用户名: 密码: 验证码:
反应型受阻胺哌啶衍生物(r-HAPD)光聚合动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用DPC方法考察了r-HAPD的本体光聚合动力学特征,利用ESR定量技术研究了r-HAPD的溶液光聚合以及~1H-NMR手段研究了r-HAPD与MA的溶液光共聚合及其共聚物的微观结构。
     通过深入系统地研究r-HAPD可控光聚合的机理及其动力学规律,揭示了r-HAPD在光聚合过程中的动力学行为。所得结论对于如何实现丙烯酸酯类单体的自由基“活性”/可控光聚合具有重要的理论价值。主要工作和结论如下:
     一.合成并表征了四种r-HAPD和两种r-TEMPO,四种r-HAPD是4-甲基丙烯酰氧基-2,2,6,6-四甲基哌啶醇酯(MTMP)、4-丙烯酰氧基-2,2,6,6-四甲基哌啶醇酯(ATMP)、4-甲基丙烯酰氧基-1,2,2,6,6-五甲基哌啶醇酯(MPMP)和4-丙烯酰氧基-1,2,2,6,6-五甲基哌啶醇酯(APMP);两种r-TEMPO是4-丙烯酰氧基-2,2,6,6-四甲基哌啶-1-氧自由基和4-甲基丙烯酰氧基-2,2,6,6-四甲基哌啶-1-氧自由基。对两种r-TEMPO进行了综合表征,表征结果证明了两种r-TEMPO的结构特征,并用DPC技术考察了r-TEMPO的阻聚性能,发现在N_2条件下,MA-TEMPO、MMA-TEMPO和TEMPO对MTMP光聚合的阻聚性能依次增大,这主要与TEMPO不饱和衍生物的反应活性相关。
     二.r-HAPD体系的本体光聚合反应动力学研究的主要结论如下:
     1.选用的三种光引发剂(Darocur1173、Irgacure184和Irgacure651)均是r-HAPD体系的有效引发剂。在所用引发剂的浓度范围内(W_(PI)=0.01~0.05),O_2对r-HAPD光聚合的阻聚作用明显;两种r-HAPD的聚合速率和单体转化率均随
    
    张兴宏硕士学位论文
    反应型受阻胺呱吮衍生物(卜HAPD)光聚合动力学研究
    摘要
    辐照温度的升高而下降,其主要的原因归结为02的阻聚作用;
     2.在反应初期,r-HApD光聚合速率(dH厄t)与引发剂浓度的平方根c分和
    辐照光强的平方根叮,成正比,其规律与光聚合的动力学理论相吻合;
     3.利用稳态和非稳态相结合的方法,引发剂为Irgacure651,测定了两种光
    聚合体系的动力学常数(链增长速率常数k,和链终止速率常数k,)。
     对于MTMp体系,k,一0.03一o.65xlo3 L/mol·s一,,无,一0.006一o.94xlos
    L/m 01.5一,,k,和k,随着转化率的增加而减小,且k,的减小幅度明显大于k,。这
    表明聚合体系中的“凝胶效应”提前发生,粘度快速增大,并较早的大幅度地降
    低了k,,也在一定程度上降低了k,。
     对于ATMp体系,k,一0.17一2.40xl03 L/mol·s一,,k‘一0.17一9.35xlo,L/mol·s一’。
    k,在聚合早期随转化率的增长呈增长态势,而在转化率达到18%时开始变小,
    但减小的幅度不大;而kt在聚合早期(转化率<8%)亦呈增长态势,其后开始
    大幅度减小。这表明k;和气在光聚合过程中的变化规律是显著不同的。
     4.根据Arrhenius方程估算了卜HAPD体系的表观活化能和表观指前因子,
    结果表明:两种单体光聚合的表观活化能均为负值,如conv%=3,表观活化能
    EATMP和E~的值分别为一7.29kJ/mol和一8.49kJ/mol。说明升温对光聚合反应
    不利;而两种体系的表观指前因子的比值A,/可,很小,如conv.%一3,A,/A厂-
    0.,25(ATM”)和A,/A尸‘,一0.073(MTMP),两比值相差一个数量级。这可能是
    由于MTMP单体为1,1一二取代单体,位阻效应较大所致。
     三.在不同单体配比条件下,研究了单体MA(Ml)与卜HAPD(MZ)光
    引发共聚合及其动力学特性,并用’H一MR对共聚物进行了表征。结论如下:
     1.根据MA/ATMP和MA/APMP共聚物组成的测定结果,利用Mayo一Lewis
    积分法计算的竞聚率rl和r2如下:
     M户以ATMP共聚体系:0.51     M户JAPMP共聚体系:0.82    并用扩展的Kelen一Tudos方法进行了对比计算,结果如下:
     M户以ATMP共聚体系:r;=0.53,r2=1 .31
    
    张兴宏硕士学位论文反应型受阻胺呱陡衍生物(r·HAI〕D)光聚合动力学研究摘要
     MA/APMP共聚体系:rl=0.82,r:=0.52
    两种计算方法所得结果一致。
     2.根据‘H一NMR谱表征了共聚产物的立构规整性,并计算了主链的序列分
    布。结果表明:M刀ATMP和MA/A PMP两种体系均为典型的无规共聚情况;序
    列分布的定量计算表明:不同摩尔配比下的共聚物的微观结构是不相同的。随着
    fl的增加,MA生成的各多单元体在主链上增多,整个分子链的序列呈MA的各
    多单元体被ATMP(或APMP)的各种单体单元“分隔”开来的情况。共聚物的
    微观结构和序列分布主要决定于共聚单体的活性和投料量。
     3.计算结果表明:合成含有少量卜HAPD的丙烯酸酷类聚合物以实现其树
    脂的原位(in、itu)光稳定化是可行的。
     4.计算了两种r一HAPD单体的Q、e值。ATMP的QZ、e:值分别为0.58和
    0.04,APMP的QZ、e:值分别为0.30和一0.28。
     四.通过ESR手段定量测定了r一HAPD光聚合体系中稳定氮氧自由基的含
    量。结果表明:聚合体系中稳定氮氧自由基的含量随时间增加呈先增加再减小最
    终增加的趋势(ATMP体系:>N一o.的浓度约在10一7 mol/g的数量级;MPMP体
    系:>N一o.的浓度约在10一gmol/g的数量级)。
     光聚合过程中>N一O.的原位生成可分为
In this thesis, the kinetic performance of photo-induced polymerization of Reactive Hindered Piperidinol Derivatives (r-HAPD) was studied, and the photo-induced bulk and solution polymerization of r-HAPD has been investigated by using differential photo-calorimeter (DPC) and ESR technique respectively. From the view of utility, we have also studied the copolymerization performance of r-HAPD with methacrylate(M A).
    The complex kinetic behaviors of r-HAPD in the polymerization were opened out by probing into the mechanism of controlled free radical photopolymerization of r-HAPD. We first developed a new route to realize the controlled /"living" free radical photopolymerization of acrylate monomer.
    The following is main conclusions of our work:
    1. Four r-HAPD: 4-methacryloyl-l,2,2,6,6-pentamethyl-piperidinyl(MPMP), 4-acryl oyl-1,2,2,6,6-pentamethyl-piperidinyl (APMP), 4-methacryloyl-2,2,6,6-tetrame-thyl-piperidinyl (MTMP) and 4-acryloyl-2,2,6,6-tetramethyl-piperidinyl (ATMP) were synthesized by direct transesterification between hindered piperidinol and a, p-unsaturated ester. Two r-TEMPO: 4-methacryloyloxy-2,2,6,6-tetramethyl-pipe-ridinyl-1-oxy (MMA-TEMPO) and 4-acryloyloxy-2,2,6,6-tetramethyl-piperidinyl-l-oxy(MA-TEMPO) were synthesized and characterized by FTIR, 'H-NMR, ESR, DTA and elemental analysis. The results prove the structure of r-TEMPO.
    2. By using DPC technique, the kinetics of photo-induced bulk polymerization of
    
    
    
    r-HAPD have been systematically studied in melting state under different reaction conditions. The results are summarized as follows:
    1) The rate of r-HAPD photopolymerization is greatly influenced by the reaction conditions such as the type and concentration of photoinitiator, temperature, atmosphere as well as light intensity, and is directly proportional to the square root
    of photoinitiator concentration and incident light intensity , which is in
    accordance with the theoretical expectation. The inhibition of O_(2) is obviously influence on the polymerization of r-HAPD.
    2) The kinetic parameters ( kp and k_(t)) of r-HAPD photopolymerization have been
    determined by DPC technique at the steady state and the non-steady state. Using Irgacure651 as a photoinitiator, for ATMP, kp kept invariable but kt decreased
    fast with the increase of MTMP conversion (kp= 0.03~0.65xl03 L/mol-s-1, k,= 0.006-0.94 x 105 L/mol-s~(-1)), for ATMP, kp increased with ATMP conversion in the
    low conversion stage (< 18 %), and then decreased slowly, kt increased in the
    low conversion stage (< 8 %) and then decreased rapidly with the increase of ATMP conversion, but kt was much larger than kp(kp = 0.17~2.40xl03 L/mol-s-1,
    k = 0.17-9.35 xl05 L/mol-s-1). kp and kt of MTMP were less than those of ATMP
    shows that ATMP have the excellent reactivity.
    3) The apparent activation energy was calculated and apparent pre-exponential factor of r-HAPD photopolymerization in the low conversion in accordance with Arrhenius equation. The negative value of apparent activation energy (such as Conv.% = 3, the apparent activation energy of ATMP and MTMP was -7.29 kJ/mol and -8.49 kJ/mol respectively) shows that high temperature is disadvantaged to the polymerization of r-HAPD, and the little value of apparent pre-exponential factor shows (such as Conv.% = 3, of ATMP and MTMP
    is 0.125 and 0.073 respectively) that the pre-exponential factor of kt is much
    
    
    
    larger than that of kp .
    3. MA/ATMP and MA/APMP copolymers were prepared by the photo-induced solution copolymerization of MA (M_(1)) with r-HAPD (M2) in toluene. The reactivity ratios for these monomers were measured by running a series of reactions at various initial monomer ratios, and compositions of the copolymers determined by !H-NMR. The reactivity ratios of MA/ATMP and MA/APMP were 0.51 < r_(1) < 0.56, 1.03 < r2< 1.41 and 0.82 < r_(1) < 0.88, 0.47 < r2< 0.55 respectively from Mayo-Lewis method. The results from Extended Kelen-Tudos method were r_(1) = 0.53, r2= 1.31 (MA/ ATMP) and r_(1) = 0.82, r2 =
引文
[1] 潘江庆.受阻胺光稳定剂[J],高分子通报,1992(3):138-146
    [2] Mika V., Preisler L. and Sodomka J., The quantitative determination of hindered amine light stabilizers in polyolefins[J], Polym. Degrad. Stab., 1990, 28(2): 215
    [3] Carlsson D. J., Can Zhang and Wiles D. M., Polypropylene photostabilization by hindered amines in the presence of acidic species [J], 3. Appl. Polym. Sci., 1987, 33(3): 875
    [4] Bowling K., Adams J. and Struck S., A Review of Radiation Curing: New Surface Control Additives [J], J. Coat. Techn., 1996, 68(854): 91
    [5] Ohnishi S. and McConnell H. M., The lntramolecular Insertion Mechanism of α-Haloneopenty Llithium[J]. J. Am. Chem. Soc., 1965, 87: 2293
    [6] Georges M. K., Veregin R. P. N. and Kazmaier P. M., Narrow Molecular Weight Resins by a Free Radical Polymerization Process [J], Maeromolecules, 1993, 26: 2987-2988.
    
    
    [7] Pan Jiang-Qing and Song Yan, Study of HALS by Magnetic Resonance [J], Polym. Deg. Stab., 1991(32): 79-92
    [8] Gugumus F., Mechanism and Kinetics of Photostabilization of Polyolefins with N-methylated HALS[J], Polym. Deg. Stab., 1991, 34: 205
    [9] Gugumus F., Current Trends in Mode of Action of Hindered Amine Light Stabilizers [J], Polym. Deg. Stab., 1993, 40: 167
    [10] Gugumus F., Critical Stabilizer Concentration in Oxidizing Polymers[J], Polym. Deg. Stab., 1994, 46: 123
    [11] Gugumus F., The Performance of Light Stabilizers in Accelerated and Natural Weathering[J], Polym. Deg. Stab., 1995, 50: 101
    [12] 刘仲文,潘江庆,崔孟元.苯乙烯-甲基丙烯酸四甲基哌啶醇酯共聚物(PDS)与紫外吸收剂并用对聚丙烯光防护行为研究[J],高分子学报,1989,6:702
    [13] 刘仲文,潘江庆,崔孟元.Study of the Synergistic Effect of Bisfunctional Hindered Amine with UV Absorbers[J],感光科学与光化学,1990,1:36
    [14] Hawker C. J., Bosman A W. and Eva Harth. New Polymer Synthesis by Nitrixide Mediated Living Radical Polymerizations[J], Chem. Rev., 2001, 101: 3661
    [15] Hawker C. J., Barclay G. G., and Orellana A., Initiating Systens for Nitroxide -Mediated "Living" Free Radical Polymerization: Synthsis and Evaluation [J], Macromolecules, 1996, 29(16): 5245-5254.
    [16] 刘晓暄.反应型受阻胺(r-HALS)光聚合动力学及聚合物涂层原位光稳定化研究[M],中山大学博士论文(编号:97481005),2001年12月,p.125-143.
    [17] Veregin R. P. N., Georges M. K. and Kazmaier P. M., Free Radical Polymeri-zation for Narrow Polydispersity Resins: Election Spin Resonance Studies of the Kinetics and Mechanism [J], Macromolecules, 1993, 26: 5316
    [18] Wan X H, Tu Y F and Zhou Q F. Free Radical Polymerization for Narrow Polydisp- ersity Resins: Election Spin Resonance Studies of the Kinetics and Mechanism[J], Polym. Polym. Inter, 2000, 49(3): 243-247.
    [19] 陈小平,丘坤元.“活性”/控制自由基聚合的研究进展[J],化学进展,2001,13(3):224-233.
    [20] 张兆斌,应圣康.原子转移自由基聚合及可控自由基聚合[J],高分子通报,1999,46(4):138-144.
    [21] Fisher A, Brembilla A and Lochon P. Nitroxide-Mediated Radical Polymerization of 4-Vinylpyridine: Study of the Pseudo-Living Character of the Reaction and Influence of Temperature and Nitroxide Concentration [J], Macromolecules, 1999, 32: 6069-6072.
    [22] Ding X Z, Fischer A and Brembilla A., Behavior of 3-Vinylpyridine in Nitroxide-Mediated Radical Polymerization: The Influence of Nitroxide Concentration, Solvent, and Temperature [J], J. Polym. Sci., Part A: Polym.
    
    Chem., 2000, 38: 3067-3073
    [23] Ioanna Chalari, Stergios Pispas and Nikos Hadjichristidis. Controlled Free-Radical Polymerization of 2-Vinylpyridine in the Presence of Nitroxides [J]. J. Polym. Sci., Part A: Polym. Chem., 2001, 39: 2889-2895.
    [24] Listigovers N. A., Georges M. K. and Odell P. G.. Narrow-Polydispersity Diblock and Triblock Copolymers of Alkyl Acrylates by a "Living" Stable Free Radical Polymerization [J], Macromolecules, 1996, 29(27): 8992-8993.
    [25] Hawker C. J., Elce E. and Dao J. L., Well-Defined Random Copolymers by a "Living" Free-Radical Polymerization Process [J], Macromolecules, 1996, 29: 2686-2688.
    [26] Fukuda T., Terauchi T. and Goto A., Well-Defined Block Copolymers Comprising Styrene-Acrylonitrile Random Copolymer: Sequences Synthesized by "Living" radical Polymerization [J], Macromolecules, 1996, 29: 3050-3052.
    [27] Georges M. K., Hamer G. K. and Listigovers N. A., Block Copolymer Synthesis by a Nitroxide Mediated Living Free Radical Polymerization Process [J], Macromolecules, 1998, 31: 9087-9089.
    [28] Fukada T., Terauchi T. and Goto A., Mechanisms and Kinetics of Nitroxide-Controlled Free Radical Polymerization [J], Macromolecules, 1996, 29: 6393-6398.
    [29] 杨玉良,何军坡,华峰君.自由基聚合的调控及其在聚合物分子设计中应用[J],化学学报,2001,59(3):301-310.
    [30] Souaille M. and Fischer H., Kinetics Conditions for Living and Controlled Free Radical Polymerizations Mediated by Reversible Combination of Transient Propagating and Persistent Radicals: The Ideal Mechanism [J], Macromolecules, 2000, 33: 7378-7394.
    [31] He J P, Zhang H D and Yang Y L. Monte Carlo Simulation of Kinetics and Chain Length Distributions in Living Free Radical Polymerization [J], Macromolecules, 1997, 30: 8010-8018.
    [32] Aloxei A Gridnev., Hydrogen Transfer Reactions of Nitroxides in Free Radical Polymerizations [J], Macromolecules, 1997, 30: 7651-7654.
    [33] Goto A. and Fukuda T. Kinetic Study on Nitroxide-Mediated Free Radical Polymerization of tert-Butyl Acrylate [J], Macromolecules, 1999, 32(3): 618-623.
    [34] Greszta D. and Matyjaszewski K., Mechanism of Controlled/ "Living" Radical Polymerization of Styrene in the Presence of Nitroxyl Radicals. Kinetics and Simulations [J], Macromolecules, 1996, 29: 7661-7670.
    [35] Fischer H., The Persistent Radical Effect in "Living" Radical Polymerization [J], Macromolecules, 1997, 30(19): 5666-5672.
    
    
    [36] Fischer H., The Persistent Radical Effect in Controlled Radical Polymerizations [J], J. Polym. Sci. Part A: Polym. Chem., 1999, 37: 1885-1901.
    [37] Souaille M., Fischer H., Living Free Radical Polymerizations Mediated by Reversible Combination of Transient Propagating and Persistent Nitroxide Radicals: The Role of Hydroxylamine and Alkene Formation [J], Macromolecules, 2001, 34: 2830-2838.
    [38] Catala I. M., Bubel F. and Hammouch O., Living Radical Polymerization: Kinetic Results [J], Macromolecules, 1995, 28: 8441-8443.
    [39] Veregin R. P. N., Odell P. G. and Michalak L., M. The Pirotal Role of Excess Nitroxide Radical in Living Free Radical Polymerizations with Narrow Polydispersity [J], Macromolecules, 1996, 29: 2746-2754.
    [40] Veregin R. P. N., Odell P. G. and Michalak L. M., Mechanism of Rate Enhancement Using Organic Acids in Nitroxide-Mediated Living Free Radical Polymerizations [J], Macromolecules, 1996, 29: 4161-4263.
    [41] Goto A, Fukada T., Effect of Radical Initiator on Polymerization Rate and Polydispersity in Nitroxide-Controlled Free Radical Polymerization. [J], Macromolecules, 1997, 30: 4272-4277.
    [42] 杨玉良,何军坡,张红东.提高活性自由基聚合反应速率的理论与实践[M],’99年高分子学术论文报告会论文集(预印本)上册,中国化学会主办,May5~14,1999,p.262
    [43] He J P, Chen J M and Yang Y L. Rate Enhancement of Nitroxide Mediated Living Free Radical Polymerization by Continuous Addition of Initiator [J], Polymer, 2000, 41: 4573-4577
    [44] Scaiano J. C., Connolly T. J. and Mohtat N., Exploratory study of the quenching of photosensitizes by initiators of free radical "living" polymerization [J], Can. J. Chem., 1997(75): 92-97
    [45] Hu S., Malpert, J. Yang H. X. and Neckers D. C., Exploring chromophore tethered aminoethers as potential photoinitiators for controlled radical polymerization [J], Polymer, 2000(41): 445-452
    [46] Step E. N. and Turro N. J., Mechanism of Polymer Stabilization by Hindered Amine Light Stabilizers(HALS). Model Investigation of the Interaction of Proxy Radicals with HALS Amines and Amino Ethers [J], Macromolecules, 1994, 27, 2529-2539
    [47] Ajayaghosh A. and Francis R., Narrow Polydispersed Reactive polymers by a Photoinitiated Free radical polymerization of Methyl Methacrylate[J], Macromolecules, 1998, 31, 1436-1438
    [48] Veregin R. E N., Georges M. K. and Hamer G. K., Mechanism of Living Free Radical Polymerization with Narrow Polydispersity: Electron Spin Resonance
    
    and Kinetic Studies [J], Macromolecules, 1995, 28: 4391-4398.
    [49] Xiaoxuan Liu, Guangguo Wu, Jianwen Yang, Yu Chen, Zhaohua Zeng and Yonglie Chen. Reactive-HALS Ⅱ: Photo-polymerizing and UV-curing Kinetics of APMP and MPMP Proceedings of 12th International Symposium on Fine Chemistry and Functional Polymers (FCFP-Ⅻ), Aug. 5-8, 2002, Lanzhou, China, Chemical Research in Chinese Universities, 18(3): 159-160

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700