用户名: 密码: 验证码:
一款客车外围流场的空气动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车工业的不断发展和制造技术的快速提高,作为汽车重要分支的大客车的外部造型和气动特性也受到了极大的关注。客车的外围流场使其受到力和力矩的作用,和空气阻力系数密切相关,直接影响着车辆的使用经济性和使用者的运营成本,因此进行大客车外部流场的数值模拟研究具有非常重要的现实意义。
     本文采用理论分析和数值模拟的方法,结合公司“12米长途大客车设计优化”项目,对大客车的外流场空气动力学特性进行了分析。在课题研究过程中,因为考虑到影响客车外围流场的因素较多,各个因素需要研究的水平也较多,如果采用全面试验的方法,要进行36=729种模拟计算。本文应用正交试验设计方法针对前侧弧、前倾度、后顶弧、后侧弧、尾部上翘、前下边缘圆化6个影响因素,选用L18(37)正交试验表确定了本文的模拟计算方案,极大的降低了计算分析工作量。
     为确保计算结果的准确性,首先对Fluent软件的标准k-ε模型计算方法进行验证。因为对于大客车而言,在常用车速下在空气中行驶的雷诺数均落在大雷诺数范围内(大于104),并且与正方体具有一定的相似性,因此本文采用标准k-ε模型计算绕流正方体的阻力,并与经典流体理论的结果进行了对比。两结果误差仅为0.67%,说明了研究计算方法的可行性。
     按照正交试验法确定的模拟计算方案,用Fluent软件对大客车的简化模型进行了模拟计算,对计算结果用极差分析法进行了数据处理,得到了各因素的优化组合。利用散点折线图分析了各因素的改变对空气阻力系数的影响,探讨了空调位置和气动阻力的相互关系。最后综合考虑正交试验表的最佳组合、空调位置和前端突起等因素,确定了优化提升方案,并对优化模型作了模拟分析。
     研究表明:
     ⑴本次应用正交试验法分析得到的最优组合不在实施的部分试验之中,这表明优化结果并只是反映已做的部分试验的信息,而是反映全面试验的信息。直接从部分正交试验中比较实测结果得到的较优组合和正交试验表计算得到的最优方案相差不远,以较优组合作为最优方案也是适宜的。
     ⑵空调位置的变化对阻力系数的影响不大。
     ⑶对车身前部的前侧弧、前端后倾弧和前下缘圆化半径的优化,极大的减小了车头部位的气流分离现象,减少了能量损失,降低了车型前部的正压区,是减小空气阻力系数的重要措施;
     ⑷对后顶弧、后侧弧和尾部上翘等因素的优化,使气流分离在车身后端处减弱,由漩涡所造成的能量损失得到大幅的降低,车身后部的压强得到提升,使整车压差阻力减小,是降低空气阻力系数的另一重要措施;。
     ⑸增加前部突起可进一步降低整车空气阻力系数。
     总之,本文所做的研究工作及其结论对降低大客车的空气阻力系数具有重要的指导意义,对进一步开展产品设计优化具有良好的参考与应用价值。
With the continuous development of the bus industry and improvement of the manufacturing technology, the external shape and aerodynamic characteristics of the big coaches are drew attention more and more. the external flow field around the big vehicles which is closely related to the air resistance coefficient have the coach suffered force and torque, and have a direct impact on bus operating costs, so the Numerical simulation of the external flow field have a practical significance.
     This article connects with the design optimization of 12M coach which is the highlight project of our company and we adopted methods as theory analysis and numerical simulation in this text to carry out the analysis of the Drain Field Dynamics of the coach. During the study, take into account that there are some elements can impact the external flow field, and the different elements has different study level, if we select the comprehensive test method, need to use the 36=729 kinds of the analog computation. So this article selects orthogonal design to study the radii of front side pillar,forward degree,the radii of top pillar and backside Pillar,tilted tail and radii of the bottom Pillar, selected the orthogonal test form to fix the calculation program of this article, so greatly reduce the computational efforts.
     for assuring the exactly of the computing result, firstly, we tested the k-εmodel of Fluent. For the coach, in the normal speed, all the Reynolds number is in the scope of the High Reynolds number (>104), meanwhile, has the similarity with the cube, so this article selects the k-εmodel to calculate the resistance of cube disturbed flow, and compared with results of classic fluid theory, the difference is only 0.67%, this prove that this method has feasibility.
     The program of analog computation according to the Orthogonal test has been used the Fluent to calculate the simplified model of coach and made the range analysis to result using direct analysis. In the end we get the optimal combination of various factors. we analysed the influence on air resistance coefficient because of the various factors changes by using scatter curves and discussed relationships between the air-condition location and the aerodynamic drag. Finally considering the best combination of orthogonal test table, air-condition position and front bulge and other factors, to determine the optimal upgrade program, and made a simulation optimization computing.
     Research shows:
     ⑴The most optimal combination is not in the part implemented experimentation by using the orthogonal test method, which indicates that the optimization results is not simply the part reflection of the information, but rather the comprehensive test information. The more optimum combination of experimental results directly from the orthogonal experiment is similar to the best program and the optimal scheme is also appropriate.
     ⑵Changes in air-condition location has little influence on the drag coefficient.
     ⑶The optimization of the radii of front side pillar、forward degree、the radii of top pillar greatly reduced the flow separation of the front part of the coach, and reduced energy loss and pressure on the front of vehicle area,which is the important measures to reduce the air resistance coefficient.
     ⑷The optimization of the radii of backside Pillar、tilted tail and radii of the bottom Pillar weakened the flow separation in the of the back part of the coach and reduced the energy loss by whirlpool, at the same time the pressure of rear body may be raised, which is the other important measures to reduce the air resistance coefficient.
     ⑸Front bulge can further reduce air resistance coefficient.
     In short, the study and conclusion of this article has the significance to decrease the Air resistance coefficient and the value to further optimization of product design.
引文
[1]傅立敏,汽车空气动力学[M],北京:机械工业出版社,2006
    [2]余志生,汽车理论[M].第4版,北京:机械工业出版社,2006
    [3]喻凡,林逸,汽车系统动力学[M],北京:机械工业出版社,2005
    [4]陈玉明.中国提前成为世界汽车产销第一[EB/OL].(2010-01-18).[2010-08-25]. http://finance.sina.com.cn/roll/20100118/07483186267.shtml
    [5]曹淼.上半年商用车销量统计[EB/OL].( 2010-07-12).[2010-08-25]. http://www.chinabuses.com/buses/2010/0712/article_4480.html
    [6]王延东.我国高速公路通车总里程达6.5万公里[EB/OL].(2010-01-15).[2010-08-25]. http://auto.sina.com.cn/service/2010-01-15/1526559460.shtml
    [7]陈其珏.我国石油对外依存度超过55%石化总产值创新高[EB/OL].(2010-08-11). [2010-08-25].http://finance.qq.com/a/20100811/001417.htm
    [8]除全世,朱家琏,田光宇,先进电动汽车技术[M],北京:化学工业出版社,2007
    [9]Lokhande B , Sovani S , Khalighi B. Transient simulation of the flow field around a generic pickup truck[ C]SAE Paper 2003-01-1313.
    [10]Yang Zhi-gang , Bahram Khalighi. CFD simulations for flow over pickup trucks [C] SAE Paper 2005-01-0547.
    [11]GILLIERON P , NOGER C. Contribution to the analysis of transient aerodynamic effects acting on vehicles [J].SAE Paper,2004-01-1311.
    [12]DAVID A Jones, DAVID B Clark. Simulation of a wing-body junction experiment using the fluent code[J].Defense Scientific and Technology Organization Victoria (Australia) Platform Sciences Lab. IJ of Fluid Mechanics Research, 2005 (6):26-80.
    [13]PATRICK G.,CHRISTOPHE NOGER.Contribution to the analysis of transient aerodynamic effects acting on vehicles[R].SAE technical Paper, 2004-01-1311.
    [14]NOGER C, REGARDIN C, SXECHENYI E.Investigation of the transient aerodynamic phenomena associated with passing manoeuvres[J].Journal of Fluids and Structures, 2005,(21):231-241.
    [15]ZabatM, Frascaroli S, Browand F. DragMeasurements on 2, 3and 4 Car Platoons[C]. SAE Paper 940421.
    [16]Bonnet Christophe, Fritz Hans. Fuel Consump tion Reduction in a Platoon: Experimental Results with Two Electronically Coup led Trucks at Close Spacing[C]. SAE Paper 2000-01-3056.
    [17] Hammache M, Michaellan M, Brwand F. Aerodynamic Forces on TruckModels, Including Two Trucks in Tandem [C].SAE Paper 2002-01-0530.
    [18] Browand Fred, Mcarthur John, Radovich Charles. Fuel Saving Achievied in the Field of Two Tandem Trucks [C]. California PATH research Report UCB-ITS-PRR 2004-20, 2004.
    [19]Hucho Wolf-Heinrih. Aerodynamics of Road Vechicles[M].1987.
    [20]Kambiz Salari. Heavy Vehicle Drag Reduction Devices: Computational Evaluation & Design[R].2006 U.S.Department of Energy Heavy Vehicle Systems Review, 2006, 04.
    [21]Singh S N,RaiL,Puri P,etal. Effect of Moving Surface on the Aerodynamic Drag of Road Vehicles[J].Automobile Engineering,2005:127-134.
    [22]KoikeMasaru, Nagayoshi Tsunehisa, Hamamoto Naoki. Research on Aerodynamic Drag Reduction by Vortex Generators[J].MitsubisiMotors Technical Review,2004:11-16.
    [23]傅立敏,胡兴军,车轮外流场的数值网格生成技术的研究[J].河北科技大学学报,2006,27(1):93-96
    [24]王夫亮,胡兴军,杨博,等,侧风对轿车气动特性影响的稳态和动态数值模拟对比研究[J].汽车工程,2010,36(6):477~481
    [25]傅立敏,扶原放,轿车外流场车轮转动时侧风效应的数值模拟研究[J].公路交通科技,2006,23(2):147-150
    [26]张英朝,李杰,李玉虎,等,轿车会车时气动特性的数值模拟[J].江苏大学学报(自然科学版),2008,29(2):119-122
    [27]胡兴军,张英朝,李胜,等,基于微分雷诺应力湍流模型的车辆气动特性的数值模拟[J].吉林大学学报(工学版),2008,38(3):504-507
    [28]杨永柏,王靖宇,胡兴军,皮卡车外流场的数值模拟[J].吉林大学学报(工学版),2007,37(6):1236-1241
    [29]谷正气,龚旭,贾新建,等,轿车尾随集装箱车外流场计算仿真分析[J].湖南大学学报(自然科学版),2009,36(1):30-34
    [30]谷正气,黄泰明,何忆斌,等,汽车尾随情况下外流场计算仿真分析与研究[J].汽车工程,2008,30(8):696-699
    [31]江涛,谷正气,杨易,等,细分网格在车身流场仿真中的精度效率研究[J].中国机械工程,2009,20(23):2844-2849
    [32]何忆斌,谷正气,吴军,等,三方程在汽车外流场仿真计算中的应用[J].机械工程学报,2008,44(1):184-189
    [33]谷正气,李学武,何忆斌,汽车减阻新方法[J].汽车工程,2008,30(5):441-448
    [34]谷正气,杨滨徽,龚旭,等,会车瞬态气动特性分析与研究[J].湖南大学学报(自然科学版),2010,37(6):27~31
    [35]梁建永,梁军,范士杰,轿车外流场CFD分析中常用k2ε湍流模型的对比[J].汽车工程,2008,30(10):846-852
    [36]周达顺,周超英,基于计算流体动力学的汽车外形数值模拟[J].湖南文理学院学报(自然科学版),2010,22(1):80~84
    [37]李莉,杜广生,刘正刚,等,隧道对超车过程车辆瞬态气动特性的影响[J].水动力学研究与进展,2009,24(5):640-646
    [38]朱晖,杨志刚,DES模型在类车体外流场计算中的对比研究[J].汽车工程,2008,30(9):796-815
    [39]郑智贞,刘湘云,管政,等,某型轿车外流场模拟计算与实验验证[J].测试技术学报,2009,23(3):236-239
    [40]郑智贞,刘湘云,管政,等,汽车前车窗角度对汽车动力性能影响的实验研究[J].中北大学学报(自然科学版),2009 ,30(2):115-117
    [41]陈洪业,王爱玲,郑智贞,不同侧风下的汽车气动特性模拟研究[J].机械管理开发,2010,25(2):81-82
    [42]杜子学,陈振明,移动地面条件下的微型车外流场数值模拟研究[J].华东交通大学学报,2008,25(1):16-19
    [43]张伟,胡树根,宋小文,等,汽车空气阻力系数的数值模拟及研究[J].拖拉机与农用运输车,2007,34(2):35-36
    [44]郑昊,康宁,蓝天,侧风环境下行驶的直背式轿车气动力计算[J].航空动力学报,2007,22(11):1858-1862
    [45]贾海庆,王成玲,汽车流场数值模拟[J].汽车科技,2007,(6):18-20
    [46]曲震,薛澄岐,韩飞听,基于CFD方法的轿车车身外围流场分析[J].电子机械工程,2009,25(1):33-35
    [47]张奇,赵又群,杨国权,基于CFD的汽车外流场数值模拟的发展概述[J].农业装备与车辆工程,2005,总第173期(4 ):8-11
    [48]薛劲橹,张兵志,徐国英,Fluent在汽车气动特性研究中的应用[J].装甲兵工程学院学报,2009,23(3):33-37
    [49]Werner Seibert,Marco Lanfrit. A Best-Practice for High Resolution Aerodynamic Simulation around a Production Car Shape[C].The 4th MIRA International Vehicle Aerodynamics Conference, 2002.
    [50]王瑞金,张凯,王刚,Fluent技术基础与应用实例[M],北京:清华大学出版社,2007
    [51]STAR-CD Methodology Version 3.26 [M].Computational Dynamics Limited , 2005 :11.
    [52]BogdanMarcu,Fred Browand. Aerodynamic Forces Experienced by a3-Vehicle Platoon in a Crosswind[C].SAE Paper 1999-01-1324.
    [53]Guilmineau E, Chometon F. Experimental and Numerical Analysis of the Effect of Side Wind on a Simplified CarModel[C].SAE Paper 2007-01-0108.
    [54]任露泉,试验优化技术[M],北京:机械工业出版社,1987
    [55]Montgomery D C.Design and Analysis of Experiments(Second Edition)[M].New York:John Wiley and Sons,1984
    [56]Taguchi G.Systems of Experimental Design.2Vols[M].New York:UNIPUB,1987
    [57]李永卫,基于特定行车环境的厢式货车空气动力性能的研究[D],济南:山东大学,2009
    [58]杜庆华,工程力学手册[M],北京:高等教育出版社,1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700