用户名: 密码: 验证码:
气动热环境下光学头罩热辐射建模及仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代新军事技术变革到来,采用红外成像的探测跟踪制导,已经成为了当代各种高速精确制导飞行器必然发展趋势。当带有光学成像探测系统的飞行器在大气层中高速飞行时,它的光学头罩和大气之间发生剧烈的相互作用,进而产生了严重的气动光学效应。其中高温光学窗口和激波气体气动热辐射效应对成像器形成了辐射干扰,使红外图像噪声增加,导致光学成像探测系统成像质量下降,制导精度也因此而降低。
     本文主要研究气动热环境下光学头罩热辐射效应。对头罩内的辐射传输进行建模仿真,利用得到的边界辐射热流,分析光学系统内的辐射传输过程,最终给出探测器上的辐射能量分布。
     气动热环境下头罩内热辐射传输是辐射和导热耦合换热的过程。通过对头罩进行空间和角度的划分,给出了辐射传递方程和导热能量方程的离散形式。采用直角坐标系下的有限体积法求解头罩内的辐射传输,并把头罩内部辐射热流作为辐射热源项代入导热能量方程,求解头罩的辐射温度场,反复进行辐射和导热的迭代,直至辐射温度场收敛,最后给出头罩内表面的辐射热流。
     采用反向蒙特卡洛法对光学系统内辐射传输进行建模。追迹红外探测器上每个像元上发射出的大量光线,模拟光线与每个光学元件的相互作用,统计到达头罩内表面每个微元面上的光线比例,并在Visual C++环境下编制相应的光线追迹程序,计算出辐射传递因子。根据辐射传递因子的互易性,计算出红外探测器上的辐射能量分布。
     论文中通过对仿真结果的分析,证明了头罩内部的辐射传输建模和光学系统内辐射传输建模是可行的。
With the advent of a new era of military technology revolution in modern times, it is necessary and inevitable to equip high-speed precise guided aero crafts with infrared imaging detecting and tracking guidance technique. As high-speed aero crafts with optical imaging detecting system fly in the atmosphere, severe aero-optical effect is incurred by the intense interaction between its optical dome and the atmosphere. During the process, the radiation effect of optical dome and shock wave influence the imaging system severely. So the image quality of the aero-crafts optical imaging detecting system is impaired and thus the guidance precision will decrease.
     Aimed at studying optical dome radiation effect under the circumstances of aerodynamic heat, this paper showed the distribution of radiant energy on the infrared detector. The final result was based on the modeling and stimulation of the radiative transfer in the dome and the analysis of the radiative transfer process in the optical system by obtaining the marginal heat flux.
     The model of radiative heat transfer in optical dome was established on the process of coupled radiative and conductive heat transfer. Radiative transfer equation and conductive energy equation were formulated according to the division of space and angel of the dome. And the radiative transfer in the dome was calculated by means of finite volume method under the rectangular coordinate system. Meanwhile, the radiative temperature field of the dome was obtained by introducing the radiative heat flux as radiative heat source into the conductive energy equation. The iteration into radiative and conductive equation till the convergences of the radiative temperature field, finally solved radiative heat flux inside the dome.
     Backward Monte Carlo Method was applied to model the radiation transmission in optical system by tracing scales of rays and simulating interaction between rays and optical elements. At the same time the ray-tracing programs were also programmed in Visual C++ 6.0, which gave the radiative exchange factor and radiative energy distributions on infrared detector.
     The analysis of the stimulation result in this paper indicates that the model of radiative heat transfer in the dome and the optical system is feasible.
引文
1.费锦东.高速导弹红外成像末制导对气动光学效应技术研究的需求.红光与激光工程
    2.韩志平,殷兴良.高超音速导弹气动光学效应研究方法综述.现代防御技术. 2003,31(3):13~18
    3.殷兴良.现代光学新分支学科——气动光学.中国工程科学. 2005,7(12):1~6
    4.刘纯胜,李培田,费锦东.高速导弹光学头罩侧窗口制冷效果分析.红外与激光工程. 2000,29(3):68~72
    5.马毅飞,赵文平.窗口辐射对红外成像探测影响的研究.系统工程与电子技术. 2005,27(3):427~430
    6. D. A. Kalin, S. F. Mullins, L. C. Brooks, et al. Experimental Investigation of High-velocity Mixing/Shear Layer Aero-optic Effects. SPIE. 1990, (1326): 178~189
    7. B. J. Walker, K. D. Kennedy, C. D. Mikkelsen. Analysis and Test of Storable Liquids for Endoatmospheric Missile Window Cooling. AIAA. 1993, (2666): 1~4
    8. F. R. Zubair, P. J. Garcia, H. J. Catrakis. Aero-Optical Interactions Along Laser Beam Propagation Paths in Compressible Turbulence. AIAA. 2006, (3070):1~9
    9. S. Doerr, C. Wissler. Aero-Optics Research at Philips Laboratory. SPIE. 2005, (1354):129~138
    10. J. D. Trolinger, W. C. Rose. Technique for Simulation and Evaluating Aero-Optical Effects in Optical System. AIAA. 2004, (1354):10~14
    11. Liepmann, H. W. Deflection and Diffusion of a Light Ray Passing Through a Boundary Layer. Douglas Aircraft Company Rept. SM14397. 1952
    12. J. Trolier, D. Hudson, D. Carlson, et al. Shock Layer Radiance Effects on Endoatmospheric Interceptor Seeker Performance. AIAA SDIO Annual Interceptor Technology Conference.Huntsville,AL.1992,AIAA 92-2816:1~16
    13. G. Renz, W. Bohn. A 2μm-Pump Laser Based DIRCM System and Aero-Optics in the Mid-IR. SPIE. 2007, (6738):1~12
    14. M. Huang. Stress Effects on the Performance of Optical Waveguides. International Journal of Solids and Structures. 2003, 40(7): 1615~1632
    15. R. E. Childs. Prediction and Control of Turbulent Aero-Optical Using Large Eddy Simulation. AIAA. 1993, (2670): 2295~2302
    16. R. Harrison. Aero-Optics Research at Philips Laboratory. Air Force PhilipsLaboratory. 1997, 32(4):466~469
    17. R. Clark. High Speed Interferometric Device for Real-Time Correction of Aero- Optic Effects. AIAA. 1995, (1984):1~7
    18. M. R. Whiteley, J. S. Gibson. Adaptive Laser Compensation for Aero-Optics and Atmospheric Disturbance. AIAA. 2007, (4012):1~14
    19. J. E. Pond, G. W. Sutton. Adaptive Optics Improvement for Flight-Induced Aero-Optical Aberrations of a Forward-Facing Optical Dome. AIAA. 2006, (4779):1~8
    20. V. H. Shui. Aero-optic Image Degradation Through Gaussian and Non-Gaussian Turbulent Media. SPIE. 1993,(1968):833~840
    21. G. W. Wirsig. The Airborne Laser-a Revolutionary Military Affair. Air Force Philips Airborne Laser Program Newsletter, 1997,3(3):8~12
    22. J. Jarem, A. Monteiro. The Blurring of Point Source Through Tnhomogeneous Turbulence. AIAA. 1992, (2795): 5~10
    23. H. Schimmel, S. Buehling, F. Wyrowski. Use of ray tracing in Wave-Optical Engineering. SPIE. 2004,(5182):6~14
    24. R. Coman, D. Gajewski. Traveltime Computation by Wavefront-Orientated Ray Tracing. Geophysical Prospecting. 2005,53(1):23~36
    25. D. C. Weber, J. D. Trolinger, W. C. Rose. Computer Simulation of Aero-Optic Phenomena Based on Empirical Data. SPIE. 2001, (4448):187~196
    26.王淑华,艾邦成.天线窗口热环境对气动光学传输的影响分析.高速导弹成像探测气动光学效应机理研究文集.北京. 2004: 51~57
    27.吴琳,房建成,杨照华.基于湍流涡模型的气动光学效应影响参数分析.红外与激光工程. 2007, 36(1): 97~101
    28.谢文科,姜宗福.气动光学畸变波前的本征正交分解.中国激光. 2007, 34(4): 491~495
    29.洪汉玉,张天序.气动光学效应红外序列退化图像优化复原算法.红外与激光工程. 2005,34(6):724~728
    30.洪汉玉,张天序.气动光学效应退化图像循环迭代复原算法研究.华中科技大学学报(自然科学版), 2005, 31(9): 284~287
    31.孙家宪,赵剡.气动光学效应图像复原振铃效应抑制自适应算法的研究.光学技术. 2005, 31(9): 284~287
    32.吕建伟,王强.飞行器蒙皮红外辐射特性的反向蒙特卡洛计算与分析方法.红外与激光工程. 2009, 38(2): 233~236
    33.张胜涛,陈方,刘洪.近空间高超飞行器气动热红外辐射特性数值仿真.计算机仿真. 2010, 27(1): 114~118
    34. W. X. Yang, C. Cai. Numerical Analysis of the Aero-Optical Effects Induced by the Turbulence Field Surrounding Hypersonic Aircrafts. SPIE. 2007,(6876):1~6
    35.范志刚,张亚萍,裴扬威.气动热环境下高速飞行器光学窗口光传输数值仿真研究.红外与毫米波学报. 2007,10(5):396~400
    36.范志刚,裴扬威,张亚萍.气动环境下窗口光传输分析方法.宇航学报. 2007,28(4):1016~1019
    37.范志刚,张亚萍,苑立波等.热环境中的光传输与光学校正仿真.光学技术. 2008,34(2):203~206
    38. Y. P. Zhang, Z. G. Fan. Study on the Optical Path difference of Aero-Optical Window. OPTIK. 2007,118(2):557~560
    39.张亚萍,范志刚,许士文.导弹侧窗中的光传输效应.哈尔滨工业大学学报. 2007,39(9):1462~1465
    40.张亚萍,范志刚.红外末制导中气动光学效应分析.激光与红外. 2006, 6(36): 487~490
    41.谈和平,夏新林,刘林华,阮立明.红外辐射特性与传输数值计算.哈尔滨工业大学出版社, 2006: 194~195
    42.谈和平,夏新林,刘林华,阮立明.红外辐射特性与传输数值计算.哈尔滨工业大学出版社, 2006:157~158
    43.鲍亦令,谈和平,李林,余其铮,唐明.二维半透明介质辐射与导热非稳态复合换热数值计算.哈尔滨工业大学学报, 1993, 25(3): 41-46
    44.谈和平,催国民,阮立明,夏新林,余其铮.地物目标红外热像理论建模中的蒙特卡洛法与并行计算.红外与毫米波学报, 1998,17(6):417-423
    45. C. A. Lindley. Practical Ray Tracing in C. John Wiley& Sons, Inc. 1991: 86~89, 102~115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700