用户名: 密码: 验证码:
人APOBEC3G抑制乙型肝炎病毒复制的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙型肝炎病毒(Hepatitis B virus, HBV)是一种DNA病毒,能引起急性及慢性肝脏病变,每年有大约100万人死于HBV感染所致的肝功能衰竭、肝硬化和原发性肝细胞癌。肝炎的转归是宿主免疫与HBV体内复制之间进行复杂的相互作用的最终结果,固有免疫是机体抵御病毒感染的第一道防线,发挥重要的抗病毒作用。
     人载脂蛋白B mRNA编辑酶催化多肽样蛋白3G(Apolipoprotein B mRNA editing enzyme catalytic polypeptide 3 protein G,APOBEC3G)是被新发现的固有免疫分子中的一员,有广泛的抗病毒作用。APOBEC3G通过与Gag结合进入艾滋病病毒-1(HIV-1)的病毒颗粒中并在逆转录时使脱氧胞嘧啶脱氨变为脱氧尿嘧啶,从而抑制病毒复制;之后也发现APOBEC3G以非脱氨形式抑制病毒复制。病毒侵染因子(Vif)介导APOBEC3G蛋白泛素化及蛋白酶体降解,使得HIV-1对抗APOBEC3G介导的抗病毒作用。近来有研究者指出APOBEC3G能抑制HBV DNA复制及蛋白表达,但是目前对其抗HBV的作用机制还不是很清楚。
     本研究组建立了APOBEC3G稳定表达细胞株,观察APOBEC3G抑制HBV复制过程中参与的信号通路及细胞因子;我们用荧光能量共振转移(FRET)技术及表面离子共振实验(SPR)检查APOBEC3G与HBV核心抗原(HBc)之间是否有结合,并且观察RNA对它们之间相互作用的关系的影响;同时我们构建APOBEC3G不同突变体,观察它们对HBV复制的抑制作用并研究它们与HBc的关系。因此本研究共分为三个部分。
     第一部分NF-κB参与人APOBEC3G抗HBV过程之中
     研究目的
     证实APOBEC3G能抑制HBV DNA复制和蛋白表达,建立稳定过表达APOBEC3G的细胞株,观察是NF-κB否参与APOBEC3G抗病毒过程中,探讨APOBEC3G抗病毒机制。
     研究方法
     转染APOBEC3G到HepG2细胞以建立稳定过表达APOBEC3G的细胞株,用PCR及western验证细胞株是否构建成功,同时转染pcDNA3.1 (-)-myc-his作为对照;用RT-CES系统实时检测细胞的生长状态;转染pEGFPN-1到构建成功的细胞株中,用流式细胞仪及荧光显微镜检测过表达APOBEC3G是否影响细胞接受外来质粒的能力;转染1.3拷贝的HBV质粒,用荧光定量PCR检测细胞中HBVDNA水平,用放射免疫法检测上清中HBs Ag及HBe Ag的表达量的变化;将pNF-KB-Luc质粒单独或与1.3拷贝的HBV质粒共转染到构建成功的细胞后,检测荧光素酶活性;转染1.3拷贝的HBV质粒到构建成功的细胞后,用含有IKKP抑制剂(IMD-0354)的培养基培养转染,荧光定量PCR测HBV DNA水平的变化;设计引物,用相对荧光定量PCR检测成功构建的细胞株中IL-6、IL-8、IL-1β、IL-1α的水平。
     研究结果
     1.从RNA及蛋白水平证实稳定表达APOBEC3G的HepG2细胞株构建成功;
     2.稳定过表达的APOBEC3G能抑制HBV DNA复制及HBs Ag及HBe Ag的表达;
     3. APOBEC3G不影响HepG2细胞的生长,RT-CES系统实时检测发现过表达APOBEC3G的HepG2细胞的生长状态与对照没有差异;
     4. APOBEC3G不影响HepG2细胞接受其他质粒,流式结果显示过表达APOBEC3G的HepG2细胞的pEGFPN-1的转染效率及荧光强度与对照组没有差异;用荧光显微镜观察得到同样结果;
     5. APOBEC3G能激活NF-κB,如果伴随HBV的感染NF-κB更是被显著激活;
     6.阻断NF-κB的激活能抑制APOBEC3G抗病毒作用,用含有IKKβ抑制剂(IMD-0354)的培养基培养过表达APOBEC3G细胞时,APOBEC3G对HBVDNA的抑制效率只有42%,不加IMD-0354时APOBEC3G对HBV DNA的抑制达到90%;
     7. APOBEC3G能上调IL-6、IL-8及IL在HepG2细胞中的表达;但对IL-1α的表达没有影响;
     研究结论
     1. APOBEC3G能抑制HBV DNA复制及HBs Ag及HBe Ag的表达;
     2. NF-κB参与APOBEC3G对HBV DNA的抑制过程中;
     3. APOBEC3G可能通过激活NF-κB再诱导IL-6、IL-8、IL-1β等炎症因子从而抗病毒。
     第二部分APOBEC3G能直接结合HBV核心抗原
     研究目的
     观察APOBEC3G与HBV核心抗原(HBc)之间的关系,了解它们是直接结合还是需要RNA或其他细胞成分的介导,探讨APOBEC3G抗HBV病毒的作用机制。
     研究方法
     构建pA3G-CFP及pHBc-YFP融合质粒,用激光扫描共聚焦显微镜观察pA3G-CFP和pHBc-YFP在HepG2细胞中的定位;共转染pA3G-CFP及pHBc-YFP到HepG2细胞中,用荧光共振能量转移(FRET)成像,再计算FR值,观察细胞中APOBEC3G是否能结合HBc;构建带有HA标签pA3G-HA及HBc聚集缺陷突变体pHBc-Y132A-HA,表达并纯化APOBEC3G及HBc-Y132A-HA蛋白,用BIAcore3000检测纯的APOBEC3G与HBc-Y132A-HA蛋白是否有相互作用,同时加入HepG2细胞RNA及HepG2.2.15细胞RNA看对它们的结合是否有影响。
     研究结果
     1.成功构建pA3G-CFP、pHBc-YFP、pA3G-HA及pHBc-Y132A-HA等质粒;
     2.用激光扫描共聚焦显微镜观察到APOBEC3G散点状分布在胞浆中,而HBc则在胞浆胞核中均有分布,两个蛋白在胞浆中有共定位;
     3.三通道FRET在FRET通道检测到APOBEC3G-CFP与HBc-YFP之间有FRET信号,FR值与阴性对照组相比有显著差异;同样荧光受体漂白实验也检测到APOBEC3G-CFP与HBc-YFP之间有FRET信号;
     4.成功获得APOBEC3G-HA及HBc-Y132A-HA蛋白,BIAcore3000检测到APOBEC3G-HA与HBc-Y132A-HA之间有SPR信号;
     5.加入HepG2细胞RNA及HepG2.2.15细胞RNA后,APOBEC3G-HA与HBc-Y132A-HA之间的SPR信号没有显著改变。
     研究结论
     1. APOBEC3G与HBc在HepG2细胞中有相互作用;
     2. APOBEC3G能与HBc直接结合,而不依赖与细胞中的其他成分,细胞RNA及病毒RNA对他们的结合没有影响。
     第三部分APOBEC3G不同结构域对HBV的抑制作用及机制研究
     研究目标
     研究APOBEC3G不同结构域对HBV DNA复制的影响,寻找APOBEC3G对HBV作用的功能域;寻找APOBEC3G与HBc的结合域。
     研究方法
     构建APOBEC3G功能域缺失体pCD1、pCD2和活性中心缺失体pDE12,将构建好的质粒分别与1.3拷贝HBV质粒共转到HepG2细胞中,用荧光定量PCR检测它们对HBV DNA的抑制效果;构建pCD1、pCD2、pDE12与CFP的融合质粒pCD1-CFP、pCD2-CFP、pDE12-CFP,将荧光蛋白融合质粒分别转入HepG2细胞中,激光扫描共聚焦显微镜观察CD1、CD2和DE12在细胞中的分布;将pCD1-CFP、pCD2-CFP、pDE12-CFP分别与pHBc-YFP共转到HepG2细胞中,用荧光受体漂白实验观察它们与HBc的关系。
     研究结果
     1.成功构建APOBEC3G功能域缺失体pCD1、pCD2及pDE12及pCD1-CFP、pCD2-CFP、pDE12-CFP;
     2.用激光扫描共聚焦显微镜发现CD1分布在胞浆中,而CD2在胞浆胞核中都有表达,DE12则分布在核周的胞浆中,且CD1和DE12有聚集现象;
     3.CD1和CD2均能显著抑制HBV DNA的复制,且CD2的抑制效果比全长APOBEC3G的抑制效果更显著,两个活性中心都去掉的DE12的抑制作用则相对较弱;
     4.荧光受体漂白实验检测到CD1-CFP、CD2-CFP与HBc-YFP之间都有FRET信号,但是CD2-CFP与HBc-YFP之间的信号比CD1-CFP与HBc-YFP之间的信号弱,且都比全长APOBEC3G与HBc之间的信号弱,DE12-CFP与HBc-YFP之间没有检测到FRET信号。
     研究结论
     1. APOBEC3G的两个功能域都能抑制HBV的复制,这说明APOBEC3G的抑制机制不是单一的;
     2. APOBEC3G的两个功能域都能与HBc结合,但是N端结构是主要结合域。
     全文结论
     1.APOBEC3G能显著抑制HBV DNA的复制及蛋白表达,且NF-κB可能参与APOBEC3G抗HBV过程之中;
     2.APOBEC3G和HBV核心抗原具有相互作用,且不依赖其他细胞蛋白及RNA;
     3.APOBEC3G的两个不同功能域APOBEC3G-CD1和APOBEC3G-CD2均有抑制HBV复制的作用,同时去掉后没有抑制功能,证明活性功能域是主要的作用结构,且说明APOBEC3G的抗病毒机制不是单一的。
Hepatitis B virus (HBV) is a DNA virus that can cause acute and chronic liver disease. The outcome of HBV infection and the degree of liver disease is the result of complicated interactions between the virus and the immune response of the host, the innate immune system is the first defense against virus by a host.
     Apolipoprotein B mRNA editing enzyme catalytic polypeptide 3 protein G (APOBEC3G)is a novel component of the innate immune system, which is a potent inhibitor of infection by a wide range of retroviruses. Early reports have shown that APOBEC3G is packaged into human immunodeficiency virus (HIV-1) virions through binding Gag, which deaminate cytidine bases in single-stranded DNA formed during reverse transcription of the RNA template. Recently, it was reported that APOBEC3G can restrict the replication of HBV and reduce the expression of HBs Ag and HBe Ag, but the exact mechanism of APOBEC3G anti-HBV is unknown.
     In this study, we constructed stable expressing-APOBEC3G cell line, and detected whether NF-κB involved in the process of APOBEC3G-mediated antiviral activity. We used the fluorescence resonance energy transfer (FRET) approach in living cells and surface plasmon resonance (SPR) technology to explore the relationship between APOBEC3G and HBV core protein (HBc). We constructed different mutants of APOBEC3G and investigated the effect of they mediated antiviral activity against HBV in cell cultures. The interaction between the mutants and HBc was also detected.
     This study includes three parts.
     PartⅠHuman APOBEC3G inhibits hepatitis B virus replication and NF-κB involves in the process of antiviral activity
     Objectives
     To clarify that APOBEC3G can suppress the replication of HBV DNA and the expression of HBs Ag and HBe Ag. To construct stable expressing-APOBEC3G cell line, and to detect whether NF-κB involves in the process of APOBEC3G-mediated antiviral activity, to study the mechanism of APOBEC3G anti-HBV.
     Methods
     We transfected the HepG2 cells with APOBEC3G plasmid (pcDNA-APO3G) and pcDNA3.1(-)-myc-his was transfected as control, named HepG2A and HepG2-3.1 cells. To confirm the expression of APOBEC3G in transfected HepG2 cells, RT-PCR and western blotting were carried out. RT-CES system was used to detect the status of the HepG2A and HepG2-3.1 cells. HepG2A and HepG2-3.1 cells were then transfected with GFP-expressing plasmid (pEGFPN-1) respectively. The transfected efficienfy was analyzed by fluorescent microscope and FACS. The HepG2A and HepG2-3.1 cells were transfected with 1.3 copy wild-type HBV genome vector (p1.37). Viral replicative DNA intermediates were analyzed by real-time and the expression of HBsAg and HBeAg was detected via radioimmunoassay. The HepG2A and HepG2-3.1 cells were transfected with pNF-KB-Luc alone, or together with p1.37, luciferase activities were measured. The HepG2A and HepG2-3.1 cells were transfected with p1.37, cells were then incubated with IMD-0354 ((1μM) or without, and HBV DNA level was detected by real time PCR. The expression of IL-6, IL-8, IL-1βand IL-1αwas quantified by real-time RT-PCR in HepG2A and HepG2-3.1 cells.
     Results
     1. A stable APOBEC3G-expressing cell line was successfully established. The 298bp band was brighter in HepG2A cells than that in HepG2 cells. The molecular weight of APOBEC3G was detected about 46KD in HepG2A cells.
     2. The level of HBV DNA and the expression of HBs Ag and HBe Ag were dramatically reduced in HepG2 cells cotransfected with pcDNA-APO3G and p1.37, but the inhibition efficiency was less than that of stable overexpressing APOBEC3G.
     3. The status of the HepG2 cells was not affected by overexpressing APOBEC3G which was monitored by real-time cell electronic sensing system (RT-CES system).
     4. There was no difference in average GFP-positive cell ratio between HepG2-3.1 and HepG2A cells by fluorescent microscope and FACS.
     5. NF-κB was activated by APOBEC3G and this activation was strongly enhanced by co-expression of HBV.
     6. The antiviral effect of APOBEC3G was strongly suppressed after treatment with IMD-0354. A reduction of 90% with HBV DNA was observed in HepG2A, while cells cultured with IMD-0354, a reduction of 42% with HBV DNA was observed.
     7. The levels of IL-6, IL-8, IL-1βwere upregluated by APOBEC3G, but the expression of IL-1αwas not affected.
     Conclusions
     1. APOBEC3G can inhibit the replication of HBV DNA and the expression of HBs Ag and HBe Ag.
     2. NF-κB involves in the process of antiviral activity of APOBEC3G.
     3. APOBEC3G may be through activating NF-κB to induce inflammatory mediators to inhibit the replication of HBV.
     Part II APOBEC3G directly binds hepatitis B virus core protein in cell and cell free systems
     Objectives
     To explore the relationship between APOBEC3G and the HBV core protein (HBc), and examine whether RNA or other cellular protein affects the APOBEC3G-HBc interaction.
     Methods
     APOBEC3G and HBc coding sequence were amplified by PCR, the PCR products were inserted into HindⅢ/Kpnl restriction sites of pECFP-N1 or pEYFP-N1, named pA3G-CFP and pHBc-YFP. Plasmids pA3G-CFP and pHBc-YFP were prepared and transiently cotransfected into HepG2 cells. The localization of the APOBEC3G-CFP and HBc-YFP fusion proteins were detected in cotransfected HepG2 cells by confocal fluorescence microscopy. To determine whether APOBEC3G interacted with HBc in living cells, the FRET approach was used. APOBEC3G with a haemagglutinin (HA) tag at the C-terminus (pA3G-HA) was constructed by cloning APOBEC3G into the HindⅢand EcoRI restriction sites of pcDNA3.1 (+). To construct an assembly defective mutant of HBc, Y132A mutation was completed by using overlap extension PCR. The final PCR products of HBc-Y132A-HA was digested with HindⅢ/EcoRI and inserted into pcDNA3.1 (+), yield pHBc-Y132A-HA. pA3G-HA or pHBc-Y132A-HA was transfected into 293T cells. After 48 hours, cells were harvested and HA-fusion proteins were purified by EZviewa Red Anti-HA Affinity Gel. The purified HBc-Y132A-HA protein was immbolized on CM5 sensor chips, surface plasmon resonance (SPR) measurement was carried out in cell-free condition. To investigate whether RNA affects the A3G-HBc interaction, cellular RNA or virus RNA was added to the APOBEC3G protein solution before flow through the SPR chip.
     Results
     1. Plasmids pA3G-CFP, pHBc-YFP, pA3G-HA and pHBc-Y132A-HA were successfully construced.
     2. Localization of the APOBEC3G-CFP and HBc-YFP fusion proteins were detected in cotransfected HepG2 cells by confocal fluorescence microscopy. Very bright and punctuated APOBEC3G-CFP was observed in the cytoplasm while HBc-YFP was not only distributed evenly in the cytoplasm, but also in the nucleus. In a number of APOBEC3G-CFP and HBc-YFP co-expressing cells, extensive co-localization was observed.
     3. We detected FRET signal between APOBEC3G-CFP and HBc-YFP in FRET tube. We also measured a FRET signal in cytoplasm when APOBEC3G-CFP and HBc-YFP were co-expressed in HepG2 cells.
     4. APOBEC3G-HA and HBc-Y132A-HA proteins were obtained. And there were significant SPR signals generated between the APOBEC3G-HA and HBc-Y132A-HA proteins.
     5. The signal obtained from APOBEC3G-HA and HBc-Y132A-HA was not affected when total RNA of HepG2 or HepG2.2.15 cells was added.
     Conclusions
     1. APOBEC3G can bind to HBc in the cytoplasm of HepG2 cells.
     2. APOBEC3G can bind to HBc in cell free systems, this binding was neither enhanced by the HepG2 cell RNA nor the virus RNA.
     Part III Different domains of APOBEC3G inhibits hepatitis B virus replication
     Objectives
     To investigate the effect of APOBEC3G different domains mediated antiviral activity against HBV in cell cultures and find the binding domain of APOBEC3G to HBc.
     Methods
     N-terminal and C-terminal cytosine deaminase domain expression plasmids and both active sites deficient plasmids were constructed, named as pCD1, pCD2 and pDE12. HepG2 cells were cotransfected with pCD1, pCD2, pDE12 and 1.37. Viral replicative DNA intermediates were analyzed by real-time PCR. Plasmids pCD1-CFP, pCD2-CFP, pDE12-CFP was constructed and transiently transfected into HepG2 cells, respectively. The localization of the fluorescent fusion proteins were detected in transfected HepG2 cells by confocal fluorescence microscopy. pCD1-CFP, pCD2-CFP, pDE12-CFP and pHBc-YFP were cotransfected into HepG2 cells, acceptor photobleaching method was used to detect the relationship between them.
     Results
     1.Plasmids pCD1, pCD2, pDE 12 and pCD 1-CFP, pCD2-CFP and pDE 12-CFP were successfully construced.
     2. Localization of CD1-CFP, CD2-CFP and DE12-CFP fusion proteins were detected in transfected HepG2 cells by confocal fluorescence microscopy. Very bright and punctuated CD1-CFP was observed in the cytoplasm while CD2-CFP was not only distributed evenly in the cytoplasm, but also in the nucleus. DE12-CFP was detected in perinuclear.
     3. The N-terminal or C-terminal cytosine deaminase domain alone could inhibit HBV replication in HepG2 cells. The inhibition efficiency of CD2 was even more than that of APOBEC3G. DE12 has little inhibitory effect to HBV.
     4. Fret signal was obtained between CD1-CFP, CD2-CFP and HBc-YFP respectively, but the signal between CD1-CFP and HBc-YFP was stronger. There was no FRET signal between DE12-CFP and HBc-YFP.
     Conclusions
     1. The N-terminal or C-terminal cytosine deaminase domain alone can inhibit HBV DNA replication.
     2. The N-terminal or C-terminal cytosine deaminase domain can bind to HBc, but the N-terminal domain is the main structure.
     Conclusion of full text
     1.APOBEC3G can inhibit the replication of HBV DNA and the expression of HBs Ag and HBe Ag, and NF-κB may involve in the process of antiviral activity of APOBEC3G.
     2. APOBEC3G can bind to HBc in cell and cell free systems, and APOBEC3G imay be incorporated into HBV viral particles via direct binding with HBc protein.
     3. The N-terminal or C-terminal cytosine deaminase domain alone can inhibit HBV DNA replication, the mechanism of APOBEC3G antiretroviral action is not single.
引文
1. Ganem D, Prince AM. Hepatitis B virus infection-natural history and clinical consequences. N Engl J Med 2004; 350:1118-1129.
    2. Lee WM. Hepatitis B virus infection. N Engl J Med 1997; 337:1733-1745.
    3. Guidotti LG, Rochford R, Chung J, Shapiro M, Purcell R, Chisari FV. Viral clearance without destruction of infected cells during acute HBV infection. Science 1999; 284:825-829.
    4. Hui CK, Lau GK. Immune system and hepatitis B virus infection. J Clin Virol 2005; 34 Suppl 1:S44-48.
    5. Dahari H, Cotler SJ, Layden TJ, Perelson AS. Hepatitis B virus clearance rate estimates. Hepatology 2009;49:1779-1780; author reply 1780-1771.
    6. Arrese E, Basaras M, Blanco S, Ruiz P, Cisterna R. Monitoring of therapy in patients with chronic hepatitis B virus. Eur J Gastroenterol Hepatol 2009.
    7. Jarmuz A, Chester A, Bayliss J, Gisbourne J, Dunham I, Scott J, Navaratnam N. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics 2002; 79:285-296.
    8. Harris RS, Liddament MT. Retroviral restriction by APOBEC proteins. Nat Rev Immunol 2004; 4:868-877.
    9. Beale RC, Petersen-Mahrt SK, Watt IN, Harris RS, Rada C, Neuberger MS. Comparison of the differential context-dependence of DNA deamination by APOBEC enzymes:correlation with mutation spectra in vivo. J Mol Biol 2004; 337:585-596.
    10. Zitzmann N, Block T, Methta A, Rudd P, Burton D, Wilson I, Platt F, et al. Glycosylation:disease targets and therapy. Adv Exp Med Biol 2005; 564:1-2.
    11. Muramatsu M, Sankaranand VS, Anant S, Sugai M, Kinoshita K, Davidson NO, Honjo T. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem 1999; 274:18470-18476.
    12. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 2000; 102:553-563.
    13. Revy P, Muto T, Levy Y, Geissmann F, Plebani A, Sanal O, Catalan N, et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 2000; 102:565-575.
    14. Okazaki IM, Hiai H, Kakazu N, Yamada S, Muramatsu M, Kinoshita K, Honjo T. Constitutive expression of AID leads to tumorigenesis. J Exp Med 2003; 197:1173-1181.
    15. Mikl MC, Watt IN, Lu M, Reik W, Davies SL, Neuberger MS, Rada C. Mice deficient in APOBEC2 and APOBEC3. Mol Cell Biol 2005;25:7270-7277.
    16. Prochnow C, Bransteitter R, Klein MG, Goodman MF, Chen XS. The APOBEC-2 crystal structure and functional implications for the deaminase AID. Nature 2007; 445:447-451.
    17. Koning FA, Newman EN, Kim EY, Kunstman KJ, Wolinsky SM, Malim MH. Defining APOBEC3 expression patterns in human tissues and hematopoietic cell subsets. J Virol 2009;83:9474-9485.
    18. Sheehy AM, Gaddis NC, Choi JD, Malim MH. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 2002; 418:646-650.
    19. Sawyer SL, Emerman M, Malik HS. Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G. PLoS Biol 2004;2:E275.
    20. Alce TM, Popik W. APOBEC3G is incorporated into virus-like particles by a direct interaction with HIV-1 Gag nucleocapsid protein. J Biol Chem 2004;279: 34083-34086.
    21. Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, Trono D. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 2003; 424:99-103.
    22. Fan B, Cen S, Jiang JD. [Advances in the study of molecular mechanism of APOBEC3G anti-HIV-1]. Yao Xue Xue Bao 2008; 43:678-682.
    23. Das AT, Vink M, Berkhout B. Alternative tRNA priming of human immunodeficiency virus type 1 reverse transcription explains sequence variation in the primer-binding site that has been attributed to APOBEC3G activity. J Virol 2005; 79:3179-3181.
    24. Fang L, Landau NR. Analysis of Vif-induced APOBEC3G degradation using an alpha-complementation assay. Virology 2007;359:162-169.
    25. DeHart JL, Bosque A, Harris RS, Planelles V. Human immunodeficiency virus type 1 Vif induces cell cycle delay via recruitment of the same E3 ubiquitin ligase complex that targets APOBEC3 proteins for degradation. J Virol 2008; 82:9265-9272.
    26. Ao Z, Yu Z, Wang L, Zheng Y, Yao X. Vprl4-88-Apobec3G fusion protein is efficiently incorporated into Vif-positive HIV-1 particles and inhibits viral infection. PLoS ONE 2008; 3:e1995.
    27. Takeuchi H, Kao S, Miyagi E, Khan MA, Buckler-White A, Plishka R, Strebel K. Production of infectious SIVagm from human cells requires functional inactivation but not viral exclusion of human APOBEC3G J Biol Chem 2005; 280:375-382.
    28. Douaisi M, Dussart S, Courcoul M, Bessou G, Vigne R, Decroly E. HIV-1 and MLV Gag proteins are sufficient to recruit APOBEC3G into virus-like particles. Biochem Biophys Res Commun 2004;321:566-573.
    29. Aptecar E, Le Corvoisier P, Teiger E, Dupouy P, Vermes E, Sediame S, Hittinger L, et al. Coronary vasomotor response to phenylephrine in heart transplant patients. J Heart Lung Transplant 2006;25:912-920.
    30. Dorrschuck E, Munk C, Tonjes RR. APOBEC3 proteins and porcine endogenous retroviruses. Transplant Proc 2008;40:959-961.
    31. Arriaga ME, Carr J, Li P, Wang B, Saksena NK. Interaction between HIV-1 and APOBEC3 sub-family of proteins. Curr HIV Res 2006;4:401-409.
    32. Wurtzer S, Goubard A, Mammano F, Saragosti S, Lecossier D, Hance AJ, Clavel F. Functional central polypurine tract provides downstream protection of the human immunodeficiency virus type 1 genome from editing by APOBEC3G and APOBEC3B. J Virol 2006; 80:3679-3683.
    33. Bogerd HP, Wiegand HL, Doehle BP, Lueders KK, Cullen BR. APOBEC3A and APOBEC3B are potent inhibitors of LTR-retrotransposon function in human cells. Nucleic Acids Res 2006;34:89-95.
    34. Holmes RK, Koning FA, Bishop KN, Malim MH. APOBEC3F can inhibit the accumulation of HIV-1 reverse transcription products in the absence of hypermutation. Comparisons with APOBEC3G J Biol Chem 2007;282:2587-2595.
    35. Turelli P, Mangeat B, Jost S, Vianin S, Trono D. Inhibition of hepatitis B virus replication by APOBEC3G. Science 2004; 303:1829.
    36. Rosler C, Kock J, Malim MH, Blum HE, von Weizsacker F. Comment on "Inhibition of hepatitis B virus replication by APOBEC3G". Science 2004; 305:1403.
    37. Rosler C, Kock J, Kann M, Malim MH, Blum HE, Baumert TF, von Weizsacker F. APOBEC-mediated interference with hepadnavirus production. Hepatology 2005; 42:301-309.
    38. Nguyen DH, Gummuluru S, Hu J. Deamination-independent inhibition of hepatitis B virus reverse transcription by APOBEC3G. J Virol 2007; 81:4465-4472.
    39. Kock J, Blum HE. Hypermutation of hepatitis B virus genomes by APOBEC3G, APOBEC3C and APOBEC3H. J Gen Virol 2008; 89:1184-1191.
    40. Tanaka Y, Marusawa H, Seno H, Matsumoto Y, Ueda Y, Kodama Y, Endo Y, et al. Anti-viral protein APOBEC3G is induced by interferon-alpha stimulation in human hepatocytes. Biochem Biophys Res Commun 2006; 341:314-319.
    41. Turelli P, Liagre-Quazzola A, Mangeat B, Verp S, Jost S, Trono D. APOBEC3-independent interferon-induced viral clearance in hepatitis B virus transgenic mice. J Virol 2008; 82:6585-6590.
    1. Dienstag JL. Hepatitis B virus Infection. N Engl J Med 2008; 359:1486-1500.
    2. Conticello SG, Thomas CJ, Petersen-Mahrt SK, et al. Evolution of the AID/APOBEC family of polynucleotide (deoxy) cytidine deaminases. Mol Biol Evol 2005; 22: 367-377.
    3. Rogozin IB, Basu MK, Jordan IK, et al. APOBEC4, a new member of the AID/APOBEC family of polynucleotide (deoxy) cytidine deaminases predicted by computational analysis. Cell Cycle 2005; 4:1281-5.
    4. Wedekind JE, Dance GS, Sowden MP, Smith HC. Messenger RNA editing in mammals:new members of the APOBEC family seeking roles in the family business. Trends Genet 2003; 19:207-16.
    5. Sheehy AM, Gaddis NC, Choi JD, Malim MH. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 2002; 418:646-650.
    6. Jarmuz A, Chester A, Bayliss J, et al. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics 2002; 79:285-96.
    7. Dorrschuck E, Munk C, Tonjes RR. APOBEC3 proteins and porcine endogenous retroviruses. Transplant Proc 2008; 40:959-961.
    8. Turelli P, Mangeat B, Jost S, Vianin S, Trono D. Inhibition of hepatitis B virus replication by APOBEC3G. Science 2004; 303:1829.
    9. Rosler C, Kock J, Kann M, et al. APOBEC-mediated interference with hepadnavirus production. Hepatology 2005; 42:301-309.
    10. Nguyen DH, Gummuluru S, Hu J. Deamination-independent inhibition of hepatitis B virus reverse transcription by APOBEC3G. J Virol 2007; 81:4465-72.
    11. Stopak KS, Chiu YL, Kropp J, Grant RM, Greene WC. Distinct patterns of cytokine regulation of APOBEC3G expression and activity in primary lymphocytes, macrophages, and dendritic cells. J Biol Chem 2007; 282:3539-46.
    12. Reddy K, Winkler CA, Werner L, Mlisana K, Abdool Karim SS, Ndung'u T. APOBEC3G expression is dysregulated in primary HIV-1 infection and polymorphic variants influence CD4+ T-cell counts and plasma viral load. AIDS; 24:195-204.
    13. Le Page C, Popescu O, Genin P, et al. Disruption of NF-kappa B signaling and chemokine gene activation by retroviral mediated expression of IKK gamma/NEMO mutants. Virology 2001; 286:422-33.
    14. Lin YC, Hsu EC, Ting LP. Repression of hepatitis B viral gene expression by transcription factor nuclear factor-kappaB. Cell Microbiol 2009; 11:645-60.
    15. Gourzi P, Leonova T, Papavasiliou FN. Viral induction of AID is independent of the interferon and the Toll-like receptor signaling pathways but requires NF-kappaB. J Exp Med 2007; 204:259-65.
    16. Pauli EK, Schmolke M, Hofmann H, et al. High level expression of the anti-retroviral protein APOBEC3G is induced by influenza A virus but does not
    confer antiviral activity. Retrovirology 2009; 6:38.
    17. Guidotti LG, Matzke B, Schaller H, Chisari FV. High-level hepatitis B virus replication in transgenic mice. J Virol 1995; 69:6158-69.
    18. Okazaki IM, Hiai H, Kakazu N, et al. Constitutive expression of AID leads to tumorigenesis. J. Exp. Med 2003; 197:1173-81
    19. Yamanaka S, Balestra ME, Ferrell LD, et al. Apolipoprotein B mRNA-editing protein induces hepatocellular carcinoma and dysplasia in transgenic animals. Proc. Natl. Acad. Sci 1995; 92:8483-87
    20. Tanaka A, Muto S, Konno M, Itai A, Matsuda H. A new IkappaB kinase beta inhibitor prevents human breast cancer progression through negative regulation of cell cycle transition. Cancer Res 2006; 66:419-26.
    21. Bonvin M, Achermann F, Greeve I, et al. Interferon-inducible expression of APOBEC3 editing enzymes in human hepatocytes and inhibition of hepatitis B virus replication. Hepatology 2006; 43:1364-74.
    22. Mozer-Lisewska I, Kaczmarek M, Zeromski J. The role of NF-kappaB transcription factor in chronic viral hepatitis C and B. Postepy Biochem 2006; 52: 56-61.
    23. Bose S, Kar N, Maitra R, et al. Temporal activation of NF-kappaB regulates an interferon-independent innate antiviral response against cytoplasmic RNA viruses. Proc Natl Acad Sci 2003; 100:10890-5.
    24. Apte RN, Dotan S, Elkabets M, et al. The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metastasis Rev 2006; 25:387-408.
    25. Azzolina A, Bongiovanni A and Lampiasi N. Substance P induces TNF-alpha and IL-6 production through NF kappa B in peritoneal mast cells. Biochim Biophys Acta 2003; 1643:75-83.
    26. Hosel M, Quasdorff M, Wiegmann K, et al. Not interferon, but interleukin-6 controls early gene expression in hepatitis B virus infection. Hepatology 2009; 50: 1773-82.
    1. J.H. Kao, D.S. Chen, Global control of hepatitis B virus infection, Lancet Infect Dis. 2002; 2:395-403.
    2. Koh HJ, Kim SD, Choi JH, et al. A study of immune response to hepatitis B vaccine & HBV DNA in isolated anti-HBc positive subjects. J Prev Med Public Health 2005; 38:170-174.
    3.T.F. Baumert, C. Rosler, M.H. Malim, et al. Hepatitis B virus DNA is subject to extensive editing by the human deaminase APOBEC3C. Hepatology 2007; 46: 682-689.
    4. Seppen J. Unedited inhibition of HBV replication by APOBEC3G. J Hepatol 2004; 41:1068-1069.
    5. Henry M, Guetard D, Suspene R, et al. Genetic editing of HBV DNA by monodomain human APOBEC3 cytidine deaminases and the recombinant nature of APOBEC3G. PLoS One 2009; 4:e4277.
    6. T.M. Alce, and W. Popik. APOBEC3G is incorporated into virus-like particles by a direct interaction with HIV-1 Gag nucleocapsid protein, J. Biol. Chem 2004; 279:34083-34086.
    7. M. Douaisi, S. Dussart, M. Courcoul, et al, HIV-1 and MLV Gag proteins are sufficient to recruit APOBEC3G into virus-like particles, Biochem. Biophys. Res. Commun 2004; 321:566-573.
    8. D.H. Nguyen, S. Gummuluru, and J. Hu, Deamination-independent inhibition of hepatitis B virus reverse transcription by APOBEC3G, J.Virol 2007; 81:4465-4472.
    9. Nowarski R, Britan-Rosich E, Shiloach T, Kotler M. Hypermutation by intersegmental transfer of APOBEC3G cytidine deaminase. Nat Struct Mol Biol 2008; 15:1059-1066.
    10. Y. Gao, S.S. Liu, S. Qiu, et al, Fluorescence resonance energy transfer analysis of subunit assembly of the ASIC channel, Biochem. Biophys. Res. Commun 2007; 359: 143-150.
    11. C.L.Takanishi, E.A. Bykova, W. Cheng, and J. Zheng, GFP-based FRET analysis in live cells, Brain Res 2006; 1091:132-139.
    12. Katsamba, P.S., Myszka, D.G., and Laird-Offringa, I.A. Two functionally distinct steps mediate high affinity binding of U1A protein to U1 hairpin II RNA. J. Biol. Chem 2001; 276:21476-21481.
    13. R.L. Rich, D.G. Myszka, Higher-throughput, label-free, real-time molecular interaction analysis, Anal. Biochem 2007; 361:1-6
    14. Sells, M.A., M.L. Chen, and G Acs., Production of hepatitis B virus particles in HepG2 cells transfected with cloned hepatitis B virus DNA.Proc Natl Acad Sci U S A 1987; 84 (4):1005-1009.
    15. Gordon, G.W., Berry, G., Liang, X.H., Levine, B. and Herman, B. Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys J 1998; 74(5):2702-2713.
    16. Ning, B. and Shih, C. Nucleolar localization of human hepatitis B virus capsid protein. J. Virol.,2004; 78(24),:13653-13668.
    17. Wichroski, M.J., Robb, G.B. and Rana, T.M. Human retroviral host restriction factors APOBEC3G and APOBEC3F localize to mRNA processing bodies. PLoS Pathog 2006; 2(5), e41.
    18. Erickson, M.G., Alseikhan, B.A., Peterson, B.Z. and Yue, D.T. Preassociation of calmodulin with voltage-gated Ca(2+) channels revealed by FRET in single living cells. Neuron 2001; 31(6):973-985.
    19. Bourne, C.R., Katen, S.P., Fulz, M.R., Packianathan, C. and Zlotnick, A. A Mutant Hepatitis B Virus Core Protein Mimics Inhibitors of Icosahedral Capsid Self-Assembly (dagger). Biochemistry 2009; 48:1736-1742.
    20. Cen S, Guo F, Niu M, Saadatmand J, Deflassieux J, Kleiman L. The interaction between HIV-1 Gag and APOBEC3G. J Biol Chem2004; 279:33177-33184.
    21. Noguchi C, Hiraga N, Mori N, Tsuge M, Imamura M, Takahashi S, Fujimoto Y, et al. Dual effect of APOBEC3G on Hepatitis B virus. J Gen Virol 2007; 88:432-440.
    22. Wang T, Tian C, Zhang W, Luo K, Sarkis PT, Yu L, Liu B, et al.7SL RNA mediates virion packaging of the antiviral cytidine deaminase APOBEC3G. J Virol 2007;81:13112-13124.
    23. Khan MA, Goila-Gaur R, Opi S, Miyagi E, Takeuchi H, Kao S, Strebel K. Analysis of the contribution of cellular and viral RNA to the packaging of APOBEC3G into HIV-1 virions. Retrovirology 2007; 4:48.
    24. Kozak SL, Marin M, Rose KM, Bystrom C, Kabat D. The anti-HIV-1 editing enzyme APOBEC3G binds HIV-1 RNA and messenger RNAs that shuttle between polysomes and stress granules. J Biol Chem 2006; 281:29105-29119.
    25. Friew YN, Boyko V, Hu WS, Pathak VK. Intracellular interactions between APOBEC3G, RNA, and HIV-1 Gag:APOBEC3G multimerization is dependent on its association with RNA. Retrovirology 2009; 6:56.
    26. H.J. Schlicht, R. Bartenschlager, and H. Schaller, The duck hepatitis B virus core protein contains a highly phosphorylated C terminus that is essential for replication but not for RNA packaging, J. Virol 1989; 63:2995-3000.
    27. M. Nassal, The arginine-rich domain of the hepatitis B virus core protein is required for pregenome encapsidation and productive viral positive-strand DNA synthesis but not for virus assembly, J. Virol 1992; 66:4107-4116.
    1. Conticello SG, Thomas CJ, Petersen-Mahrt SK, Neuberger MS. Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases. Mol Biol Evol 2005; 22:367-377.
    2. Harris RS, Liddament MT. Retroviral restriction by APOBEC proteins. Nat Rev Immunol 2004; 4:868-877.
    3. Navarro F, Bollman B, Chen H, Konig R, Yu Q, Chiles K, Landau NR. Complementary function of the two catalytic domains of APOBEC3G. Virology 2005; 333:374-386.
    4. Chen KM, Martemyanova N, Lu Y, Shindo K, Matsuo H, Harris RS. Extensive mutagenesis experiments corroborate a structural model for the DNA deaminase domain of APOBEC3G. FEBS Lett 2007; 581:4761-4766.
    5. Hache G, Liddament MT, Harris RS. The retroviral hypermutation specificity of APOBEC3F and APOBEC3G is governed by the C-terminal DNA cytosine deaminase domain. J Biol Chem 2005; 280:10920-10924.
    6.Mariani R, Chen D, Schrofelbauer B, Navarro F, Konig R, Bollman B, Munk C, et al. Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell 2003; 114:21-31.
    7. Iwatani Y, Takeuchi H, Strebel K, Levin JG. Biochemical activities of highly purified, catalytically active human APOBEC3G:correlation with antiviral effect. J Virol 2006; 80:5992-6002
    8. Carpenter MA, Rajagurubandara E, Wijesinghe P, Bhagwat AS. Determinants of sequence-specificity within human AID and APOBEC3G. DNA Repair (Amst).
    9. Turelli P, Mangeat B, Jost S, Vianin S, Trono D. Inhibition of hepatitis B virus replication by APOBEC3G. Science 2004; 303:1829.
    10. Miyagi E, Opi S, Takeuchi H, Khan M, Goila-Gaur R, Kao S, Strebel K. Enzymatically active APOBEC3G is required for efficient inhibition of human immunodeficiency virus type 1. J Virol 2007; 81:13346-13353.
    11. Alce TM, Popik W. APOBEC3G is incorporated into virus-like particles by a direct interaction with HIV-1 Gag nucleocapsid protein. J Biol Chem 2004 279:34083-34086.
    12. Schafer A, Bogerd HP, Cullen BR. Specific packaging of APOBEC3G into HIV-1 virions is mediated by the nucleocapsid domain of the gag polyprotein precursor. Virology 2004; 328:163-168.
    13. Nguyen DH, Hu J. Reverse transcriptase-and RNA packaging signal-dependent incorporation of APOBEC3G into hepatitis B virus nucleocapsids. J Virol 2008; 82:6852-6861.
    14. Bennett RP, Salter JD, Liu X, Wedekind JE, Smith HC. APOBEC3G subunits self-associate via the C-terminal deaminase domain. J Biol Chem 2008.
    15. Nguyen DH, Gummuluru S, Hu J. Deamination-independent inhibition of hepatitis B virus reverse transcription by APOBEC3G. J Virol 2007; 81:4465-4472.
    16. Rausch JW, Chelico L, Goodman MF, Le Grice SF. Dissecting APOBEC3G substrate specificity by nucleoside analog interference. J Biol Chem 2009; 284:7047-7058.
    17. Chen KM, Harjes E, Gross PJ, Fahmy A, Lu Y, Shindo K, Harris RS, et al. Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G. Nature 2008; 452:116-119.
    18. Cen S, Guo F, Niu M, Saadatmand J, Deflassieux J, Kleiman L. The interaction between HIV-1 Gag and APOBEC3G. J Biol Chem 2004; 279:33177-33184.
    1. Jarmuz A, Chester A, Bayliss J, et al. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics 2002; 79:285-296.
    2. Sova P, Volsky DJ. Efficiency of viralDNAsynthesis during infection of permissive and nonpermissive cells with vif-negative human immunodeficiency virus type 1.J. Virol.1993; 67:6322-26
    3. Gabuzda DH, Lawrence K, Langhoff E, et al. Role of vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes.J. Virol 1992; 66:6489-95
    4. von Schwedler U, Song J, Aiken C, Trono D. Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. J. Virol 1993; 67:4945-55
    5. Wedekind JE, Dance GS, Sowden MP, Smith HC. Messenger RNA editing in mammals:new members of the APOBEC family seeking roles in the family business. Trends Genet 2003; 19:207-216.
    6. Prochnow C, Bransteitter R, Klein MG, Goodman MF, Chen XS. The APOBEC-2 crystal structure and functional implications for the deaminase AID. Nature 2007; 445:447-451.
    7. Holden LG, Prochnow C, Chang YP, et al. Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature 2008; 456:121-124.
    8. Chiu YL, Greene WC. APOBEC3G:an intracellular centurion. Philos Trans R Soc Lond B Biol Sci 2009; 364:689-703.
    9. Yang YS, Li L, Li ZL, Zeng Y. Subcellular localization of APOBEC3G by confocal laser scanning microscope (CLSM). Bing Du Xue Bao 2007;23:16-21.
    10. Bennett RP, Salter JD, Liu X, Wedekind JE, Smith HC. APOBEC3G subunits self-associate via the C-terminal deaminase domain. J Biol Chem 2008; 283:33329-33336.
    11. Rausch JW, Chelico L, Goodman MF, Le Grice SF. Dissecting APOBEC3G substrate specificity by nucleoside analog interference. J Biol Chem 2009; 284:7047-7058.
    12. Opi S, Takeuchi H, Kao S, et al. Monomeric APOBEC3G is catalytically active and has antiviral activity. J Virol 2006; 80:4673-4682.
    13. Narvaiza I, Linfesty DC, Greener BN, et al. Deaminase-independent inhibition of parvoviruses by the APOBEC3A cytidine deaminase. PLoS Pathog 2009; 5:e1000439.
    14. Rose KM, Marin M, Kozak SL, Kabat D. Regulated production and anti-HIV type 1 activities of cytidine deaminases APOBEC3B,3F, and 3G. AIDS Res Hum Retroviruses 2005; 21:611-619.
    15. Beale RC, Petersen-Mahrt SK, Watt IN, et al. Comparison of the differential context-dependence of DNA deamination by APOBEC enzymes:correlation with mutation spectra in vivo. J Mol Biol 2004; 337:585-596.
    16. Stopak KS, Chiu YL, Kropp J, Grant RM, Greene WC. Distinct patterns of cytokine regulation of APOBEC3G expression and activity in primary lymphocytes, macrophages, and dendritic cells. J Biol Chem 2007; 282:3539-46.
    17. Reddy K, Winkler CA, Werner L, et al. APOBEC3G expression is dysregulated in primary HIV-1 infection and polymorphic variants influence CD4+ T-cell counts and plasma viral load. AIDS; 24:195-204.
    18. Chiu YL, Soros VB, Kreisberg JF, et al. Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells. Nature 2005; 435:108-114.
    19. Stopak KS, Chiu YL, Kropp J, Grant RM, Greene WC. Distinct patterns of cytokine regulation of APOBEC3G expression and activity in primary lymphocytes,macrophages, and dendritic cells. J. Biol. Chem.2007; 282:3539-46
    20. Komohara Y, Yano H, Shichijo S, et al. High expression of APOBEC3G in patients infected with hepatitis C virus. J Mol Histol 2006; 37:327-332.
    21. Stopak K, de Noronha C, Yonemoto W, Greene WC. HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol Cell 2003; 12:591-601.
    22. Dang Y, Siew LM, Zheng YH. APOBEC3G is degraded by the proteasomal pathway in a Vif-dependent manner without being polyubiquitylated. J Biol Chem 2008; 283:13124-13131.
    23. Sheehy AM, Gaddis NC, Malim MH. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med 2003; 9:1404-1407.
    24. Mercenne G, Bernacchi S, Richer D, et al. HIV-1 Vif binds to APOBEC3G mRNA and inhibits its translation. Nucleic Acids Res; 38:633-646.
    25. Lochelt M, Romen F, Bastone P, et al. The antiretroviral activity of APOBEC3 is inhibited by the foamy virus accessory Bet protein. Proc.Natl. Acad. Sci. USA 2005; 102:7982-87
    26. Delebecque F, Suspene R, Calattini S, et al. Restriction of foamy viruses by APOBEC cytidine deaminases. J. Virol.2006; 80:605-14
    27.Schrofelbauer B, Chen D, Landau NR. A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif). Proc Natl Acad Sci U S A 2004; 101:3927-3932.
    28. Marin M, Rose KM, Kozak SL, Kabat D. HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nat. Med 2003; 9:1398-403
    29. Mehle A, Strack B, Ancuta P, et al. Vif overcomes the innate antiviral activity of APOBEC3G by promoting its degradation in the ubiquitinproteasome pathway. J. Biol. Chem.2004; 279:7792-98
    30. Opi S, Kao S, Goila-Gaur R, et al. Human immunodeficiency virus type 1 Vif inhibits packaging and antiviral activity of a degradation-resistant APOBEC3G variant. J. Virol.2007; 81:8236-46
    31. Fujita M, Sakurai A, Yoshida A, et al. Amino acid residues 88 and 89 in the central hydrophilic region of human immunodeficiency virus type 1 Vif are critical for viral infectivity by enhancing the steady-state expression of Vif. J. Virol.2003; 77:1626-32
    32. Jarmuz A, Chester A, Bayliss J, et al. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics 2002; 79:285-96.
    33. Dorrschuck E, Munk C, Tonjes RR. APOBEC3 proteins and porcine endogenous retroviruses. Transplant Proc 2008; 40:959-961.
    34. Turelli P, Mangeat B, Jost S, Vianin S, Trono D. Inhibition of hepatitis B virus replication by APOBEC3G. Science 2004; 303:1829.
    35. Dutko JA, Kenny AE, Gamache ER, Curcio MJ. 5' to 3' mRNA decay factors colocalize with Tyl Gag and human APOBEC3G and promote Tyl retrotransposition. J Virol.2010; 84(10):5052-66.
    36. Douaisi M, Dussart S, Courcoul M, Bessou G, Vigne R, Decroly E. HIV-1 and MLV Gag proteins are sufficient to recruit APOBEC3G into virus-like particles. Biochem Biophys Res Commun 2004; 321:566-573.
    37. Friew YN, Boyko V, Hu WS, Pathak VK. Intracellular interactions between APOBEC3G, RNA, and HIV-1 Gag:APOBEC3G multimerization is dependent on its association with RNA. Retrovirology.2009; 6:56.
    38. Kozak SL, Marin M, Rose KM, Bystrom C, Kabat D. The anti-HIV-1 editing enzyme APOBEC3G binds HIV-1 RNA and messenger RNAs that shuttle between polysomes and stress granules. J Biol Chem 2006; 281:29105-29119.
    39. Burnett A, Spearman P. APOBEC3G multimers are recruited to the plasma membrane for packaging into human immunodeficiency virus type 1 virus-like particles in an RNA-dependent process requiring the NC basic linker. J Virol 2007; 81:5000-5013.
    40. Bach D, Peddi S, Mangeat B, Lakkaraju A, Strub K, Trono D. Characterization of APOBEC3G binding to 7SL RNA. Retrovirology 2008; 5:54.
    41. Khan MA, Kao S, Miyagi E, et al. Viral RNA is required for the association of APOBEC3G with human immunodeficiency virus type 1 nucleoprotein complexes. J Virol 2005; 79:5870-5874.
    42. Soros VB, Yonemoto W, Greene WC. Newly synthesized APOBEC3G is incorporated into HIV virions, inhibited by HIV RNA, and subsequently activated by RNase H. PLoS Pathog 2007;3:e15.
    43. Chen KM, Martemyanova N, Lu Y, et al. Extensive mutagenesis experiments corroborate a structural model for the DNA deaminase domain of APOBEC3G. FEBS Lett 2007; 581:4761-4766.
    44. Bulliard Y, Turelli P, Rohrig UF, et al. Functional analysis and structural modeling of human APOBEC3G reveal the role of evolutionarily conserved elements in the inhibition of human immunodeficiency virus type 1 infection and Alu transposition. J Virol 2009; 83:12611-12621.
    45. Das AT, Vink M, Berkhout B. Alternative tRNA priming of human immunodeficiency virus type 1 reverse transcription explains sequence variation in the primer-binding site that has been attributed to APOBEC3G activity. J Virol 2005; 79:3179-3181.
    46. Sasada A, Takaori-Kondo A, Shirakawa K, et al. APOBEC3G targets human T-cell leukemia virus type 1. Retrovirology,2005; 2:32
    47. Mahieux R, Suspene R, Delebecque F, et al. Extensive editing of a small fraction of human T-cell leukemia virus type 1 genomes by four APOBEC3 cytidine deaminases. J. Gen. Virol.2005; 86:2489-94
    48. Turelli P, Mangeat B, Jost S, Vianin S, Trono D. Inhibition of hepatitis B virus replication by APOBEC3G. Science 2004; 303:1829
    49. Rosler C, Kock J, Malim MH, Blum HE, von Weizsacker F. Comment on "Inhibition of hepatitis B virus replication by APOBEC3G." Science 2004; 305:1403
    50. Suspene R, Guetard D, Henry M, et al. Extensive editing of both hepatitis B virus DNA strands by APOBEC3 cytidine deaminases in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2005; 102:8321-26
    51. Suspene R, Guetard D, Henry M, et al. Extensive editing of both hepatitis B virus DNA strands by APOBEC3 cytidine deaminases in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2005; 102:8321-26
    52. Eckstein DA, Penn ML, Korin YD, et al. HIV-1 actively replicates in naive CD4+ T cells residing within human lymphoid tissues.Immunity 2001; 15:671-82
    53. Korin YD, Zack JA. Progression to the G1b phase of the cell cycle is required for completion of human immunodeficiency virus type 1 reverse transcription in T cells.J. Virol.1998; 72:3161-68
    54.Ellery PJ, Tippett E, Chiu YL, et al. The CD16+ monocyte subset is more permissive to infection and preferentially harbors HIV-1 in vivo. J. Immunol 2007; 178:6581-89
    55. Pion M, Granelli-Piperno A, Mangeat B, et al. APOBEC3G/3F mediates intrinsic resistance of monocyte-derived dendritic cells to HIV-1 infection. J. Exp. Med.2006; 203:2887-93
    56. Kozak SL, Marin M, Rose KM, Bystrom C, Kabat D. The anti-HIV-1 editing enzyme APOBEC3G binds HIV-1 RNA and messenger RNAs that shuttle between polysomes and stress granules. J. Biol. Chem 2006; 281:29105-19
    57. Nguyen DH, Gummuluru S, Hu J. Deamination-independent inhibition of hepatitis B virus reverse transcription by APOBEC3G. J Virol 2007; 81:4465-4472.
    58. Kock J, Blum HE. Hypermutation of hepatitis B virus genomes by APOBEC3G, APOBEC3C and APOBEC3H. J Gen Virol 2008; 89:1184-1191.
    59. Tanaka Y, Marusawa H, Seno H, et al. Anti-viral protein APOBEC3G is induced by interferon-alpha stimulation in human hepatocytes. Biochem Biophys Res Commun 2006; 341:314-319.
    60. Jost, S., Turelli, P., Mangeat, B., et al. Induction of antiviral cytidine deaminases does not explain the inhibition of hepatitis B virus replication by interferons. J Virol 2007; 81(19):10588-10596.
    61. Harris RS, Liddament MT. Retro viral restriction by APOBEC proteins. Nat Rev Immunol 2004; 4:868-877.
    62. Rogozin IB, Basu MK, Jordan IK, Pavlov YI, Koonin EV. APOBEC4, a new member of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases predicted by computational analysis. Cell Cycle 2005;4:1281-85
    63. OhAinle M, Kerns JA, Malik HS, Emerman M. Adaptive evolution and antiviral activity of the conserved mammalian cytidine deaminase APOBEC3H. J. Virol 2006; 80:3853-62
    64. Espinosa R III, Funahashi T, Hadjiagapiou C, Le Beau MM, Davidson NO. Assignment of the gene encoding the human apolipoprotein B mRNA editing enzyme (APOBEC1) to chromosome 12p13.1. Genomics 1994; 24:414-15
    65. Yamanaka S, Balestra ME, Ferrell LD, et al. Apolipoprotein B mRNA-editing protein induces hepatocellular carcinoma and dysplasia in transgenic animals. Proc. Natl. Acad. Sci. USA 1995; 92:8483-87
    66. Muto T, Muramatsu M, Taniwaki M, Kinoshita K, Honjo T. Isolation, tissue distribution, and chromosomal localization of the human activation-induced cytidine deaminase (AID) gene. Genomics 2000; 68:85-88
    67. Revy P, Muto T, Levy Y, et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 2000; 102:565-75
    68. Okazaki IM, Hiai H, Kakazu N, et al. Constitutive expression of AID leads to tumorigenesis. J. Exp. Med 2003; 197:1173-81
    69. Conticello SG, Thomas CJ, Petersen-Mahrt SK, Neuberger MS. Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases. Mol. Biol. Evol 2005;22:367-77
    70. Chen H, Lilley CE, Yu Q, et al. APOBEC3A is a potent inhibitor of adeno-associated virus and retrotransposons. Curr Biol 2006; 16:480-485.
    71.Doehle BP, Schafer A, Cullen BR. Human APOBEC3B is a potent inhibitor of HIV-1 infectivity and is resistant to HIV-1 Vif. Virology 2005; 339:281-288.
    72. Zhang W, Zhang X, Tian C, et al. Cytidine deaminase APOBEC3B interacts with heterogeneous nuclear ribonucleoprotein K and suppresses hepatitis B virus expression. Cell Microbiol 2008; 10:112-121.
    73. Bogerd HP, Wiegand HL, Doehle BP, Cullen BR. The intrinsic antiretroviral factor APOBEC3B contains two enzymatically active cytidine deaminase domains. Virology 2007;364:486-493.
    74. Zheng YH, Irwin D, Kurosu T, et al. Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication. J Virol 2004; 78:6073-6076.
    75. Russell RA, Pathak VK. Identification of two distinct human immunodeficiency virus type 1 Vif determinants critical for interactions with human APOBEC3G and APOBEC3F. J Virol 2007; 81:8201-8210.
    76. Russell RA, Smith J, Barr R, Bhattacharyya D, Pathak VK. Distinct domains within APOBEC3G and APOBEC3F interact with separate regions of human immunodeficiency virus type 1 Vif. J Virol 2009; 83:1992-2003.
    77. Wichroski MJ, Robb GB, Rana TM. Human retroviral host restriction factors APOBEC3G and APOBEC3F localize to mRNA processing bodies. PLoS Pathog 2006;2:e41.
    78. Dang Y, Wang X, Esselman WJ, Zheng YH. Identification of APOBEC3DE as another antiretroviral factor from the human APOBEC family. J Virol 2006; 80:10522-10533.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700