用户名: 密码: 验证码:
厚煤层开采煤柱力学响应与蠕变特征数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下开采是目前我国获得矿产资源的重要途径。在深厚煤层开采中,随着工作面的开采完成,采区的工程环境在不断变化,采空区也越来越大,使得采场的稳定性问题更为突出,而煤柱是决定采场稳定性的重要结构单元,对采空区起支撑作用,不但维护着采场顶板及围岩的稳定性,而且稳定的煤柱对煤炭回采率的提高有极大的潜在作用。其中煤柱煤岩体的流变是确定煤柱长期强度的基础,也是评价采场长期稳定的重要依据。本文对厚煤层开采煤岩体的蠕变特征、长期强度、破坏特征,以及煤岩体结构和围压的变化及时间相依性进行了深入系统的研究。具体内容如下:
     (1)在煤柱力学响应方面,系统总结煤柱强度和变形规律的各种基础理论,结合煤柱破坏机理分析,得出煤柱载荷与强度是煤柱稳定性分析的基础。
     (2)通过煤体的流变理论研究,对深厚煤层确定采用改进的Burgers模型—cvisc模型作为煤岩的蠕变模型,初步探讨时间因素对煤柱稳定性的影响。
     (3)以兴隆庄煤矿主采厚煤层3煤为研究对象,采用FLAC~(3D)实现开采过程的数值模拟,直观地揭示覆岩和煤柱的位移场、应力场和屈服区的分布情况,通过煤柱的应力应变规律总结和长期稳定性分析,再现采区覆岩、煤柱的变形破坏过程,同时对煤柱破坏特征进行初步探讨。
     (4)根据蠕变理论分析,建立相应的蠕变模型,结合实验结果确定煤岩体蠕变参数,利用数值模拟得到煤岩体的长期强度指标并进行评价。
     (5)通过对煤柱蠕变特征的分析,选取应力、应变和塑性区为评价指标,对煤柱稳定程度进行定量的分区判别,为煤矿开采和采后维护采场稳定防护重点提供指导和依据。
     事实上,采动岩体的变形、破裂、移动整个动态力学过程完全是一种独具特色的流变学现象,而且当前仍然只是从弹塑性方面分析采场的各种变形,本文通过将煤岩体视为粘塑性介质,利用数值分析得到煤柱保持稳定的必要条件和参数,为采煤塌陷区的长期稳定性分析提供理论性和实际性的指导作用。
The underground mining is an important way to acquire the mineral resources in our country currently. The mining area of the environment is constantly changing, increasingly mined-out area, and the stability of stope is more important with the face of mining completed in the deep coal mining. The coal-pillar is a pivotal stope unit and it supports stope, so, it not only ensures stability of roof beam and wall rock, but also stability coal-pillar increases the mining rate of coal body obviously. Among them, the coal rock body flows is to determine the long-term pillar of strength, is fundamental evaluation of mining an important basis for long-term stability. The paper carried out the research deeply and systematicly on the creep characteristics of the coal rock in the thick seam of coal mining, long-term strength and damage features, and the coal rock structure and confining pressure changes and time dependence. The specific contents are as follows:
     (1) In the coal-pillar mechanical response, summarized the various basic theories of the coal-pillar strength and deformation law, comprehensive analysis the coal-pillar destruction mechanism, getting that the coal-loading and strength is the coal-pillar stabilities analytical foundation.
     (2) Evolution through coal theoretical study, it is determined for the deep coal seam to adopt the improvement Burgers model-cvisc model as the coal-rock creep model. Preliminary study on the time factor to the stability of coal-pillar.
     (3) With the main 3-thick coal seam in Xinglong Coal Mine as the study object, using FLAC~(3D) achieve the numerical simulation of the mining process, keep the view ground announce to public the distribution condition of the cover and coal-pillar, in displacement, stress and knuckling under area. Through summary of stress and strain law of the coal-pillar and analysis of long-term stability, reproduction the process of deformation and damage of the cover rock and coal in mining area, while initially discussing the destroy characteristic of the coal-pillar at the same time.
     (4) According to creep theoretical analysis, build the corresponding creep model, combining the experimental results identified the coal-rock creep parameters. And then using numerical simulation of coal to accept the long-term strength index and evaluate it.
     (5) Through study the creep characteristic of coal-pillar, select the stress, strain and state zone for the evaluation, determine the stability of coal-pillar in distroct, providing guidance and protection bases for coal mining and mining stope stability after maintaining.
     In fact, the deformation of mining rock, breaking, moving entire dynamic mechanical process is one kind of the flowing deformation learning phenomenon having a characteristic alone completely. And be only analyzing the various deformation of stope from elastic-plastic aspect currently still. This paper passes to treat the coal-rock as visco-plasticity, making use of numerical analysis to get necessary conditions and parameters with keeping coal-pillar stability, providing theory and actuality directive function for the long-term stability analysis in subsidence area.
引文
(1)赵纪新,孟祥华.我国的能源结构及能源战略构成探讨[J].煤炭经济研究,2005,(6):11-13
    (2)刘立民.基于GIS的开采损害评价系统与方法研究.山东科技大学博士论文,2000
    (3)徐林生,谷铁耕.大同煤矿坚硬项板控制问题[J].岩石力学与工程学报,1985,(1)
    (4)吴立新.煤岩强度机制及矿压红外探测基础实验研究[M].北京:中国矿业大学出版社,1997
    (5)张清,杜静.岩石力学基础[M].北京:中国铁道出版社,1997
    (6)孟召平,彭苏萍等.不同测压下沉积岩石变形与强度特征[J].煤炭学报,2000,25(1):15-17
    (7)吴立新,王金庄.煤岩流变特性及其微观影响特征初探[J].岩石力学与工程学报,1996,15(4):328-338
    (8)煤炭科学研究院北京开采研究所.煤矿地表移动和覆岩破坏规律及其应用[M].北京:煤炭工业出版社,1983
    (9)王金庄,吴立新.煤柱屈服区宽度计算及其影响因素分析[J].煤炭学报,1985,20(6):625-631
    (10)李东升,李德海,宋常胜.条带煤柱设计中极限平衡理论的修正应用[J].辽宁工程技术大学学报,2003,22(1):7-9
    (11)刘宝琛,张家生.岩石抗压强度的尺寸效应[J].岩石力学与工程学报,1998,17(6):611-614
    (12)陈绍杰,张鑫磊等.不等高试件单轴抗压强度实验[J].矿山压力与顶板管理,2003,(增):97-98
    (13)靳钟铭,宋选民,薛亚东等.顶煤压裂的实验研究[J].煤炭学报,1999,24(1):29-33
    (14)王宏图,鲜学福,贺建民.层状复合煤岩的三轴力学特性研究[J].矿山压力与顶板管理,1999,(1):81-88
    (15)张忠亭,王宏.岩石蠕变特征研究进展概况.长江科学院院报,1996
    (16)陈宗基.根据流变学与地球动力学的观点研究新奥法.岩石力学与工程学报,1995
    (17)龚晓南.高等土力学[M].杭州:浙江大学出版社,1996
    (18)孙钧.岩石流变力学及其工程应用研究的若干进展[J].岩石力学与工程学报,2007,26(6):1081-1106
    (19)王来贵,王建国,何峰等.岩石试件蠕变过程中的反馈特性研究[J].沈阳建筑大学学报,2006,22(5):736-739
    (20)金丰年.考虑时间效应的围岩变形曲线[J].岩石力学与工程学报,1997,16(4)
    (21)徐文熙,徐文灿.粘性流体力学[M].北京:北京理工大学出版社,1989
    (22)彭苏萍.“三软”煤层巷道围岩流变特性实验研究[J].煤炭学报,200l,26(4):465-461
    (23)吴立新,王金庄,孟顺利.煤岩流变模型与地表二次沉陷研究[J].地质力学学报,1997,3(3):29-35
    (24)姚爱军,黄福昌,张宗社.宽厚煤柱煤岩体流变力学特性试验研究[J].中国矿业,2003,12(2):52-55
    (25)胡炳南.条带开采中煤柱稳定性分析[J].煤炭学报,1995,20(2):205-210
    (26)谢和平等.条带煤柱稳定性理论与分析方法研究进展[J].中国矿业,1998,7(5):37-41
    (27)郭广礼,何国清,崔曙光.部分开采老采空区覆岩稳定性分析[J].矿山压力与顶板管理,2003,(3):70-73
    (28)吴立新,王金庄.建(构)筑物下条带开采覆岩移动机理与实践[J].煤矿开采,1998,(6):6-7
    (29)赵国旭,谢和平,马伟民.宽厚煤柱的稳定性研究[J].辽宁工程技术大学学报,2004,23(1)
    (30)吴立新,王金庄等.建(构)筑物下压煤条带开采理论与实践[M].北京:中国矿业大学出版社,1994
    (31)Z.T.Bieniawski:Improved Design of Room-And-Pillar Coal Mines For U.S.Conditions,Stability in Underground Mining,Proc.of 1st Int.Conf.on Stability in Underground Mining,16-18,1982,Vancouver,Canada
    (32)钱鸣高,刘听成主编.矿山压力及其控制[M].北京:煤炭工业出版社(99)
    (33)Wilson A.H,Ashin D.P.Research into the determination off pillar size.The Mining Engineer.1972,(131):409-417
    (34)侯朝炯,马念杰等.煤层巷道两帮煤体应力和极限平衡区的探讨[J].煤炭学报,1989,(3):27-29
    (35)王旭春,黄福昌等.A.H.威尔逊煤柱设计公式探讨与改进[J].煤炭学报,2002,27(6):604-608
    (36)吴立新,王金庄,郭增长.煤柱设计与监测基础[M].中国矿业大学出版社,2001
    (37)范广勤.岩土工程流变力学[M].北京:煤炭工业出版社,1994
    (38)曹树刚,鲜学福.煤岩蠕变损伤特性的实验研究[J].岩石力学与工程学报,2001,20(6):817-821
    (39)李世平.矿山岩石力学简明教程[M].北京:中国矿业大学出版社,1996
    (40)徐秉业.应用弹塑性力学[M].北京:清华大学出版社,1995
    (41)周维垣.高等岩石力学[M].北京:水力电力出版社,1993.6
    (42)邓广哲.裂隙隧道围岩动态损伤特性分析[J].岩石力学与工程学报,2001(4):440-442
    (43)凌贤长,蔡德所.岩体力学[M].哈尔滨工业大学出版社,2002.6
    (44)张传成.开滦吕家坨矿巷道围岩蠕变规律的数值模拟研究[硕士论文].辽宁工程技术大学,2005
    (45)周德培.流变学原理及其在岩土工程中的应用[M].成都:西南交通大学出版社,1995
    (46)蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002
    (47)曹树刚,边金,李鹏.岩石蠕变本构关系及改进的西原正夫模型[J].岩石力学与工程学报,2002,21(6):632-634
    (48)曹文贵,张升,赵明华.基于新型损伤定义的岩石损伤统计本构模型探讨[J].岩土力 学,2006,27(1):41-45
    (49)韦立德,杨春和,徐卫亚.基于细观力学的岩盐蠕变损伤本构模型研究[J].岩石力学与工程学报,2005,24(23):4253-4258
    (50)秦跃平,王林,孙文标等.岩石损伤流变理论模型研究[J].岩石力学与工程学报,2002,21(2):2291-2295
    (51)刘波,韩彦辉(美国).FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005
    (52)徐金海,缪协兴,张晓春等.煤柱稳定性的时间相关性分析[J].煤炭学报,2005,30(4):433-437
    (53)乔志春,夏军武,郭广礼.老采空区上方大型工业建筑抗变形措施研究[J].中国矿业大学学报,1999,28(6):593-596
    (54)郭广礼,缪协兴,张振南等.老采空区破裂岩体变形性质研究[J].科学技术与工程,2002,2(5):44-47
    (55)章梦涛.冲击矿压失稳理论与数值模拟计算[J].岩石力学与工程学报,1987,6(3):197-204
    (56)张玉卓.房柱式采煤法煤柱稳定性研究进展.中国科协第46次青年科学家论坛论文集,北京:中国科学技术出版社,1999
    (57)范广勤.岩土工程流变力学[M].北京:煤炭工业出版社,1994
    (58)周维.高等岩石力学[M].北京:水利电力出版社,1990.6
    (59)姚爱军,王旭春.兖州矿区建筑物下厚煤层安全开采方法关键问题研究报告.2002
    (60)陈炎光,徐永沂.中国采煤方法[M].徐州:中国矿业大学出版社,1991
    (61)吴立新.煤岩强度机制及矿压红外探测基础实验研究[M].北京:中国矿业大学,1997
    (62)陈宗基,康文法.岩石的封闭应力、蠕变和扩容及本构方程[J].岩石力学工程学报,1991,10(3):342-351
    (63)陈绍杰.煤岩强充与变形特征实验研究及其在条带煤柱设计中的应用[硕士论文].山东科技大学学报,2005
    (64)高延法,张庆松.矿山岩体力学[M],徐州:中国矿业大学出版社,2000
    (65)郭文兵,邓喀中,邹友峰等.走向条带煤柱破坏失稳的尖点突变模型[J].岩石力学与工程学报,2004,23(12):1996-2000
    (66)杨伟峰,夏筱红,黄治灿.条带开采煤柱稳定性的试验模拟与数值分析[J].中国煤田地质,2005,17(2):29-31
    (67)田显高,陈慧明,陈松树.采空区稳定性的三维有限元模拟[J].矿业研究与开发,2007,27(1):32-34
    (68)卢兴利,尤春安,孙锋等.断层保护煤柱合理留设的数值模拟分析[J].岩土力学,2006,27(增):239-242
    (69)孙国权,李娟,胡杏保.基于FLAC~(3D)程序的采空区稳定性分析[J].金属矿山,2007,368:29-32
    (70)徐思朋,茅献彪,张东升.煤柱塑性区的弹粘塑性理论分析[J].辽宁工程技术大学学报,2006,25(2):194-196
    [71]FLAC3D Version 3.0.User' s Manuals,Itasca Consulting Group,Inc.Minnesota,USA,2005
    [72]丁秀美,黄润秋,刘光士.FLAC3D前处理程序开发及其工程应用[J].地质灾害与环境保护,2004,15(2):68-70
    [73]饶正宝,王旭春,卢雷.沉陷区建筑物损害GIS可视化评价系统研究.青岛理工大学学报,2005,1
    [74]闫长斌,徐国元.深部巷道失稳的突变理论分析[J].矿山压力与顶板控制,2005,3:9-11
    [75]英国煤炭局.地表沉陷工程师手册(中译本).北京:煤炭工业出版社,1980
    [76]王永秀,齐庆新,陈兵等.煤柱应力分布规律的数值模拟分析[J].煤炭科学技术,2004,32(10):59-62
    [77]余学义.《开采损害学》课程讲义.西安科技大学能源学院采矿工程系,2003
    [78]何学秋,薛二龙,聂百胜等.含瓦斯煤岩流变特性研究[J].辽宁工程技术大学学报,2007,26(2):201-203
    [79]M.M.Singh and Bhatiacharys.Proposed criteria for assessing subsidence damage to renewable resource lands.Mining Engineering.May,1989
    [80]Haber,R.Visualization technique for Engineering Mechanics.Computing System in Engineering,1(1),1990
    [81]A.Kushwaha,G.Banerjee.Exploitation of developed coal mine pillars by shortwall mining a case example[J].International Journal of Rock Mechanics & Mining Sciences 42,2005,127-136
    [82]A.Jaiswal,S.K.Sharma,B.K.Shrivastva.Numerical modeling study of asymmetry in the induced stresss over coal mine pillars with advancement of the goal line[J].International Journal of Rock Mechanics & Mining Sciences 41,2004,859-864
    [83]M.D.G.Salamon,S.Badr,R.Mendoza,M.U.Ozbay.Pillar Failure in Deep Coal Seams:Numerical Simulation La Rupture des Piliers dans les mines outereaines de charbon:Une Simulation Numerique Bruchvehalten von Pfeilem in tiefcn Kohlenflozen:Numerische Simulation[J].ISRM 2003-TECHNOLOGY ROADMAP FOR ROCK MECHANICS
    [84]Xiao,Hong-Fei.Research on coupling laws between EME and stress fieldsduring deformation and fracture of mine tunnel excavation by FLAC3D simulation.Chinese Journal of Rock Mechanics and Engineering,v24,n5,Mar 1,2005,812-817
    [85]Wei,Xue-Yong.Application of FLAC3D in the water prevention and cure of mine.Journal of the China Coal Society,v29,n6,December,2004,704-707
    [86]Michael N.DeMers Fundamentals of Geopraphic Information Systems.电子工业出版社[M],2001,10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700