用户名: 密码: 验证码:
基于SAR成像的海面舰船目标特征参数估计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海面舰船类别属性的判断,对国家的海防安全和航运交通管理具有重要的意义。合成孔径雷达(Synthetic Aperture Radar,SAR)由于具有全天时、全天候的工作能力和精细的分辨能力,在舰船目标的分类和识别中发挥了巨大作用。利用SAR成像提取的舰船目标特征参数,是对其进行分类识别的重要依据。本文针对星载/机载SAR对海侦察监视的应用背景,从四个方面对高分辨率成像条件下舰船目标特征参数估计技术开展了研究。
     考虑到研究中能够获得的实测舰船SAR图像在数量和质量上的不足,采取主要以电磁散射建模仿真数据开展算法研究,并辅以实测图像验证的研究途径。因此,首先对现有的电磁散射建模方法和典型的建模软件进行了概括总结,并对本文所采用的舰船-粗糙面复合模型以及所采用的混合建模技术进行了说明。为了验证该研究途径的可行性,利用几个模型算例,将仿真的雷达散射截面积和SAR图像与经典建模软件的仿真结果以及实测数据成像结果进行了比较。
     其次,针对海面舰船目标SAR图像中存在噪声和海浪杂波干扰的问题,研究了以Capon谱估计为主要手段的SAR图像预处理技术。将Capon方法与其他常用谱估计技术进行了比较,并且利用Monte Carlo仿真分析了该方法在提高散射中心分辨率和图像目标-杂波比方面的性能。同时,提出一种迭代式的实现方法,缓解了传统二维Capon谱估计内存消耗过大的问题。进一步地,针对较低目标-杂波比的图像,为提高姿态角估计的稳健性,提出了基于二值图像Radon变换角度熵的姿态角估计技术。
     第三,为了研究不同海况条件下由海面反射引起的电磁波多径传播效应对舰船图像及其特征参数估计的影响,在海面满足基尔霍夫近似条件并具有特定波高-斜率联合概率密度函数的假设下,建立了粗糙面上方散射中心雷达回波中多径延迟量的概率模型。在实验部分,分析了该概率模型与散射中心高度,雷达视角,以及海面特征参数之间的关系。作为应用,分别将其用于二维和三维场景下海面舰船目标雷达成像的特征参数估计,并结合海况条件给予不同的处理。
     最后,针对从SAR图像中提取的舰船区域长度、宽度和姿态角等二维几何参数存在不确定性,而基于散射中心的三维重构在舰船像存在散焦时又难以开展的问题,给出了一种基于轮廓的舰船目标三维几何特征估计方法。该方法以多幅已知俯仰角的舰船目标SAR图像为基础,利用特征椭圆概括出舰船像的二维几何特征,然后通过重构这些椭圆的三维目标椭球,估计出舰船的三维尺寸和成像雷达的方位角。在实验部分,利用Monte Carlo仿真对影响算法性能的主要因素进行了分析,然后应用多个不同类别舰船模型的仿真SAR图像开展特征参数估计和目标分类实验,对算法的有效性进行了验证。
Ship target identifiation is of great importance for the national coastline defenseand the shipping traffic management. With the fine resolution in all-day, all-weatherconditions, Synthetic Aperture Radar (SAR) plays an important role in the classificationand recognition of sea ships. To achieve this goal, a variety of ship features areextracted from SAR images. This dissertation, against the background of sea surfacereconnaissance and surveillance by using high resolution spaceborne/airborne SAR,focuses on the ship feature parameter estimation in the following four aspects.
     As regarding to the inadequacy in both quantity and quality of measured images,this dissertation uses simulated ones generated by the methods of electromagnetic (EM)modeling for most experiments, which are followed by some validations with measuredimages. For the purpose of self-containedness, some typical techniques of EM modelingand popular softwares are introduced. The composite models of the ships and the roughsurfaces used in this dissertation are then illustrated, as well as the hybrid method of EMmodeling. To testify the validity of the applied approach, the simulated radar crosssection and SAR images are provided and compared with those generated by the classicsoftware and the real measured data.
     Secondly, in order to suppress the disturbance of the noise and sea clutters in SARimages, the image pre-processing based on the Capon spectral estimation method isstudied. The Capon’s method is compared with other spectral estimation techniques.Subsenquently, its performances in improving the resolution of scattering centers andthe Target-to-Clutter Ratio (TCR) of SAR images are examined through the MonteCarlo simulations. Moreover, to solve the severe problem of memory comsuption, aniterative way to realize the two-dimensional (2D) Capon is put forward. Meanwhile, forthe SAR images with low TCR, a robust pose estimation algorithm is presented basedon the angle entropy of the Radon transform of the bi-valued images.
     Thirdly, to study the effect of multipath propagation on the ship image and featureparameter estimation under different sea conditions, a probability model is deduced forthe radar echo multipath delays of the scattering centers on a rough surface. In thismodel, the sea is considered as a rough surface satisfying the Kirchhoff approximationand described by a certain elevation-slope probability density function. Experimentally,we analyzed the relationship between the model and the factors such as the scatteringcenter height, the radar elevation angle, and the sea characteristic parameters. Themodel is then used in the feature parameter estimation in both2D and three-dimensional(3D) problems, with different modifications for different sea conditions.
     In the end, to eliminate the uncertainty in the2D geometrical features, such as thelength, width, and pose angle, an outline-based method is proposed to estimate the3Dfeatures for ship images with unfocused scattering centers. The method utilizes morethan one image with known radar elevation angles and extracts the feature ellipses ofthe ship outlines. By reconstructing the objective ellipsoid of these ellipses, one canfinally get the3D geometrical features of the ship, including the size in each dimensionand the radar azimuth while imaging. The performance of the algorithm is analyzedwith Monte Carlo simulations. Moreover, feature estimation and target classificationexperiments are carried out with simulated images of several kinds of ships, whichtestify the effectiveness of the algorithm.
引文
[1]乔俊果.21世纪美英海洋科学战略比较研究[J].海洋信息,2011,(2):25~28.
    [2]杨文鹤.中国海洋21世纪议程[EB/OL].http://www.npc.gov.cn/huiyi/lfzt/hdbhf/2009-10/31/content_1525058.htm,2009-10-31/2012-12-08.
    [3] Christoffersen T. Klassifisering av skip I SAR-bilder[R]. FFI/Notat-91/7046,Norwegian Defence Research Establishment, Kjeller, Norway,2007.
    [4] Margarit G, Tabasco A. Ship Classification in Single-Pol SAR Images Basedon Fuzzy Logic[J]. IEEE Trans. Geoscience and Remote Sensing,2011,49(8):3129~3138.
    [5] Gagnon L, Klepko R. Hierarchical Classifier Design for Airborne SAR Imagesof Ships[C].//SPIE Proc.#3371, Conference Automatic Target Recognition VIII,Orlando,1998.
    [6] Morse A J, Protheroe M A. Vessel Classification as Part of An AutomatedVessel Traffic Monitoring System Using SAR Data[J]. International Journal of RemoteSensing,1997,18(13):2709~2712.
    [7]张晰,张杰,纪永刚,孟俊敏.基于结构特征的SAR船只类型识别能力分析[J].海洋学报,2010,32(1):146~152.
    [8] Panagopoulos G, Tsagaris V, Anastassopoulos V. Using Synthetic ApertureRadar Data to Detect And Identify Ships[C].//SPIE Newsroom, doi:10.1117/2.1200802.1062.
    [9] Pastina D, Spina C. Multi-feature Based Automatic Recognition of ShipTargets in ISAR[J]. IET Radar, Sonar and Navigation,2009,3(4):406~423.
    [10]黄培康.雷达目标特征信号[M].北京:宇航出版社,1993.
    [11]汤子跃,张守融.双站合成孔径雷达系统原理[M].北京:科学出版社,2003.
    [12]兰天.滑动聚束式SAR技术研究[D].长沙:国防科学技术大学,2009.
    [13]朱良,郭巍,禹卫东.合成孔径雷达卫星发展历程及趋势分析[J].现代雷达,2009,31(4):5~10.
    [14]韦秀光,朱庆明.国外新型星载SAR系统概况[J].雷达与探测技术动态,2012,(5):1~7.
    [15]张红,王超,张波,吴樊,闫冬梅.高分辨率SAR图像目标识别[M].北京:科学出版社,2009.
    [16]计科峰.SAR图像目标特征提取与分类方法研究[D].长沙:国防科技大学,2003.
    [17] Wang Juan, Sun Lijie, Zhang Xuelan. Study Evolution of Ship TargetDetection and Recognition in SAR Imagery[C].//Proc.2009InternationalSymposiumon Information Processing, Huangshan, P R China, August2009:147~150.
    [18]单子力,王超,张红.基于优化活动轮廓模型的SAR影像海陆分割方法研究[J].计算机应用研究,2011,28(6):2339~2341.
    [19] Lopes A, Touzi R, Nezry E. Adaptive Speckle Filters and SceneHeterogeneity[J]. IEEE Trans.Geoscience and Remote Sensing,1990,28(6):992~1000.
    [20] Frost S V, et al. A Model for Radar Images and Its Application to AdaptiveDigital Filtering of Multiplicative Noise[J]. IEEE Trans. Pattern Analysis and MachineIntelligence,1982,4(2):157~166.
    [21] DeGraaf S R. SAR Imaging via Modern2-D Spectral Estimation Methods[J].IEEE Trans. Image Processing,1998,7(5):729~761.
    [22] Yadin E, Olmar D, Oron O, Nathansohn R. SAR Imaging Using A Modern2D Spectral Estimation Method[C].//2008IEEE Radar Conference, Rome, Italy,2008:368~373.
    [23] Duan C, Hu W, Du X. MVM Based SAR Image Processing for Ship PoseEstimation[C].//Proc.30th IGARSS, Honolulu, USA, July2010:2547~2550.
    [24]王正明,朱炬波等.SAR图像提高分辨率技术[M].北京:科学出版社,2006.
    [25]种劲松,欧阳越,朱敏慧等.合成孔径雷达图像海洋目标检测[M].北京:海洋出版社,2006.
    [26] Hurst M P, Mittra R. Scattering Center Analysis via Prony’s Method[J]. IEEETrans. Antennas Propagation,1987,35(8):986~988.
    [27] Potter L C, Chiang Da-ming. A GTD-based Parametric Model for RadarScattering[J]. IEEE Trans. Antennas and Propagation,1995,43(10):1058~1066.
    [28] Gerry M J, Potter L C, Gupta I J, A Merwe. A Parametric Model for SyntheticAperture Radar Measurements[J]. IEEE Trans. Antennas and Propagation,1999,47(7):1179~1188.
    [29] Potter L C, Moses R L. Attributed Scattering Centers for SAR ATR[J]. IEEETrans. Image Processing,1997,6(1):79~91.
    [30]汪雄良,王正明,赵侠,朱炬波.SAR超分辨成像的极大似然估计方法[C].第九届全国雷达学术年会论文集,烟台,2004:666~669.
    [31] Li J, Stoica P. Efficient Mixed-spectrum Estimation with Applications toTarget Feature Extraction[J]. IEEE Trans. Signal Processing,1996,44(2):281~295.
    [32] Tsao J, Steinberg B D. Reduction of Sidelobe and Speckle Artifacts inMicrowave Imaging: the CLEAN Technique[J]. IEEE Trans. Antennas and Propagation,1988,36(4):543~556.
    [33] Li J, Stoica P, Zheng D. An Efficient Algorithm for Two DimensionalFrequency Estimation[R]. Tech. Rep. CTH-TE-24, Chalmers Univ. Technol., Sweden,1994.
    [34] Hua Y. Estimating Two-dimensional Frequencies by Matrix Enhancement andMatrix Pencil[J]. IEEE Trans. Signal Processing,1992,40(9):2267~2280.
    [35] Sacchini J J, Steedly W M, Moses R L. Two-dimensional Prony Modeling andParameter Estimation[J]. IEEE Trans. Signal Processing,1993,41(11):3127~3137.
    [36]孙真真.基于光学区雷达目标二维像的目标散射特征提取的理论及方法研究[D].长沙:国防科技大学,2001.
    [37] Chen P, Huang W, Yang J, Fu B. Features of Merchant Ship inHigh-Resolution Spaceborne SAR Imagery[C].//Proc. of SPIE Vol.6419,64190V,2006.
    [38] Voice L I, Patton R, Myler H R. Multi-criterion Vehicle Pose Estimation forSAR-ATR[C].//SPIE conference on Algorithms for Synthetic Aperture Radar ImageryVI,1999:497~506.
    [39]计科峰,匡纲要,郁文贤.基于线性回归的SAR目标方位角估计方法[J].现代雷达,2004,26(11):26~29.
    [40] Meth R. Target/shadow Segmentation and Aspect Estimation in SyntheticAperture Radar Imagery[C].//SPIE conference on Algorithms for Synthetic ApertureRadar Imagery V,1998:188~196.
    [41]郭炜炜,杜小勇,胡卫东,郁文贤.基于稀疏先验的SAR图像目标方位角稳健估计方法[J].信号处理,2008,24(6):889~893.
    [42]焦李成,张向荣,侯彪,王爽,刘芳.智能SAR图像处理与解译[M].北京:科学出版社,2008.
    [43]夏应清等.超电大复杂目标RCS缩比模型预估方法[J].微波学报,2003,19(1):8~11.
    [44]李为民,石志广,付强.舰船目标雷达回波特征信号的建模与仿真[J].系统仿真学报,2005,17(9):2047~2050.
    [45] Gupta I J, Beals M J, Moghaddar A. Data Extrapolation for High ResolutionRadar Imaging[J]. IEEE Trans. Antennas and Propagation,1994,42(11):1540~1545.
    [46] Pisarenko V F. The Retrieval of Harmonics from a Covariance Function[J].Geophysics, J. Royal of Astronomical Society,1973,33:347~366.
    [47] Carriere R, Moses R L. High Resolution Radar Target Modeling Using aModified Prony Estimator[J]. IEEE Trans. Antennas Propogation,1992,40(1):13~18.
    [48] Krim H, Viberg M. Two Decades of Array Signal Processing Research: theParametric Approach[J]. IEEE Signal Processing Mag.,1996,13(4):67~94.
    [49] Schmidt R O. A Signal Subspace Approach to Multiple Emitter Location andSpectral Estimation[D]. Stanford: Stanford University,1981.
    [50] Bienvenu G, Kopp L. Adaptivity of Background Noise Spatial Coherence forHigh Resolution Passive Methods[C].//Proceedings of the ICASSP80, Denver, CO,1980:307~310.
    [51] Odendaal J W, Barnard E, Pistorius C W I. Two-dimensional SuperresolutionRadar Imaging Using the MUSIC Algorithm[J]. IEEE Trans. Antennas and Propagation,1994,42(10):1386~1391.
    [52] Roy R, Paulraj A, Kailath T. ESPRIT-A Subspace Rotation Approach toEstimation of Parameters of Cisoids in Noise[J]. IEEE Trans. Acoust., Speech, SignalProcessing,1986,34:1340~1342.
    [53]张贤达.现代信号处理(第二版)[M].北京:清华大学出版社,2002.
    [54] Capon J. High-resolution Frequency-wavenumber Spectrum Analysis[J]. Proc.IEEE,1969,57:1408~1418.
    [55] Li J, Stoica P. An Adaptive Filtering Approach to Spectral Estimation andSAR Imaging[J]. IEEE Trans. Signal Processing,1996,44(6):1469~1484.
    [56] Bi Z, Li J, Liu Zheng-she Liu. Super Resolution SAR Imaging via ParametricSpectral Estimation Methods[J]. IEEE Trans. Aerospace and Electronic Systems,1999,35(1):267~281.
    [57] Liu H W, Su H T, Shui P L, et al. Multipath Signal Resolving and Time DelayEstimation for High Range Resolution Radar[C].//Proc. of IEEE International RadarConference. Virginia: IEEE Press,2005:497~502.
    [58] Berizzi F, Diani M. Multipath Effects on ISAR Image Reconstruction[J].IEEE Trans. Aerospace and Electronic System,1998,34(2):645~653.
    [59] Garren D A, Goldstein J S, Obuchon D R, et al. SAR Image FormationAlgorithm with Multipath Reflectivity Estimation[C].//Proc. of IEEE InternationalRadar Conference. Philadelphia: IEEE Press,2004:323~328.
    [60] Blake L V.雷达距离性能分析[M].机械电子工业部第十四研究所译.南京:机械电子工业部第十四研究所,1990:251~256.
    [61] Burkholder R J, Pino M R, Obelleiro F. A Monte Carlo Study of theRough-sea-surface Influence on the Radar Scattering from Two-dimensional Ships[J].IEEE Antennas and Propagation Magazine,2001,43(2):25~33.
    [62]许小剑,姜丹,李晓飞.时变海面舰船目标动态雷达特征信号模型[J].系统工程与电子技术,2011,33(1):42~47.
    [63] He S Y, Deng F S, Chen H T, et al. Range Profile Analysis of the2-D TargetAbove a Rough Surface Based on the Electromagnetic Numerical Simulation[J]. IEEETrans. Antennas and Propagation,2009,57(10):3258~3263.
    [64]汤立波,李道京,吴一戎.单天线SAR运动舰船目标三维形状重构[J].遥感学报,2007,11(4):468~472.
    [65] Morita T, Kanade T. A Sequential Factorization Method for RecoveringShape and Motion form Image Streams[J]. IEEE Trans. Pattern Analysis and MachineIntelligence,1997,19(8):858~867.
    [66]张颖康,肖扬,马晓涛.基于刚体几何不变性的雷达目标运动路径拟合和三维优化重建方法[J].信号处理,2010,26(9):1371~1378.
    [67] Ferrara M, Arnold G, Stuff M. Shape and Motion Reconstruction from3D-to-1D Orthographically Projected Data via Object-image Relations[J]. IEEE Trans.Pattern Analysis and Machine Intelligence,2009,31(10):1906~1912.
    [68] Liu Z-S, Wu R, Li J. Complex ISAR Imaging of Maneuvering Targets via theCapon Estimator[J]. IEEE Trans. Signal Processing,1999,47(5):1262~1271.
    [69] Rigling B D, and Moses R L. Three-dimensional Surface Reconstruction fromMultistatic SAR Images[J]. IEEE Trans. Image Processing,2005,14(8):1159~1171.
    [70]金添,常文革.具有三维转动目标的ISAR成像新方法[J].系统工程与电子技术,2004,26(5):686~689.
    [71] Damini A, Haslam G E. Optimal SAR/ISAR Data Selection for ShipImaging[C].//Proc. EUSAR2000, Munich, Germany,23-25May2000:431~434.
    [72] Pastina D, Montanari A, Aprile A. Motion Estimation and Optimum TimeSelection for Ship ISAR Imaging[C].//Proc.2003IEEE Radar Conference,2003:7~14.
    [73]汪玲.逆合成孔径雷达成像关键技术研究[M].南京:南京航空航天大学,2006.
    [74]韩兴斌.基于空间谱域分析的雷达成像技术研究[M].长沙:国防科学技术大学,2006.
    [75] Li J, Liu Z S, Stoica P.3-D Target Feature Extraction via InterferometricSAR[J]. IEE Proceedings on Radar, Sonar, and Navigation,1997,144(4):71~80.
    [76] Wang G, Xia X, and Chen V C. Three-dimensional ISAR Imaging ofManeuvering Targets Using Three Receivers[J]. IEEE Trans. Imaging Processing,2001,10(3):436-447.
    [77] Xu X, Narayanan R M. Three-dimensional Interferometric ISAR Imaging forTarget Scattering Diagnosis and Modeling[J]. IEEE Trans. Image Processing,2001,10(7):1094~1102.
    [78] Given J A, Schmidt W R. Generalized ISAR-Part II: InterferometricTechniques for Three-dimensional Location of Scatterers[J]. IEEE Trans. ImageProcessing,2005,14(11), pp:1792~1797.
    [79]曹星慧,宋庆雷,姜岩,徐国栋.低轨卫星目标干涉ISAR三维成像方法[J].雷达科学与技术,2007,5(3):204~208.
    [80] Knaell K. Three-dimensional SAR from Curvilinear Apertures[C].//Proc. the1996IEEE National Radar Conference, Ann Arbor, Michigan,1996:220~225.
    [81] Li J, Bi Z, Liu Z-S, Knaell K. Use of Curvilinear SAR for Three-dimensionalTarget Feature Extraction[J]. IEE Proceedings of Radar, Sonar, Navigation,1997,144(5):275~283.
    [82] Ishimaru A, Chan T, Kuga Y. An Imaging Technique Using Confocal CircularSynthetic Aperture Radar[J]. IEEE Trans. Geoscience and Remote Sensing,1998,36(Compendex):1524~1530.
    [83] Bryant M L, Gostin L L, Soumekh M.3-D E-CSAR Imaging of a T-72Tankand Synthesis of Its SAR Reconstructions[J]. IEEE Trans. Aerospace and ElectronicSystems,2003,39(1):211~227.
    [84]宋千,李杨寰,梁福来,周智敏.圆迹合成孔径雷达成像分辨率分析[J].计算机仿真,2011,28(10):18~22.
    [85] Given J A, Schmidt W R. Generalized ISAR-Part II: InterferometricTechniques for Three-Dimensional Location of Scatterers[J]. IEEE Trans. ImageProcessing,2005,14(11):1792~1797.
    [86] Xu X, Narayanan R M. Enhanced Resolution in3-D Interferometric ISARImaging Using an Iterative SVA Procedure[C].//Proc. IGARSS '03, Vol.2, Toulouse,France, July2003:935~937.
    [87]吴仁彪,苏志刚,刘家学,刘杰.一种基于曲线SAR的三维目标特征提取与自聚焦新算法[J].遥感学报,2002,6(6):490~495.
    [88]苏志刚,彭应宁,王秀坛.曲线合成孔径雷达中散射点三维特征提取方法[J].清华大学学报(自然科学版),2005,45(7):747~950.
    [89]洪文.圆迹SAR成像技术研究进展[J].雷达学报,2012,1(2):124~135.
    [90]徐德伦,于定勇.随机海浪理论[M].北京:高等教育出版社,2001.
    [91] Tsang L, Kong J A, Ding K-H, Ao C O. Scattering of Electromagnetic Waves,Volume1: Theories and Applications[M]. New York: John Wiley&Sons, Inc.,2001.
    [92]匡磊.三维目标与随机粗糙面下垫面复合电磁散射的FDTD方法研究[D].上海:复旦大学,2007.
    [93]侯航.粗糙海面与电大目标复合电磁散射的时域分析[D].西安:西安电子科技大学,2011.
    [94]林风.粗糙海面电磁波散射与杂波特性分析[D].西安:西安电子科技大学,2007.
    [95] Tsang L, Kong J A, Ding K-H, Ao C O. Scattering of Electromagnetic Waves,Volume2: Numerical Simulations[M]. New York: John Wiley&Sons, Inc.,2001.
    [96] Mandelbrot B B. The Fractal Geometry of Nature[M]. San Francisco:Freeman,1983.
    [97] Falconer K. Fractal Geometry: Mathematical Foundations and Application[M].New York: John Wiley,1990.
    [98]郭立新,吴振森.考虑海谱分布的动态分形海面的电磁散射[J].电子学报,2001,29(9):1287~1289.
    [99]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [100]袁孝康.星载合成孔径雷达导论[M].北京:国防工业出版社,2003.
    [101]王长清.现代计算电磁学基础[M].北京:北京大学出版社,2005.
    [102]吴英华.计算电磁学的数值方法[M].北京:清华大学出版社,2006.
    [103]王秉中.计算电磁学[M].北京:科学出版社,2003.
    [104]黄培康,殷红成,许小剑.雷达目标特征[M].北京:电子工业出版社,2005.
    [105]何思远.目标与粗糙面复合电磁散射特性的MM-PO-UV混合算法建模
    [D].武汉:武汉大学,2009.
    [106] Wagner R L, Chew W C. A Study of Wavelets for the Solution ofElectromagnetic Integral Equations[J]. IEEE Trans. Antennas and Propagation,1995,43(8):802~810.
    [107] Steinberg B Z, Leviatan Y. On the Use of Wavelet Expansions in the Methodof Moments[J]. IEEE Trans. Antennas Propagation,1999,41(5):610~619.
    [108] Rius J M, Ferrando M, Jofre L. GRECO: Graphical ElectromagneticComputing for RCS Prediction in Real Time[J]. IEEE Antennas and PropagationMagazine,1993,35(2):7~17.
    [109]杨正龙,金林,李蔚清.基于GPU的图形电磁计算加速算法[J].电子学报,2007,35(6):1056~1060.
    [110] Liu P, Jin Y Q. The Finite-element Method with Domain Decomposition forElectromagnetic Bistatic Scattering from the Comprehensive Model of a Ship on and aTarget Above a Large Scale Rough Sea Surface[J]. IEEE Trans. Geoscience RemoteSensing,2004,42(5):950~956.
    [111] Kubické G, Bourlier C. A Fast Hybrid Method for Scattering from a LargeObject with Dihedral Effects Above a Large Rough Surface[J]. IEEE Trans. Antennasand Propagation,2011,59(1):189~198.
    [112] Zhang Y, Yang Y E, Braunisch H, Kong J A. Electromagnetic WaveInteraction of Conducting Object with Rough Surface by Hybrid SPM/MoMTechnique[J]. PIER22: Progress Electromagn. Res.,1999, vol.22:315~335.
    [113]刘薇.随机粗糙面及其上方目标电磁散射的混合算法研究[D].成都:电子科技大学,2011.
    [114]徐霖.粗糙(海)面及其上方目标复合电磁散射建模研究[D].西安:西安电子科技大学,2008.
    [115]叶红霞.随机粗糙面与目标复合电磁散射的数值计算方法[D].上海:复旦大学,2007.
    [116]杜小勇.稀疏成份分析及在雷达成像处理中的应用[D].长沙:国防科学技术大学,2005.
    [117] Shan T J, Wax M, Kailath T. Adaptive Beamforming for Coherent Signalsand Interference[J]. IEEE Trans. Acoust., Speech, Signal Processing,1985,33:527~536.
    [118] Williams R T, Prasad S, Mahalanbis S K, et al. An Improved SpatialSmoothing Technique for Bearing Estimation in a Multipath Environment[J]. IEEETrans. Acoust., Speech, Signal Processing,1988,36:425~432.
    [119] Gershman A B, Hua Y, Cheng Q (Edit). High-resolution and Robust SignalProcessing[M]. New York: Marcel Dekker,2004.
    [120] Kay S M, Marple S L. Spectrum Analysis: A Modern Perspective[J]. Proc.IEEE,1981,69:1380~1419.
    [121]王勇,姜义成.CAPON方法在ISAR成像中的应用[J].哈尔滨工业大学学报,2007,39(11):1751~1755.
    [122] Johnson D H, Dudgeon D E. Array Signal Processing-Concepts andTechniques[M]. Upper Saddle River, NJ: Prentice Hall,1993.
    [123] Burg J P. The Relationship Between Maximum Entropy Spectra andMaximum Likelihood Spectra[J]. Geophysics,1972,37(2):375~376.
    [124]贺治华,黎湘,张旭峰,庄钊文.基于MUSIC算法的GTD模型参数估计[J].系统工程与电子技术,2005,27(10):1685~1688.
    [125] Malioutov D M. A Sparse Signal Reconstruction Perspective for SourceLocalization with Sensor Arrays[D]. Boston: Northeastern University,2001.
    [126]唐马可.基于MUSIC算法的空间谱估计技术研究[D].重庆:重庆大学,2008.
    [127] Stoica P, Jakobsson A, Li J. Matched-filterbank Interpretation of SomeSpectral Estimators[J]. Signal Processing,1998,66(1):45~59.
    [128] Jakobsson A, Stoica P. Combining Capon and APES for Estimation ofSpectral Lines[J]. Circuits Systems Signal Processing,2000,19(2):159~169.
    [129]川又政征,樋口龙雄著,薛培鼎,徐国鼐译.多维数字信号处理[M].北京:科学出版社,2003.
    [130]王亮,练有品,周智敏,宋千.抑制多径干扰的UWB SAR成像研究[J].信号处理,2007,23(3):403~406.
    [131]郭立新,王运华,吴振森.修正双尺度模型在非高斯海面散射中的应用[J].电波科学学报,2007,22(2):212~218.
    [132] Huang N E, Long S R, Bliven L F, et al. The Non-Gaussian Joint ProbabilityDensity Function of Slope and Elevation for a Nonlinear Gravity Wave Field[J]. Journalof Geophysical Research,1984,89(C2):1961~1972.
    [133] Srokosz M A. On the Joint Distribution of Surface Elevation and Slopes for aNonlinear Random Sea, with an Application to Radar Altimeter[J]. Journal ofGeophysical Research,1986,91(C1):995~1006.
    [134] Kerr D E, Ed.. Propagation of Short Radio Waves[C].//M.I.T. RadiationLaboratory Series, Vol.13. New York: McGraw-Hill,1951.
    [135]苏步青,华宣积.应用几何教程[M].上海:复旦大学出版社,1990:54~56.
    [136]高建军,宿富林,徐国栋.ISAR成像中多径效应的消除[J].系统仿真学报,2008,20(12):3233~3236.
    [137] Saunders S. Jane’s Fighting Ships (2004-2005)[M]. UK: Jane’s InformationGroup Limited, Sentinel House,2004.
    [138] Polyanin A D, Manzhirov A V. Handbook of Mathematics for Engineers andScientists[M]. Boca Raton: Chapman&Hall/CRC,2007:107~110.
    [139] Timothy J R. Fuzzy Logic with Engineering Applications (2Ed.)[M].England: John Wiley&Sons Ltd.,2004:362~430.
    [140] Liu Z S, Li H, Li J. Efficient Implementation of Capon and APES forSpectral Estimation[J]. IEEE Trans. Aerospace and Electronic Systems,1998,34(4):1314~1319.
    [141] Larsson E G, Stoica P. Fast Implementation of Two-dimensional APES andCapon Spectral Estimators[J]. Multidimensional Systems and Signal Processing,2002,13:35~53.
    [142]李瑞,李晓明,董晔.STAP中的协方差矩阵求逆快速算法研究[J].计算机仿真,2011,28(2):25~28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700