用户名: 密码: 验证码:
尿激酶型纤溶酶原激活物受体(uPAR)与易损斑块的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景冠状动脉内不稳定粥样斑块,即易损斑块的纤维帽破裂、局部血栓形成是引起急性冠脉综合征(ACS)的主要发病机制。目前关于易损斑块形成的机理尚未完全阐明,多数学者认为斑块纤维帽的破裂是由于纤维帽细胞外基质(ECM)降解多于合成的结果。尿激酶型纤溶酶激活物受体(uPAR)是一种细胞膜糖蛋白受体,当与尿激酶纤溶酶激活物结合后参与多种细胞外基质的降解。基质金属蛋白酶-9(MMP-9)是另一种与细胞外基质降解相关的物质,它与uPAR激活之间是否存在关系值得研究。
     目的本研究旨在研究uPAR和MMP-9在易损斑块形成中的联系,并探索能否用uPAR表达状况来预测易损斑块。
     方法动物实验:小鼠粥样斑块通过免疫组化方法,观察uPAR和MMP-9在斑块中的分布,探索二者有无联系;临床试验:收集急性冠脉综合症、稳定性心绞痛、高脂血症和体检正常四组人群,通过流式细胞仪检测外周血单核细胞上uPAR表达,观察其在四组人群的差异;对于ACS组人群,连续测定经皮冠脉介入(PCI)术前、后外周血中uPAR水平,观察其变化情况。
     结果动物实验:uPAR在各期斑块中均有表达,但晚期易损斑块表达量明显增加,尤其在脂质池、斑块肩部、和破裂部位均有表达;MMP-9在早期斑块中基本不表达,而在中、晚期斑块则表达增加,且分布位置与uPAR一致。临床试验:1、ACS组术前外周血uPAR水平,显著高于其余三组;体检正常组显著低于其余三组;稳定型心绞痛组与高脂血症组没有明显差异;2、血脂升高的程度与外周血uPAR水平呈明显正相关;3、ACS患者PCI术后前3天外周血uPAR水平均较术前升高,3天以后,外周血uPAR水平逐渐降低。4、通过流式细胞检测发现,ACS患者外周血单核细胞体积和颗粒度均偏大者,其表达uPAR的荧光强度高于细胞体积和颗粒度均偏小者。
     结论uPAR在粥样硬化早期发生中开始起作用,uPAR与MMP-9可能共同参与了易损斑块的形成。uPAR可能作为冠心病临床不稳定的指标之一。
Background Acute coronary syndrome (ACS) is mainly caused by the fibrous cap rupture of vulnerable plaque and then local thrombosis. Recently, the mechanism of the formation of vulnerable plaque has not yet fully understood. Most researchers believe that rupture of the fibrous cap is due to extracellular matrix (ECM) more degradation than synthesis. Urokinase plasminogen activator receptor (uPAR), a cellular membrane glycoprotein receptor, participates in a variety of extracellular matrix degradation, after combined with urokinase plasminogen activator(uPA). Matrix metalloproteinase-9(MMP-9) is another protease associated with extracellular matrix degradation, it's not clear the relationship between MMP-9and uPAR, which is the target of our research。
     Objectives The purpose was to study the relationship between uPAR and MMP-9during the formation of vulnerable plaque and to explore whether using of the level of uPAR of monocytes in peripheral vessels to predict the vulnerable plaque.
     Methods Animal experiment:immunohistochemistry was employed to detect the expression of uPAR as well as its association with MMP-9in different types of plaque, using the mice model of atherogenesis. Clinical Trials: Clinically acute coronary syndrome、stable angina、normal people with hyperlipidemia and normal subjects were enrolled in the study. The proportion of peripheral monocytes expressing uPAR was surveyed by flow cytometer, to observe differences among the four groups. For the ACS group, uPAR levels in peripheral monocytes were sequential detected before and after percutaneous coronary intervention (PCI) to observe the changes.
     Results Animal experiment:uPAR was detected in all stages of plaque, but the expression significantly increased in later vulnerable plaque, especially in the lipid pool, plaque shoulders, and rupture sites. MMP-9was almost undetectable in early plaques. however, the expression gradually increased from the middle to late plaques, and its distribution was similar with uPAR. Clinical Trials:1、ACS preoperative uPAR levels in peripheral monocytes was significantly higher than the other three groups; physical normal group was significantly lower than the other three groups, SAP group was no significant different with hyperlipidemic group.2、Hyperlipidemia might be a critical pair of factors activating uPAR expression.3、For ACS patients, uPAR levels during the first3days after PCI were significantly higher than the preoperative levels.3days later, uPAR levels gradually decreased.4、For ACS patients, the expression of uPAR with peripheral mononuclear cells, whose size and particle size were both larger, was higher than those ones, whose cell size and particle size are both smaller, especially in the fluorescence intensity.
     Conclusions uPAR play a role in very early stage of the pathogenesis of atherosclerosis. uPAR and MMP-9might be involved in the formation of vulnerable plaque. uPAR may be as one of clinical indicators of unstable stable angina.
引文
1. Braunwald E. Lecture of cardiovascular medicine at the turn of the millennium:triumphs, concerns, and opportunities. N Engl J Med.1997; 337:1360-1369.
    2. Glass CK., Witztum JL.. Atherosclerosis. the road ahead. Cell.2001; 104:503-516.
    3. Shireman PK., Pearce WH.. Endothelial cell function:biologic and physiologic functions in health and disease. AJR Am J Roentgenol.1996; 166:7-13.
    4. Ross R.. Atherosclerosis--an inflammatory disease. N Engl J Med.1999; 340:115-126.
    5. Saksela 0.. Cell-associated plasminogen activation:regulation and physiological functions. Cell Biol.1988; 4:93-126.
    6. Christ G.. Plasmin activation system in restenosis:Role in pathogenesis and clinical prediction. J. Thrombosis and Thrombolysis.1999;7:277-285.
    7. Martin BS., Padro T., Schwaenen C, et al. Overexpression of urokinase receptor and cell surface urokinase-type plasminogen activator in the human vessel wall with different types of atherosclerotic lesions. Blood Coagulation and Fibrinolysis.2004;15:383-391.
    8. Raghunath P. Plasminogen activator system in human coronary atherosclerosis. Arterioscler Thromb Vasc Biol.1995;15(9):1432-1443.
    9. Abboud RT, Fera T, Johal S, et al. Effect of smoking on plasma neutrophil elastase levels. J Lab Clin Med.1986:108:294-300.
    10.陈未,陈连凤,朱文玲等.冠心病危险因素促使外周血单核细胞高表达尿激酶型纤溶酶原激活物受体的研究.中华心血管病杂志.2007;35:159-163.
    11. Andreasen PA, Egelund R., Petersen HH.. Cell. Mol. Life Sci.2000; 57:25-40.
    12. Behrendt N., Stephens RW. The urokinase receptor. Fibrinolysis proteolysis.1998;12:191-204.
    13. Wary KK.. A requirement for caveolin-land associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell.1998; 144:625-634.
    14 Orbe J, Fernandez 1, Redfiguez JA. Different expression of MMPs/ TIMP · 1 in human atheresclemtic lession. Relation to plaque features and v∞enlar bed[J]. Atheroscleresis.2003,170(2):269-276
    15 Beaudeux JL, Giral P, Bmckert E, et al. Matrix metallopmteinases, inflanunation and atheroeclemais:therapeutic perspectives[J]. Clin Chem Lab Med.2004,42(2):121-131
    16. Yusuf S. Reddy S. Ounpuu S Global burden of cardiovascular diseases. I:general considerations, theepidemiologic transition, risk factors. and impact of urbanization 2001(22)
    17. American Heart Association 2002 Heart and Stroke Statistical Update 2002
    18. Naghavi M. Libby P. Falk E From vulnerable plaque to vulnerable patient:a call for new definitionsand risk assessment strategies:part Ⅰ 2003(20)
    19. Valgimigli M. Agostoni P. Serruvs PW Acute coronary syndromes:an emphasis shift from treatment toprevention;and the enduring challenge of vulnerable plaque detection in the cardiac catheterization laboratory 2007(4)
    1. Falk E., Stephen MS., Zorina SG.., et al. Putative murine models of plaque rupture. Arterioscler. Thromb. Vase. Biol.2007; 27:969-972.
    2. Johnson J., Carson K., Williams H., et al. Plaque ruptur after short periods of fat feeding in the apolipoprotein E-knockout mouse. Circulation. 2005;111:1422-1430.
    3. Christopher LJ.,Martin RB., Erik AL., et al. Assessment of unstable atherosclerosis in mice. Arterioscler Thromb Vase Biol.2007; 27:714-720.
    4. Wary KK. A requirement for caveolin-land associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell.1998; 144:625-634.
    5. Beluretidt N. The structure and function of the urokinase receptor, a membrane protein goveming plasminogen activation on the cell surface. Biol Chern Hoppe Seyle.1995; 376(5):269-279.
    6. Chavakis T., Kanse SM., May AE., et al. Heamostatic factors occupy new territory:the role of the urokinase receptor system and kininogen in inflammation. Biochemical Society Transactions.2002; 30(2):168-173.
    7. Abboud RT, Fera T, Johal S, et al. Effect of smoking on plasma neutrophil elastase levels. J Lab Clin Med.1986; 108:294-300.
    8. Collier A., Jackson M., Bell D., et al. Neutrophil activation detected by increased neutrophil elastase activity in type 1 (insulin-dependent) diabetes mellitus. Diabetes Res.1989;10:135-138.
    9.陈未,陈连凤,朱文玲等.冠心病危险因素促使外周血单核细胞高表达尿激酶型纤溶酶原激活物受体的研究.中华心血管病杂志.2007:159-163.
    10. May AE., Schmidt R., Kanse SM., et al. Urokinase receptor surface expression regulates monocyte adhesion in acute myocardial infarction. Blood.2002;100:3611-3617.
    11. Steins MB., Padro T., Schwaenen C., et al. Overexpression of urokinase receptor and cell surface urokinase-type plasminogen activator in the human vessel wall with different types of atherosclerotic lesions. Blood Coagulation and Fibrinolysis.2004; 15:383-391.
    12. Salame MY., Samani NJ., Masood I., et al. Expression of the plasminogen activator system in the human vescular wall. Atherosclerosis.2000; 152(1):19-28.
    13. Gu JM., Johns A., Morser J., et al. Urokinase plasminogen activator receptor promotes macrophage infiltration into the cascular wall of ApoE deficient mice. J Cell Physiol.2005; 204(1):73-82.
    14. Reidy MA., Irvin C., Lindner V.. Migration of arterial wall cells: Expression of plasminogen activators and inhibitors in injured rat arteries. Circ Res.1996; 78:405-414.
    15. Odekon LE., Sato Y., Rifkin DB.. Urokinase-type plasminogen activator mediates basic fibroblast growth factor-induced bovine endothelial cell migration independent of its proteolytic activity.J Cell Physiol.1992; 150:258-263.
    16. Okada SS, Grobmyer SR, Barnathan ES. Contrasting effects of plasminogen activators, urokinase receptor, and LDL receptor-related protein on smooth muscle cell migration and invasion. Arterioscler Thromb Vasc Biol.1996; 16:1269-1276.
    17. Giannelli G., Falk-Marzillier J., Schiraldi O., et al. Induction of cell migration by matrix metalloproteinase-2 cleavage of laminin-5. Science. 1997; 277:225-228.
    18. Jiang M.. Pitavastatin attenuates the PDGF-induced LR11/uPA receptor-mediated migration of smooth muscle cells. Biochem-Biophys-Res-Commun.2006; 348(4):1367-1377.
    19. Plekhanova O.. Urokinase plasminogen activator augments cell proliferation and neointima formation in injured arteries via proteolytic. Atherosclerosis.2001;159:297-306.
    20. Niroko N.. Augmented urokinase receptor expression in atheroma. Arterioscler Thromb Vasc Biol.1995;15:37-43.
    21. Piguet PF., Vesin C., Donati Y., et al. Urokinase receptor is a platelet receptor important for kinetics and TNF-induced endothelial adhesion in mice. Circulation.1999; 99(25):3315-21.
    22. Carmeliet P., Moons L., Herbert JM., et al. Urokinase but not tissue plasminogen activator mediates arterial neointima formation in mice. Circ Res.1997; 81:829-839.
    23. Renckens R. plasminogen activator receptor plays a role in neutrophil migration during lipopolysaccharide-induced peritoneal inflammation but not during Escherichia coli-induced peritonitis. J-Infect-Dis.2006; 193(4): 522-530.
    24. Saksela 0.. Cell-associated plasminogen activation:regulation and physiological functions. Cell Biol.1988; 4:93-126.
    25、Carmeliet P, Moons L, Li jnen R, Baes M, Crawley J, Lemaitre V, Tipping P, Drew A, Eeckhout Y, Shapiro S, Lupu F, Collen D. Urokinase-generated plasmin is a candidate activator of matrix metalloproteinases during atherosclerotic aneurysm formation. Nature Genetics 1997;17:439-46.
    26 Role of the f ibrinolytic and matrix metalloproteinase systems in arterial neointima formation after vascular injury Verh K Acad Geneeskd Belg. 2001; 63(6):605-22.
    27、Urokinase directly activates matrix metalloproteinases-9 A potential role in glioblastoma invasion Biochem Biophys Res Commun.2008 May 16; 369(4):1215-1220.
    28、Extracellular proteolysis in the development and progression of atherosclerosis H. R. Lijnenl Center for Molecular and Vascular Biology, University of Leuven, Campus Gasthuisberg,O & N, Herestraat 49, B-3000 Leuven, Belgium
    29. Virmani R. Kolodgie FD. Burke AP Lessons from sudden coronary death:a comprehensive morphological classification scheme for atherosclerotic lesions 2000
    30. Naghavi M. Libby P. Falk E From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies:Part Ⅰ 2003
    31. Naghavi M. Libby P. Falk E From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies:Part Ⅱ 2003
    32. Kolodgie FD. Burke AP. Farb A The thin-cap fibroatheroma:a type of vulnerable plaque:the major precursor lesion to acute coronary syndromes 2001
    1. Andreas E. May, Roland Schmidt, Sandip M. Kanse et al. Urokinase Receptor Surface Expression Regulates Monocyte Adhesion in Acute Myocardial Infarction. Blood.15 November 2002, Vol.100, No.10, pp.3611-3617.
    2 Steins M. Overexpression of urokinase receptor and cell surface urokinase-type plasminogen activator in the human vessel wall with different types of atherosclerotic lesions[J]. Blood-Coagul-Fibrinolysis,2004, 15(5):383-391
    3 Ossowski L. IN vivo paracrine interaction between urokinase and its receptor:effect on tumor cell invasion [J]. J Cell Biol,1993,115:1107-1112
    4. Valentin Fuster, Marc Verstraete. Hemostasis, Thrombosis, Fibrinolysis, and Cardiovascular Disease. Eugene Braunwald, Heart Disease,5th Edition. W. B. Saunders.1997,1809-1841.
    5. D. Collen, I. Juhan-Vague. Fibrinolysis and Antherosclerosis. Seminars in Thrombosis and Hemostasis 1988;14(2)180-183.
    6. Collin J. Schwartz, Anthony J. Valente, Jim L. Kelley et al. Thrombosis and the Development of Atherosclerosis:Rokitansky Revisited. Seminars in Thrombosis and Hemostasis 1988;14:189-195.
    7. V. Salomaa, V. Stinson, J. D. Kark et al. Asociation of Fibrinolytic Parameters with Early Atherosclerosis The ARIC Study. Circulation.1995 15;91(2):284-90.
    8. Hans P. Kohler, Peter J. Grant. Plasminogen-activator Inhibitor Type 1 and Coronary Artery Disease. NEJM.2000;342(24):1792-1800.
    9. J. P. Collet, Montalescot, E. Vicaut et al. Acute Release of Plasminogen Activator Inhibitor-1 in ST-Segment Elevation Myocardial Infarction Predicts Mortality. Circulation.2003;108:391-394.
    10. Jaume Figueras, Yasone Monasterio, Rosa Maria Lidon et al. Thrombin Formation and Fibrinolytic Activity in Patients with Acute Myocardial Infarction or Unstable Angina:In-hospital Course and Relationship With Recurrent Angina at Rest. JACC 2000;36(7):2036-43.
    11. Klas Malmberg, Peter Bavenholm, Anders Hamsten. Clinical and Biochemical Factors Associated with Prognosis After Myocardial Infarction at a Young Age. JACC.1994:24:592-9.
    12. Anna M. Thogersen, Jan-Hakan Jansson, Kurt Boman et al. High Plasminogen Activator Inhibitor and Tissue Plasminogen Activator Levels in Plasma Precede a First Acute Myocardial Infarction in Both Men and Women Evidence for the Fibrinolytic System as an Independent Primary Risk Factor. Circulation.1998; 98:2241-2247.
    13. Olli Saksela and Daniel B. Rifkin. Cell-Associated Plasminogen Activation:Regulation and Physiological Functions. Ann. Rev. Cell Biol.1988:4:93-126.
    14. Gunter Christ, Karam Kostner, Manfred et al. Plasmin Activation System in Restenosis:Role in Pathogenesis and Clinical Prediction? J. Thrombosis and Thrombolysis 1999(7):277-285.
    15. H. R. Lijnen. Plasmin and Matrix Metalloproteinases in Vascular Remodeling. Thromb Haemost 2001:86:324-33.
    16. Peter Lybby. Coronary Artery Injury and the Biology of Atherosclerosis: Inflammation, Thrombosis, and Stabilizaiton. Am J Cardiol 2000; 86(suppl):3J-9J.
    17. Rodger L. Bick, Robert C. Bishop, and Edward S. Shanbrown. Fibrinolytic Activity in Acute Myocardial Infarction. A. J. C. P.1972,57:359-363.
    16. Simon G. Thompson, Joachim Kienast, Stephen D. M. Pyke et al. Hemostatic Factors and the Risk of Myocardial Infarction or Sudden Death in Patients with Angina Pectoris. JAMA.2005 Oct 12;294(14):1799-809.
    18. Collen D, Lijnen HR. Thrombolytic Agents. Thromb Haemost.2005 Apr;93(4):627-30.
    19. Cihangir Erem, Arif Hacihasanoglu,sukru Qelik et al. Coagulation and Fibrinolysis Parameters in Type 2 Diabetic Patients with and without Diabetic Vascular Complications. Medical Principles and Practice 2005:14:22-30.
    20. Yoshimasa Aso, Sadao Wakabayashi, Ruriko Yamamoto et al. Metabolic Syndrome Accompanied by Hypercholesterolemia Is Strongly Associated with Proinflammatory State and Impairment of Fibrinolysis in Patients With Type 2 Diabetes Synergistic effects of plasminogen activator inhibitor-1 and thrombin-activatable fibrinolysis inhibitor. Diabetes Care 28:2211-2216, 2005.
    21.Skurk T, Hauner H. Obesity and Impaired Fibrinolysis:Role of Adipose Production of Plasminogen Activator Inhibitor-1. Int J Obes Relat Metab Disord.2004 Nov;28(11):1357-64.
    22. Anders Hamsten, Ulf De Faire, Goran Walldius et al. Plasminogen Activator Inhibitor in Plasma:Risk Factor for Recurrent Myocardial Infarction. The Lancet 1987:3-8.
    23. Labarrere CA, Deng MC. Microvascular Prothrombogenicity and Transplant Coronary Artery Disease. Transpl Immunol.2002 May;9(2-4):243-9.
    24. J. A. Paramo, J. Orbe, J. Fernandez. Fibrinolysis/Proteolysis Banlance in Stable Angina Pectoris in Relation to Angiographic Findings. Thromb Haemost 2001(86):636-9.
    25. Kotzsch M, Farthmann J, Meye A, et al. Prognostic Relevance of uPAR-del4/5 and TIMP-3 mRNA Expression Levels in Breast Cancer. Eur J Cancer. 2005 Nov;41(17):2760-8. Epub 2005 Oct 26.
    26. Festa A, Williams K, Tracy R. P. et al. Progression of PAI-1 and Fibrinogen Levels in Relation to Incident Type 2 Diabetes. Circulation 2006, 113(14):1753-9.
    27. Erem C, Hacihasanoglu A, Celik S, et al. Coagulation and Fibrinolysis Parameters in Type 2 Diabetes with and without Complications. Med. Princ. Prac.2005,14(1):22-30.
    28. Ostermann H, Tschope D, Greber W, et al. Enhancement of Spontaneous Fibrinolytic Activity in Diabetic Retinopathy. Thromb Haemost.1992 Oct 5; 68(4):400-3.
    29. Bauer TW, Liu W, Fan F, et al. Targeting of Urokinase Plasminogen Activator Receptor in Human Pancreatic Carcinoma Cells Inhibits c-Met- and Insulin-like Growth Factor-I Receptor-mediated Migration and Invasion and Orthotopic Tumor Growth in Mice. Cancer Res.2005 Sep 1;65(17):7775-81.
    30. Tan X, Egami H, Nozawa F et al. Analysis of the Invasion-metastasis Mechanism in Pancreatic Cancer:Involvement of Plasmin(ogen) Cascade Proteins in the Invasion of Pancreatic Cancer Cells. Int J Oncol.2006 Feb;28(2):369-74.
    31. Martin B. Steins, Teresa Padro, Carsten Schwaenen et al. Overexpression of Urokinase Receptor and Cell Surface Urokinase-type Plasminogen Activator in the Human Vessel Wall with Different Types of Atherosclerotic Lesions. Blood Coagulation and Fibrinolysis.2004,15:383-391.
    32. Sandip M. Kanse, Triantafyllos Chavakis, Nadia Al-Fakhrl et al. Reciprocal Regulation of Urokinase Receptor (CD87)-mediated Cell Adhesion by Plasminogen Activator Inhibitor-1 and Protease Nexin-1. Journal of Cell Science.117,477-485,2004.
    33. Goldschmidt-Clermont PJ, Creager MA, Losordo DW et al. Atherosclerosis 2005:recent discoveries and novel hypotheses. Circulation.2005 Nov 22;112(21):3348-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700