用户名: 密码: 验证码:
油砂热解特性及其产物生成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用先进测试技术和实验手段,探索了化学结构特征与热解反应性之间的关系。基于油砂热解过程中微观变化规律,从理论和试验两个方面系统地开展油砂热解特性的研究,从本质上揭示了油砂热解特性及其产物生成机理。本文主要从以下几方面开展研究工作:
     采用热失重分析技术系统研究了油砂的热分析特性,获得了油砂热解过程中Thermal Gravity Analysis-Differential thermal gravity(TG-DTG)、Thermal Gravity Analysis-Differential Scanning Calorimetry(TG-DSC)及Thermal Gravity Analysis-Fourier Transform Infrared(TG-FTIR)曲线变化规律,结果分析表明,油砂热解过程包括脱水阶段、油砂沥青的低温裂解、碳氢化合物的分解及高温段的矿物质裂解四个阶段。详细研究了升温速率、反应气氛、终温等重要因素对油砂热解特性的影响。理论上,采用Coats-Redfern(C-R)法、Flynn-Wall-Ozawa(F-W-O)法、分布活化能模型(DAEM)、非传统Arrhenius法及多峰拟合法等理论模型对油砂热解动力学特性进行了广泛的研究,建立了油砂热解反应动力学模型,获得了活化能、频率因子等热解动力学参数,探究了油砂在整个热解过程中活化能随着热解转化率的变化规律。用非对称高斯(bi-Gauss)多峰拟合法来分离重叠峰,确定了油砂热解反应机理函数,结果表明,bi-Gauss法在拟合效果上优于经典的高斯法,子峰近似遵循单一反应机理,主产油阶段不遵循单一反应机理,主产油阶段与子峰机理函数高度吻合等结论,验证了双组分叠加反应模型的适用性。
     本文进一步研究了油砂的燃烧特性,获得了模拟空气气氛下油砂的着火温度、燃烧稳定性判别指数和燃烧反应性能参数。在此基础上,运用“非对称高斯多峰拟合法”对油砂燃烧放热峰进行分离拟合,将实验DSC曲线复杂峰有效分离为多个高斯函数峰,探讨了不同伪组分的燃烧反应热对油砂燃烧总的热效应的贡献,结合Malek法确定了油砂燃烧时其伪组分的最概然机理函数,结果表明,每种伪组分反应机理函数不同。
     利用TG-FTIR联用技术对油砂热解过程中气相产物析出规律进行了实验研究,考察了升温速率等因素对气相产物CO2、CO、H2和CH4等气体组分析出的影响,揭示了可燃气组分的析出机理。
     在自行设计搭建的固定床反应器上进行了油砂热解的实验研究,系统地研究了升温速率、终温等操作条件对其热解特性的影响,优化了油砂热解的关键参数。结果表明,当热解温度相同时,气体和液体产率随着升温速率的增加而增加;热解半焦产率随着升温速率的增加而减少。利用气相色谱仪对油砂热解的气体产物组分进行分析,结果表明,热解气体产物中主要含有CO、CO2、 H2、CH4、C2H4、C2H6等可燃气体。油砂热解得到的气体热值均在33MJ/m3左右,随着热解温度的提高,热解气体的热值均呈现先升高后降低的趋势。
     详细研究了油砂干馏过程中固体产物半焦孔隙结构变化,结果表明,干馏终温对油砂半焦吸附量影响较大。利用傅里叶红外光谱仪(FTIR)研究了官能团随反应终温的演化规律,进一步从微观角度揭示油砂热解反应机理。通过对红外光谱谱图的分析,研究了油砂半焦中的芳香烃、脂肪烃、羟基官能团及含氧官能团,并对各个官能团谱图进行了高斯峰分峰拟合,确定了有机组分特征吸收峰,同时获得了富氢程度、脂肪结构、芳香度等参数,以利于油砂结构研究。
     利用核磁共振技术对不同干馏终温下的油砂油样品进行了’H与13C NMR实验研究。根据谱峰归属对每个谱图积分,采用改进的Brown-Ladner计算方法计算其平均结构参数。通过分析结构参数随干馏终温的变化,研究了干馏终温对油砂油化学结构的影响。结果显示,随着干馏终温的升高,油砂干馏生成油化学结构有明显变化。
With advanced testing techniques and experimantal methods, this paper specially focuses on the relationship between the chemical structre features and pyrolysis reaction characteristic. Based on the microcosmic change of oil sand during pyrolysis process, pyrolysis characteristics of oil sands were studied systematically from theoretical and experimental aspects. Then the pyrolysis reaction characteristics of oil sand was considered, so as to reveal the pyrolysis products generation mechanism essentially. Specifc research content are listed in the following:
     Pyrolysis experiments of oil sand were conducted on thermo-gravimetric analyzer with different heating rate, particle size and reaction atmosphere, respectively. The characteristics of oil sand pyrolysis based on the technologies of TG-DTG^TG-DSC and TG-FTIR have been obtained. The results show that all oil sands pyrolysis process includes four stages:initial dehydration, low temperature pyrolysis of bitumen, the decomposition of hydrocarbons and high temperature pyrolysis of minerals. Theoretically, kinetic parameters of oil sand pyrolysis were calculated. A lot of methods, such as Coats-Redfern method, Flynn-Wall-Ozawa method, DAEM method, untraditional Arrhenius theory and multiple peaks fitting method, have been extensively used to determine the activation energy and frequency factor. The change laws of Activation energy with the conversion relations in the pyrolysis process are received. An asymmetric multi-peak fitting method, bi-Gauss, was creatively introduced to separate the overlapping peak, and the oil sand pyrolysis reaction mechanism functions are determined. The results show that the bi-Gauss method can produce more satisfactory fitting results than the classical Gauss method. Moreover, the subpeaks follow a single mechaniasm, the overall stage does not follow a single mechanism and the mechanisms of the front and back segments of the overall stage are in accordance with those of the subpeaks, which prove the applicability of the two-component parallel model.
     In this paper, the combustion characteristics of oil sand were further studied. Also some combustion parameters such as:ignition temperature, the combustion stability Discriminant index and combustion reaction performance parameters were obtained. On this basis, the complex peaks of experimental DSC curves were effectively separated into multiple Gaussian function peaks, and the contribution of different pseudo components'combustion heat to the total heat effect of oil sands were discussed. Finally, the kinetic mechanism functions of each oil sand components were determined according to Malek's method, and the result shows that different component has different mechanism function.
     The gas products release characteristics during pyrolysis process was studied using TG-FTIR spectrometry, which examined the influence of heating rate on the release law of CO2, CO, H2and CH4. That revealed the release mechanism of gas products during oil sand pyrolysis.
     Pyrolysis experiments of oil sand were conducted in a bench-scale fixed-bed reactor to investigate the effect of temperature, heating rate on liquid and gas yield, the key pyrolysis parameters of oil sands were optimized. With increase of temperature, liquid yield and gas yield of pyrolysis all increase, but the char yield decrease. The gas product components were determined by using gas chromatograph analysis. The results showed that the major gases produced during oil sand pyrolysis were CO, CO2, H2, CH4, C2H4and C2H6. Gas calorific value is about33MJ/m3, with the increase of pyrolysis temperature, pyrolysis gas calorific values were presented a trend of firstly increase then decrease little.
     In this paper, the pore structure of oil sand char at different pyrolysis temperature was investigated in detail, and the pyrolysis temperature had a greater influence on the adsorption quantity of oil sands char. the FTIR experiment was used to analyze various functional groups characteristics, from which the oil sands pyrolysis reaction mechanism from the microscopic view revealed, the aromatic hydrocarbon, aliphatic hydrocarbon, hydroxyl and the oxygen functional groups in the samples were determined.
     Each functional group curve was separated into multiple Gaussian function peaks, then the characteristic absorption peak of organic component was determined, so as to receive the degree of rich hydrogen, the structure of the aliphatic hydrocarbon, aromaticity and other parameters.
     The1H and13C NMR experiments of oil sands oil were conducted on nuclear magnetic resonance spectrometer. Each spectrum was analyzed according to the spectral peaks affiliation, the improved Brown-Ladner method was used to calculate the average structure parameters of oil. The results show that, with the increase of the pyrolysis temperature, the oil chemical structure have obvious change.
引文
[1]韦石.我国成为第二大石油消费国[J].复杂油气藏,2012,5(4):8-8
    [2]刘增洁.未来20年世界能源供需预测[J].中国能源,2002,(5):33-35.
    [3]张春贺.油砂:新能源的探索[J].百科知识,2006,(08S):8-9
    [4]李莉.油砂—一种新的替代能源[J].当代石油化工.2005,13(12):28-30
    [5]张春贺,郑秀芬.油砂新的经济增长推进剂[J].中国矿业,2007,16(3):37-39
    [6]许修强,王红岩,郑德温,等.油砂开发利用的研究进展[J].辽宁化工,2008,37(4):268-271
    [7]张绍飞.加拿大石油工业的新天地一油砂[J].石油化工技术经济,2005,21(3):9-11
    [8]尚艳丽,彭正新.加拿大油砂资源开发的机遇与风险[J].国际石油经济,2006,3:32-36
    [9]科兴华.加拿大阿尔伯塔省的油砂资源和油砂工业[J].全球科技经济瞭望,2004,5:58-58
    [10]贾承造.油砂资源状况与储量评估方法[M].北京:石油工业出版社.2007:9-13
    [11]Jiayu N., Jianyi H.. Formation and distribution of heavy oil and tar sands in China[J]. Marine and Petroleum Geology,1999,16(1):85-95
    [12]梁峰.Athabasca油砂沥青VTB戊烷溶剂深度脱沥青的研究[D].北京:北京石油大学,2001
    [13]Gishler P. E.. The fluidization technique applied to direct distillation of oil from bituminous sand[J]. Canadian Journal of Research,1949,27(3):104-111
    [14]Fletcher J. V., Deo M. D., Hanson F. V.. Fluidized bed pyrolysis of a Uinta Basin oil sand[J]. Fuel,1995,74(3):311-316
    [15]Hanson F. V., Cha S. M., Deo M. D., et al. Pyrolysis of oil sand from the Whiterocks deposit in a rotary kiln[J]. Fuel,1992,71(12):1455-1463
    [16]Haenset V.. Controlling Temperstures in Fluidized Solid Systems for Conversion of Hydrocarbons[P]. U.S. Patent 2733193,1956-1
    [17]Stewart J., Falton S. C., LangeA W. J.. Recovery of Oil from Bituminous Sands[P]. U.S. Patent 2772209,1956-11-27
    [18]Natiaaa M. F.. Fluid coking of tar sands[P]. U.S. Patent 3320152,1967-5-16
    [19]Rammler R. W.. The production of synthetic crude oil from oil sand by application of the lurgi-ruhrgas-process[J]. The Canadian Journal of Chemical Engineering,1970,48(5):552-560
    [20]Steinmetz I.. Cracking of Mix of Tar Sands Froth Product[P]. U.S. Patent 3466240,1969-9-9
    [21]Nathan M. F., Skaperdas G. T., Grubb G. C. Fluid Coking of Tar Sands[P]. Can.Patent 823183,1969-9
    [22]Egloff G., Morrell J. C. Determination of Unsaturated, Aromatic, Nephthene, and Paraffin Hydrocarbons in Motor Fuels and Their Automotive Equivalents[J]. Industrial & Engineering Chemistry,1926,18(4):354-356.
    [23]Egloff G, Morrell J. C. Cracking of Bitumen Derived From Alberta Tar Sands[J]. Can. Chem. Metall,1927,11(2):33
    [24]Sterba M.J. Athabaca. Oil Sands Conf, Research Council of Alberta, Edmonton, Alta,1951,257
    [25]Pasternack D. B. Low-Ash Asphalt and Coke from Athabasca Oil-Sands Oil[R]. Athabasca Oil Sands research council.1963,45:207-229
    [26]Boomer E. H., Saddington A. W. Hydrongenation of bitumen from bituminous sands of Alberta[R]. Can.J.Rea,1930,2:376-383
    [27]Boomer E. H., Edwards J. Hydrogenation of bitumen from bituminous sands of Alberta[R]. Can.J.Rea.,1931,4:517-539
    [28]李振宇,乔明,任文坡.委内瑞拉超重原油和加拿大油砂沥青加工利用现状[J].石油学报:石油加工,2012,28(3):517-524
    [29]罗满银,夏德宏,刘卫东,等.油砂热解特性研究及其在热法取油系统中应用探讨[J].锅炉制造,2007,27(1):73-76
    [30]郭秀英,王擎,姜倩倩,等.印尼油砂热解特性研究及动力学模型比较[J].东北电力大学学报,2012,(2):26-32
    [31]王擎,王引,贾春霞,等.三种印尼油砂燃烧特性研究[J].中国电机工程学报,2012,32(26):23-30
    [32]孙楠,张秋民,关珺,等.扎赉特旗油砂在氮气气氛下的热解制油研究[J].燃料化学学报,2007,02:241-244
    [33]王益民,曹祖宾,石俊峰,等.哈萨克斯坦油砂干馏实验研究[J].石油与天然气化工,2010,39(2):134-136
    [34]李海英,张贵杰,高翔.非常规石油资源热解特性研究[J].石油与天然气化工,2010,39(3):189-192
    [35]吴兴明.油砂干馏热解实验研究[J].烟台职业学院学报,2012,18(2):88-92
    [36]孟猛.图牧吉油砂中有机质的提取[D].大连:大连理工大学,2007
    [37]李术元,王剑秋,钱家麟.世界油砂资源的研究及开发利用[J].中外能源,2011,5(16):10-23
    [38]Ritchie R. G. S., Roche R. S., Steedman W.. Pyrolysis of Athabasca tar sands: analysis of the condensible products from asphaltene[J]. Fuel,1979,58(7): 523-530
    [39]Ritchie R. G. S., Roche R. S., Steedman W.. Non-isothermal programmed pyrolysis studies of oil sand bitumens and bitumen fractions:1. Athabasca asphaltene[J]. Fuel,1985,64(3):391-399
    [40]Moschopedis S. E., Parkash S., Speight J. G.. Thermal decomposition of asphaltenes[J]. Fuel,1978,57(7):431-434
    [41]Rafenomanantsoa A., Nicole D., Rubini P., et al. NMR and FIMS structural analysis of the oil obtained from the pyrolysis of Bemolanga tar-sand bitumen (Madagascar) according to a post combustion process[J]. Fuel,1998,77(1): 33-41
    [42]A1-Otoom A., Al-Harahsheh M., Allawzi M., et al. Physical and thermal properties of Jordanian tar sand[J]. Fuel Processing Technology,2012,35(10) 4217-4225
    [43]Popescu C., Segal E.. Critical considerations on the methods for evaluating kinetic parameters from nonisothermal experiments[J]. Journal of Analytical and Applied Pyrolysis,1992,23(3):243-248
    [44]Font r., Marcilla A., Verdu E., et al. Thermogravimetric kinetic study of the pyrolysis of almond shells and almond shells impregnated with CoC12[J]. Journal of Analytical and Applied Pyrolysis,1991,21(3):249-264
    [45]武俊宇,曾荣树,倪文,等.高钙粉煤灰在建材行业的研究进展[J].硅酸盐通报,2007,26(4):267-272
    [46]赵继尧,黄文辉.中国煤中微量元素的丰度.中国煤田地质,2002,14(7):5-13
    [47]王擎,贾春霞,刘洪鹏.汪清油页岩燃烧动力学模型[J].中国电机工程学报,2012,32(23):27-31
    [48]Strausz O. P.. Bitumen and heavy oil chemistry:AOSTRA technical handbook on oil sands[M]. Edmonton:AOSTRA,1989.33-73
    [49]Hayashitani M., Bennion D. W., Donnelly J. K., et al. Thermal cracking of Athabasca bitumen[R]. AGARD conference proceedings in oil sands of Canada-Venezuela symposium (2nd ed.),1977.233-247
    [50]Phillips C. R., Haidar N. I., Poon Y. C.. Kinetic models for the thermal cracking of athabasca bitumen:the effect of the sand matrix[J]. Fuel,1985,64(5):678-691
    [51]Lin L. C., Deo M. D., Hansonf F. V., et al. Kinetics of tar sand pyrolysis using a distribution of activation energy model[J]. AIChE Journal,1990,36(10): 1585-1588
    [52]Seader J. D., Coronella C. J., Bhadkamkar A. S., et al. Extraction of bitumen from Western oil sands by an energy-efficient thermal method[R]. Technical Final Report for U.S. Dept. Energy, No. DE-FC21-93MC30256-99, 1997.229-236
    [53]蔡正千.热分析.北京:高等教育出版社,1993.10-13
    [54]Murugan P., Mahinpey N., Mani T.. Thermal cracking and combustion kinetics of asphaltenes derived from Fosterton oil[J]. Fuel Processing Technology,2009, 90(10):1286-1291
    [55]Kok M. V.. Characterization of medium and heavy crude oils using thermal analysis techniques[J]. Fuel Processing Technology,2011,92(5):1026-1031
    [56]Xu T., Huang X.. Study on combustion mechanism of asphalt binder by using TG-FTIR technique[J]. Fuel,2010,89(9):2185-2190
    [57]尹雪峰,李晓东,尤孝方,等.红外光谱法分析聚乙烯热解和燃烧产物中多环芳烃分布特性[J].热力发电,2005,(4):21-24
    [58]谭厚章,廖晓伟,赵科,等.傅立叶红外光谱法对煤中吡咯型氮的热解规律研究[J].动力工程,2004,24(1):37-40
    [59]Butala S. J. M., Medina J. C. M., Taylor T. Q., et al. Mechanisms and Kinetics of Reactions Leading to Natural Gas Formation during Coal Maturation[J]. Energy&Fuels,2000,14(2):235-259
    [60]Porada S. The reactions of formation of selected gas products during coal pyrolysis [J]. Fuel,2004,83(9):1191-1196
    [61]Cramer B. Methane generation from coal during open system pyrolysis investigated by isotope specific, Gaussian distributed reaction kinetics [J]. Organic Geochemistry,2004,35(4):379-392
    [62]Das T. K. Evolution characteristics of gases during pyrolysis of maceral concentrates of Russian coking coals [J]. Fuel,2001,80(4):489-500
    [63]Strezov V., Lucas J. A., Strezov L.. Experimental and modelling of the thermal regions of activity during pyrolysis of bituminous coals[J]. Journal of analytical and applied pyrolysis,2004,71(1):375-392
    [64]Campbell J. H., Gallegos G., Gregg M. Gas evolution during oil shale pyrolysis. 2. Kinetic and stoichiometric analysis[J]. Fuel,1980,59(10):727-732
    [65]Huss E. B., Burnham A. K. Gas evolution pyrolysis of various Colorado oil shales[J]. Fuel,1982,61(12):1188-1196
    [66]Suuberg E. M., Sherman J., Lilly W. D. Product evolution during rapid pyrolysis of Green River Formation oil shale[J]. Fuel,1987,66(9):1176-1184
    [67]Coats A. W., Redfern J. P. Kinetic Parameter from Thermogravimetric Data[J]. Nature,1964,201(4914):68-69
    [68]Shuyuan L., Jianqiu W., Huaping T., et al. Study of extraction and pyrolysis of Chinese oil sands[J]. Fuel,1995,74(8):1191-1193
    [69]Park Y. C., Paek J. Y., Bae D. H., et al. Study of pyrolysis kinetics of Alberta oil sand by thermogravimetric analysis[J]. Korean journal of chemical engineering, 2009,26(6):1608-1612
    [70]Meng M., Hu H., Zhang Q., et al. Pyrolysis behaviors of Tumuji oil sand by thermogravimetry (TG) and in a fixed bed reactor[J]. Energy & fuels,2007,21(4): 2245-2249
    [71]Barbour R. V., Dorrence S. M., Vollmer T. L., et al. Pyrolysis of Utah tar sands-products and kinetics[R]. American chemical society, division of fuel chemistry preprints,1976,21(6):278-289
    [72]孙楠.扎赉特旗油砂水洗与热解研究[D].大连:大连理工大学,2006
    [73]单玄龙,车长波,李剑,等.国内外油砂资源研究现状[J].世界地质,2007,26(4):459-464
    [74]胡荣祖,高胜利,赵凤起,等.热分析动力学[M].(第2版).北京:科学出版社,2008.7-55
    [75]Dollimore D., Tong P., Alexander K. S. The kinetic interpretation of the decomposition of calcium carbonate by use of relationships other than the Arrhenius equation[J]. Thermochimica Acta,1996,282:13-27
    [76]A1-Otoom A., Allawzi M., Al-Omari N., et al. Bitumen recovery from Jordanian oil sand by froth flotation using petroleum cycles oil cuts[J]. Energy,2010, 35(10):4217-4225
    [77]杨小震,朱善农,李晋.红外光谱数据处理技术讲座.第三讲.分峰技术[J].化学通报,1987,(9):58-60
    [78]朱凯汉,王月娟.DTA重叠峰的高斯函数解析法[J].计算机与应用化学,1997,14(4):303-306
    [79]周剑平.Origin实用教程(7.5版)[M].西安:西安交通大学出版社,2007:179-215
    [80]Gotor F. J., Criado J. M., Malek J., et al. Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments[J]. The journal of physical chemistry A,2000,104(46): 10777-10782
    [81]Pulikesi M., Nader M., Thilakavathi M. Thermal cracking and combustion kinetics of asphaltenes derived from Fosterton oil[J]. Fuel Processing Technology, 2009,90(10):1286-1291
    [82]Mustafa K. K. Characterization of medium and heavy crude oils using Thermal analysis technique[J]. Fuel Processing Technology,2011,92(5):1026-1031
    [83]刘振海,陆立明,唐远旺.热分析简明教程[M].北京:科学出版社,2012:78-81
    [84]Shabbar S., Rana Q., Ilham T., et al. Kinetic of pyrolysis and combustion of oil shale sample from thermo gravimetric data[J]. Fuel,2010,90(4):1631-1637
    [85]贾春霞,刘洪鹏,崔冰,等.汪清油页岩燃烧反应动力学研究[J].化学工程,2009,37(12):12-15.
    [86]陈镜泓,李传儒.热分析及其应用[M].北京:科学出版社,1985
    [87]常娜,甘艳萍,陈延信.升温速率及热解温度对煤热解过程的影响[J].煤炭转化,2012,(3):1-5
    [88]严继民,张启元,高敬琮.吸附与凝聚.固体的表面与孔[M].北京:科学出版社.1986
    [89]Sing K., Everett D., Haul R., et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure Appl. Chem,1985,57(4):603-619
    [90]Rouquerol F., Rouquerol J., Sing K. Adsorption by powders and porous solids: principles, methodology and applications[M]. Academic Press. In New York, US, 1999
    [91]Terzyk A., Gauden P., Kowalczyk P. What kind of pore size distribution is assumed in the Dubinin-Astakhov adsorption isotherm equation[J]. Carbon,2002, 40(15):2879-2886
    [92]Ismail I., Pfeifer P. Fractal analysis and surface roughness of nonporous Carbon fibers and Carbon blacks[J]. Langmuir,1994,10(5):1532-1538
    [93]Qi H., Ma J., Wong P. Adsorption isotherms of fractal surfaces[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002,206(1):401-407
    [94]Khalili N. R., Pan M., Sandi G. Determination of fractal dimensions of solid carbons from gas and liquid phase adsorption isotherms[J]. Carbon,2000,38(4): 573-588
    [95]Qing W., Guojun J., Hongpeng L., et al. Variation of the pore structure during microwave pyrolysis of oil shale[J]. Oil Shale,2010,27(2):135-146
    [96]Han X., Jiang X., Yu L., et al. Change of pore structure of oil shale particles during combustion, part 1. evolution mechanism[J]. Energy & Fuels,2006,20(6): 2241-2408
    [97]Hu S., Xiang J., Sun L., et al. Characterization of char from rapid pyrolysis of rice husk[J]. Fuel Processing Technology,2008,89(11):1096-1105.
    [98]韩向新,姜秀民,崔志刚,等.油页岩颗粒孔隙结构在燃烧过程中的变化[J].中国电机工程学报,2007(02):26-30
    [99]Schrodt J. T., Ocampo A.. Variations in the pore structure of oil shales during retorting and combustion[J]. Fuel,1984,63(11):1152-1523
    [100]Ma Y., Li S.. Study of the Characteristics and Kinetics of Oil Sand Pyrolysis[J]. Energy & Fuels,2010,24(3):1844-1847
    [101]Han X., Jiang X., Cui Z.. Change of pore structure of oil shale particles during combustion.2. PORE structure of Oil-Shale ash[J]. Energy & Fuels,2008,22(2): 972-975
    [102]Bai J, Wang Q, Jiao G. Study on the Pore Structure of Oil Shale During Low-Temperature Pyrolysis[J]. Energy Procedia,2012,17:1689-1696
    [103]Cetin E., Gupta R., Moghtaderi B. Effect of pyrolysis pressure and heating rate on radiata pine char structure and apparent gasification reactivity[J]. Fuel,2005, 84(10):1133-1328
    [104]秦宏,孙佰仲,王擎,等.流化床内油页岩半焦燃烧过程孔隙特性分析[J].中国电机工程学报,2008,28(35):14-20
    [105]付鹏,胡松,向军,等.生物质颗粒孔隙结构在热解过程中的变化[J].化工学报,2009(07):1793-1799
    [106]金奎励,有机岩石学研究一以塔里木为例[M].北京:地震出版社,1997
    [107]邬国英,李为民,单玉华.石油化工概论[M].(第2版),北京:中国石化出版社,2010:16
    [108]Takashi K., Katoh Y. Analysis of oil obtained from mild hydrogenation of coal. 1. structural analysis of fractionated oil[J]. Fuel Processing Technology,1984, 9(1):67-77
    [109]张安贵,王刚,毕研涛,等.内蒙古油砂沥青热转化前后化学结构的变化规律[J].石油学报(石油加工),2011(03):434-440
    [110]Yokoyama S., Uchino H., Katoh T., et al. Combination of 13C-and 1H-n.m.r. spectroscopy for structural analyses of neutral, acidic and basic heteroatom compounds in products from coal hydrogenation[J]. Fuel,1981,60(3):254-262.
    [111]刘晨光,阙国和,陈月珠,等.用液相色谱及1H-NMR波谱法评价减压渣油[J].石油学报(石油加工),1987(03):90-98
    [112]徐春明,杨朝合.石油炼制工程[M].(第四版).北京:石油工业出版社,2009:297
    [113]梁文杰,阙国和,陈月珠.我国原油减压渣油的化学组成与结构——Ⅱ.减压渣油及其各组分的平均结构[J].石油学报(石油加工),1991,7(4):1-11
    [114]梁文杰.重质油化学[M].东营:石油大学出版社,20000:69-78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700