J]. Environmental Microbiology,2006,8:1005-1016.
    Poly F, Monrozier L J, Bally R Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil [J]. Research in microbiology,2001a,152:95-103
    Poly F, Ranjard L, Nazaret S, Gourbiere F, Monrozier L J. Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties [J]. Applied and Envionmental Microbiology, 2001b,67,2255-2262.
    Roger P A. Biological N2-fixation and its management in wetland rice cultivation [J]. Nutrient Cycling in Agroecosystems,1995,42:261-276.
    Rotthauwe J H, Witzel K P, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker:molecular fine scale analysis of natural ammonia-oxidizing populations [J]. Applied and Environmental Microbiology,1997,63:4704-4712.
    Rosch C, Mergel A, Bothe H. Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil [J]. Applied and Environmental Microbiology,2002,68:3818-3829.
    Saini R, Kapoor R, Kumar R, Siddiqi T O, Kumar A. CO2 utilizing microbes-A comprehensive review [J]. Biotechnology Advances,2011,29:949-960.
    Schmidt M W I, Samuel Torn M S, Abiven S, Thorsten D, Guggenberger G, Janssens I A, Kleber M, Kogel-Knabner I, Lehmann J, Manning D A C, Nannipieri P, Rasse D P, Weiner S, Trumbore S E. Persistence of soil organic matter as an ecosystem property [J]. Nature,2011,478:49-56.
    Selesi D, Schmid M, Hartmann A. Diversity of green-like and red-like ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes (cbbL) in differently managed agricultural soils [J]. Appllied and Environmental Microbiology,2005,71:175-184.
    Six J, Frey S D, Thiet R K, Batten K M. Bacterial and fungal contributions tocarbon sequestration in agroecosystems [J]. Soil Science Society of America Journal,2006,70:555-569.
    Stark C H, Condron L M, O'Callaghan M, Stewart A, Di H J. Differences in soil enzyme activities, microbial community structure and short-term nitrogen mineralization resulting from farm management history and organic matter amendments [J]. Soil Biology and Biochemistry,2008,40: 1352-1363.
    Stuart C F, Mc F J, David M G A, Euskirchen E S. Ruess R W, Kielland K. The changing global carbon cycle linking plant-soil carbon dynamics to global consequences [J], Journal of Ecology,2009,97: 840-850.
    Szukics U, Hackl E, Zechmeister-Boltenstern S, Sessitsch A. Contrasting response of two forest soils to nitrogen input:rapidly altered NO and N2O emissions and nirK abundance [J]. Biology and Fertility of Soils,2009,45:855-863.
    Tan I Y S, Esvan H M, Duxbury J M, Melkonian J J, Schindelbeck R R, Geohring L D, Hively W D, Moebius B N. Single-event nitrous oxide losses under maize production as affected by soil type, tillage, rotation, and fertilization [J]. Soil and Tillage Research,2009,102:19-26.
    Tan Z Y, Hurek T, Reinhold-Hurek B. Effect of N-fertilization, plant genotype and environmental conditions on nifH gene pools in roots of rice [J]. Environmental Microbiology,2003,5: 1009-1015.
    Tanaka H, Kyaw K M, Toyota K, Motobayashi T. Influence of application of rice straw, farmyard manure, and municipal biowastes on nitrogen fixation, soil microbial biomass N, and mineral N in a model paddy microcosm [J]. Biology and Fertility of Soils,2006,42:501-505.
    Teng Q H, Sun B, Fu X R, Li S P, Cui Z L, Cao H. Analysis of nifH gene diversity in red soil amended woth manure in Jiangxi, South China [J]. The Journal of Microbiology,2009,472:135-141.
    Throback I N, Enwall K, Jarwis A, Hallin S. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE [J]. FEMS Microbial Ecology, 2004,49:401-417.
    Tolli J, King G M. Diversity and structure of bacterial chemolithotrophic communities in pine forest and agroecosystem soils [J]. Appllied and Environmental Microbiology,2005,71:8411-8418.
    Turner G L, Gibson A H. In:Bergersen F. (ed), Methods for evaluating biological nitrogen fixation. Chichester:John Wiley and Sons, UK.1980, pp:111-138.
    Videmsek U, Hagn A, Schadolc M, Radl V, Knicker H, Scholter M, Vodnik D. Abundance and diversity of CO2-fixing bacteria in grassland soils close to natural carbon dioxide springs [J]. FEMS Microbial Ecology,2009,58:1-9.
    Wang C J, Pan G X, Tian Y G, Li L Q, Zhang X H, Han X J. Changes in cropland topsoil organic carbon with different fertilizations under long-term agro-ecosystem experiments across mainland China [J]. Science China Life Sciences,2010,53:858-867.
    Wang S X, Liang X Q, Luo Q X, Fan F, Chen Y X, Li Z Z, Sun H X, Dai T F, Wan J N, Li X J. Fertilization increases paddy soil organic carbon density [J]. Journal of Zhejiang University-Science B (Biomedicine and Biotechnology),2012,13:274-282.
    Wang Y N, Ke X B, Wu L Q, Lu Y H. Community composition of ammonia-oxidizing bacteria and archaea in rice field soil as affected by nitrogen fertilization [J]. Systematic and Applied Microbiology,2009,32:27-36.
    Wardle D A, Ghani A. A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development [J]. Soil Biology and Biochemistry,1995,27:1601-1610.
    Wartiainen I, Eriksson T, Zheng W W, Rasmussen U. Variation in the active diazotrophic community in rice paddy nifH PCR-DGGE analysis of rhizosphere and bulk soil [J]. Applied Soil Ecology,2008, 39:65-75.
    Wessen E, Nybergb K, Janssonc J K, Hallina S. Responses of bacterial and archaeal ammonia oxidizers to soil organic and fertilizer amendments under long-term management [J]. Applied Soil Ecology, 2010,45:193-200.
    Williams D L, Ineson P, Coward P A. Temporal variations in nitrous oxide fluxes from urine-affected grassland. Soil Biology and Biochemistry,1999,31:779-788.
    Wohl D, Arora S, Gladstone J R. Functional redundancy supports biodiversity and ecosystem function in a closed and constant environment [J]. Ecology,2004,85:1534-1540.
    Wu J S. Carbon accumulation in paddy ecosystems in subtropical China:evidence from landscape studies [J]. European Journal of Soil Science,2011,62:29-34.
    Yamamoto N, Asano R, Yoshii H, Otawa K, Nakai Y. Archaeal community dynamics and detection of ammonia-oxidizing archaea during composting of cattle manure using culture-independent DNA analysis [J]. Appllied Microbiology and Biotechnology,2011,90:1501-1510.
    Yanni Y G, El-Fattah F K A Towards integrated biofertilization management with free living and associative dinitrogen fixers for enhancing rice performance in the Nile delta [J]. Symbiosis,1999, 27:319-331.
    Yao S R, Merwin I A, Abawi G S, Thies J E. Soil fumigation and compost amendment alter soil microbial community composition but do not improve tree growth or yield in an apple replant site [J]. Soil Biology and Biochemistry,2006,38:587-599.
    Yuan H Z, Ge T D, Wu X H, Liu S L, Tong C L, Qin H L, Wu M N, Wei W X, Wu J S. Long-term field fertilization alters the diversity of autotrophic bacteria based on the ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO) large-subunit genes in paddy soil [J]. Applied Microbiology and Biotechnology,2012,95:1061-1071.
    Yoshida M, Ishii S, Otsuka S, Senoo K.Temporal shifts in diversity and quantity of nirS and nirK in a rice paddy field soil, Soil Biology and Biochemistry,2009,41:2044-2051.
    Young P. Phylogenetic classification of nitrogen-fixing organisms. In:Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall Inc, New York,1992, pp 43-86.
    Zhang P J, Zheng J F, Pan G X, Zhang X H, Li L Q, Tippkotter R. Changes in microbial community structure and function with in particle size fractions of a paddy soil under different long-term fertilization treatments from the Tai Lake region, China [J]. Colloids and Surfaces B:Biointerfaces, 2007,58:264-270.
    Zheng J F, Zhang X H, Li L Q, Zhang P J, Pan G X. Effect of long-term fertilization on C mineralization and production of CH4 and CO2 under anaerobic incubation from bulk samples and particle size fractions of a typical paddy soil [J]. Agriculture, Ecosystems and Environment,2007,120: 129-138.
    Zhong W H, Cai Z C. Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay [J]. Applied Soil Ecology, 2007,36:84-91.
    Zhou P, Pan G X, Spaccini R, Piccolo A. Molecular changes in particulate organic matter (POM) in a typical Chinese paddy soil under different long-term fertilizer treatments [J]. European Journal of Soil Science,2010,61:231-242.
    Zhou S, Sakiyama Y, Riya S, Song X F, Terada A, Hosomi M. Assessing nitrification and denitrification in a paddy soil with different waterdynamics and applied liquid cattle waste using the 15N isotopic technique [J]. Science of the Total Environment,2012,430:93-100.
    Zehr J P, Jenkins B D, Short S M, Steward G F. Nitrogenase gene diversity and microbial community structure:a cross-system comparison [J]. Environmantal Microbiology,2003,5:539-554.
    毕明丽,宇万太,姜子绍,马强,张璐,徐永刚.利用PLFA方法研究不同土地利用方式对潮棕壤微生物群落结构的影响[J].中国农业科学,2010,43(9):1834-1842.
    蔡昆争,段舜山.基因的功能冗余[J].生态学杂志,2001,20(4):61-64.
    陈春兰,陈哲,朱亦君,吴敏娜,秦红灵,魏文学.水稻土细菌硝化作用基因(amoA和hao)多样性组成与长期稻草还田的关系研究[J].环境科学,2010,31(6):1624-1632.
    成艳红.土壤食细菌线虫影响水稻根系生长的养分和激素作用机制[D].南京农业大学,2010.
    丁洪,王跃思,项虹艳,李卫华.福建省几种主要红壤性水稻土的硝化与反硝化活性[J].农业环境科学学报,2003,22(6):715-719.
    范君华,刘明,翁永江.高产海岛棉田土壤微生物学特性研究[J].棉花学报,2001,13(5):297-299.
    龚子同.中国土壤系统分类:理论方法与应用[M].中国科学出版社,1999,北京:160-165.
    辜运富,云翔,张小平,涂仕华,孙锡发,Kristina L不同施肥处理对石灰性紫色土微生物数量及氨氧化细菌群落结构的影响[J].中国农业科学,2008a,41(12):4119-4126.
    辜运富,张小平,涂仕华,孙锡发,Kristina L长期定位施肥对紫色水稻土硝化作用及硝化细菌群落结构的影响[J].生态学报,2008b,28(5):2123-2130.
    关松荫.土壤酶及其研究法[M].北京:农业出版社,1986:275-276,294-296,310-312.
    郝晓晖,刘守龙,童成立,苏以荣,吴金水,胡荣桂.长期施肥对两种稻田土壤微生物量氮及有机氮组分的影响[J].中国农业科学,2007,40(4):757-764.
    贺纪正,李晶,郑袁明.土壤生态系统微生物多样性-稳定性关系的思考[J].生物多样性,2013,21(4):411-420.
    和文祥,魏燕燕,蔡少华.土壤反硝化酶活性测定方法及影响因素研究[J].西北农林科技大学学报(自然科学版),2006,34(1):121-124.
    胡安谊,焦念志.氨氧化古菌-环境微生物生态学研究的一个前沿热点[J].自然科学进展,2009,19(4):370-379.
    胡君利,林先贵,褚海燕,尹睿,张华勇,苑学霞,朱建国.土壤氨氧化细菌的分离方法研究[J].土壤,2005a,37(5):569-571.
    胡君利,褚海燕,林先贵,尹睿,苑学霞,张华勇,朱建国.大气CO2浓度增高对农田土壤硝化活性的影响[J].生态环境,2005b,14(3):329-332.
    黄靖宇,宋长春,宋艳宇,刘德燕,万忠梅,廖玉静.湿地垦殖对土壤微生物量及土壤溶解有机碳、氮的影响[J].环境科学,2008,29(5):1380-1387.
    贾仲君,翁佳华,林先贵,RalfC氨氧化古菌的生态学研究进展[J].微生物学报.2010,50(4):431-437.
    李方敏,艾天成,饶联鹏.四湖地区渍害稻田土壤有机质及其氧化稳定性[J].长江流域资源与环境,2003,12(3):293-296.
    李娟,赵秉强,李秀英,姜瑞波,Bing S O H长期不同施肥制度下几种土壤微生物学特征变化[J].植物生态学报,2008,32(4):891-899.
    李秀英,赵秉强,李絮花,李燕婷,孙瑞莲,朱鲁生,徐晶,王丽霞,李小平,张夫道.不同施肥制度对土壤微生物的影响及其与土壤肥力的关系[J].中国农业科学,2005,38(8):1591-1599.
    李奕林,张亚丽,胡江,沈其荣.淹水条件下籼稻与粳稻苗期根际土壤硝化作用的时空变异[J].生态学报,2006,26(5):1461-1467.
    李振高,骆永明,滕应.土壤与环境微生物研究方法[M].北京:科学出版社,2008:97-99.
    李振高,潘映华,伍期途,李良谟.土壤学报.太湖地区水稻土优势反硝化细菌的数量、组成与酶活性[J].1989,26(1):79-86.
    廖小娟,何东进,王韧,方长明.闽东滨海湿地土壤有机碳含量分布格局[J].湿地科学,2013,11(2):192-197.
    刘春英,周文斌.我国湿地碳循环的研究进展[J].土壤通报,2012,43(5):1264-1270.
    刘存歧,陆健健,李贺鹏.长江口潮滩湿地土壤酶活性的陆向变化以及与环境因子的相关性[J].生态学报,2007,27(9):3663-3669.
    刘娜,王克林,谢永宏,杨刚,段亚锋.洞庭湖湿地土壤环境及其对退田还湖方式的响应[J].生态学报, 2011,31(13):3758-3766.
    刘骁蓓,涂仕华,孙锡发,辜运富,张先琴,张小平.秸秆还田与施肥对稻田土壤微生物生物量及固氮菌群落结构的影响[J].生态学报,2013,33(17):5210-5218.
    刘雨迪,陈小云,刘满强,秦江涛,李辉信,胡锋.不同稻作年限下土壤微生物学性质和线虫群落特征的变化[J].生物多样性,2013,21(3):334-342.
    陆梅,田昆,张仕艳,莫剑峰,原海红.不同干扰程度下高原湿地纳帕海土壤酶活性与微生物特征研究[J].生态环境学报,2010,19(12):2783-2788.
    陆梅,田昆,陈玉惠,常凤来,莫剑锋.高原湿地纳帕海退化土壤养分与酶活性研究[J].西南林学院学报,2004,24(1):34-37.
    牛文静,李恋卿,潘根兴,宋祥云,李志鹏,刘晓雨,刘永卓.太湖地区水稻土不同粒级团聚体中酶活性对长期施肥的响[J].应用生态学报,2009,20(9):2181-2186.
    鲁如坤.土壤农业化学分析[M].北京:中国农业科技出版社,1999:106-185.
    罗兰芳,郑圣先,廖育林,谢坚,向艳文,聂军.控释氮肥对稻田土壤微生物的影响及其与土壤氮素肥力的关系[J].湖南农业大学学报(自然科学版),2007,33(5):608-613.
    罗希茜,陈哲,胡荣桂,吴敏娜,秦红灵,魏文学.长期施用氮肥对水稻土亚硝酸还原酶基因多样性的影响[J].环境科学,2010,31(2):423-430.
    潘根兴,赵其国.我国农田土壤碳库演变研究:全球变化和国家粮食安全[J].地球科学进展,2005,20(4):384-393.
    潘根兴,周萍,张旭辉,李恋卿,郑聚锋,邱多生,储秋华.不同施肥对水稻土作物碳同化与土壤碳固定的影响[J].生态学报,2006,26(11):3704-3710.
    潘根兴,李恋卿,郑聚锋,张旭辉,周萍.土壤碳循环研究及中国稻田土壤固碳研究的进展与问题[J].土壤学报,2008,45(5):901-914.
    彭佩钦,张文菊,童成立,王小利,蔡长安.洞庭湖典型湿地土壤碳、氮和微生物碳、氮及其垂直分布[J].水土保持学报,2005,19(1):49-53.
    邱峰.百万亩水稻田纳入湿地保护(2011-10-28) [2012-1-12].http://www.nb.suzhou.gov.cn/newsview.asp? id=1359
    任京辰,张平究,潘根兴,宋林华.岩溶土壤的生态地球化学特征及其指示意义——以贵州贞丰-关岭岩溶石山地区为例[J].地球科学进展,2006,21(5):504-512.
    宿桂红,傅新红.中国粮食主产区水稻生产技术效率分析[J].中国农学通报,2011,27(2):439-445.
    邰继承,靳振江,崔立强,潘根兴.不同土地利用下湖北江汉平原湿地起源土壤有机碳组分的变化[J].水土保持学报,2011,25(6):124-128.
    谭周进,周卫军,张杨珠,曾希柏,肖嫩群,刘强.不同施肥制度对稻田土壤微生物的影响研究[J].植物营养与肥料学报,2007,13(3):430-435.
    滕应,黄昌勇,龙健,姚槐应.复垦红壤中牧草根际微生物群落功能多样性[J].中国环境科学,2003,23(3):295-299.
    宋亚娜,林智敏,林捷.不同品种水稻土壤氨氧化细菌和氨氧化古菌群落结构组成[J].中国生态农业学报,2009,17(6):1211-1215.
    苏宝林,王志敏,陈文新,廉平湖.北京地区水稻田土壤固氮活性的初步研究[J].北京农业大学学报,1997,17(1):23-28.
    王竞,周集体,张晶晶,张爱丽,张劲松.固定CO2氢细菌的筛选及其培养条件优化[J].应用与环境微生物学报,2000,6(3):267-270.
    王丽丽,宋长春,葛瑞娟.三江平原湿地不同土地利用方式下土壤有机碳储量研究[J].中国环境科学,2009,29(6):656-660.
    王娟,张丽君,姚槐应.添加秸秆和黑炭对水稻土碳氮转化及土壤微生物代谢图谱的影响[J].中国水稻科学,2013,27(1):97-104.
    王树起,韩晓增,乔云发,王守宇,许艳丽.不同土地利用方式对三江平原湿地土壤酶分布特征及相关肥力因子的影响[J].水土保持学报,2007,21(4):150-153,192.
    王学雷.江汉平原湿地生态脆弱性评估与生态恢复[J].华中师范大学学报:自然科学版,2001,35(2):237-240.
    王英,王爽,李伟群,魏丹,周宝库,王玉峰.长期定位施肥对土壤生理转化菌群的影响[J].生态环境,2008,17(6):2418-2420.
    吴家梅,纪雄辉,霍莲杰,彭华,刘勇.稻田土壤氧化态有机碳组分变化及其与甲烷排放的关联性[J].生态学报,2013,33(15):4599-4607.
    吴俐莎,唐杰,罗强,汤博,聂远洋,王晓彤,杨志荣,孙群,冯甦,张杰.若尔盖湿地土壤酶活性和理化性质与微生物关系的研究[J].土壤通报,2012,43(1):52-59.
    武满满,孙佩哲,胡佳俊,王磊,李军,廖元琨,魏恺.混合电子供体对好氧非光合微生物菌群固碳效率影响的析因实验分析[J].环境科学学报,2011,31(6):1220-1226.
    熊汉峰,黄世宽,陈治平,廖勤周,谭启玲.梁子湖湿地土壤酶初步研究[J].生态环境,2006,15(6):1305-1309.
    徐琪,朱洪官.关于水稻土形成作用的特点-起源土壤与水稻土的比较[J].土壤,1982,2:46-52.
    徐永刚,宇万太,马强,周桦.不同施肥制度下潮棕壤氮素功能群活性的研究[J].水土保持学报,2010,24(3):160-169.
    许金根.稻作农业与长江三角洲的崛起[J].农业考古,2005,1:73-77.
    杨桂生,宋长春,宋艳宇,侯翠翠.三江平原小叶章湿地剖面土壤微生物活性特征[J].生态学报,2010,30(22):6146-153.
    俞子牛,李阜棣,何绍江.农业微生物实验技术[M].中国农业出版社,1996,北京:125-126.
    张博,董瑜,张薇.土壤微生物区系研究-国际发展态势分析[J].科学观察.2012,7(4):28-39.
    张平究,李恋卿,潘根兴,张俊伟.长期不同施肥下太湖地区黄泥土微生物活性与多样性的变化[J].生态学报,2004,24(12):2818-2824.
    张容娟,布乃顺,崔军,方长明.土地利用对崇明岛围垦区土壤有机碳库和土壤呼吸的影响[J].生态学报,2010,30(24):6698-6706.
    张旭辉,李典友,潘根兴,李恋卿,林凡,许信旺.中国湿地土壤碳库保护与气候变化问题[J].气候变化研究进展,2008,4(4):202-208.
    张逸飞,钟文辉,李忠佩,蔡祖聪.长期不同施肥处理对红壤水稻土酶活性及微生物群落功能多样性的影响[J].生态与农村环境学报,2006,22(4):39--44.
    张之恒.长江中下游稻作农业的起源[J].农业考古,1998,1:206-211.
    郑聚锋,张平究,潘根兴,李恋卿,张旭辉.长期不同施肥下水稻土甲烷氧化能力及甲烷氧化菌多样性的变化[J].2008,28(10):4864-4872.
    钟文辉,蔡祖聪,尹力初,张鹤.种植水稻和长期施用无机肥对红壤氨氧化细菌多样性和硝化作用的影响[J].土壤学报,2008,45(1):105-111.
    周群英,王士芬.环境工程微生物[M].北京.高等教育出版社.2008:325-327.
    朱克贵,马同生,王大平,谭正喜,唐玉邦.水稻土发生和分类的研究Ⅰ.两种不同起源的水稻土中铁的活化与剖面的形成[J].南京农学院学报,1983,4:56-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700