用户名: 密码: 验证码:
基于分布式光纤布里渊频移的液体压力检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于分布式光纤布里渊频移的传感器不仅具有一般光纤传感器特有的防爆、耐候等特点,而且可以实现数十公里的分布式多参数测量,较适用于井下工作要求。该技术在温度和形变测量方面,已经成功应用于某些大型工业结构和建筑的健康监测,然而,在液体压力检测方面却鲜有报道,更未见用于井下压力参数的直接测量。因此,本文以油田重要地质参数——压力监测为背景,研究基于分布式光纤布里渊频移的液体压力检测技术。
     在分析了分布式光纤布里渊频移测量原理和方法的基础上,本文首先构建了基于光纤受激布里渊散射(SBS)的布里渊光时域分析(BOTDA)实验平台。在不同脉冲宽度入射光下,对该实验平台所测得的布里渊散信号进行洛仑兹拟合优度评估;并与商用布里渊光时域反射计(BOTDR)作了关于散射信号线宽的比较分析,从而验证了该实验平台比BOTDR具有更高的布里渊频移测量精度。该实验平台为本文后续工作的主要实验载体。
     基于BOTDA技术,本文对两组不同裸光纤进行了布里渊频移的液体压力响应实验。实验表明,布里渊频移与光纤所受到的压力存在负线性关系,对于本文实验所用的G652标准单模裸光纤,其比例系数约为-0.742MHz/MPa。并且,该结果与基于块状硅玻璃的理论推导结果基本一致。此实验和分析验证了光纤布里渊频移在压力作用下的线性敏感特性,为利用基于分布式光纤布里渊频移的传感器进行液体压力检测奠定了基础。
     为了跟一般情况下光纤不受径向应力时的布里渊频移与光纤应变关系进行比较和统一,本文还设计了一复合力学实验,用于解耦压力导致的光纤轴向应变和径向应变,从而获得了布里渊频移同时与光纤轴向应变和径向应变关系模型的数学表达式。实验结果显示,光纤布里渊频移是这两种应变复合作用的结果,并与这两种应变都成线性关系,但它们的比例系数却存在很大差异,其中轴向应变系数实验值为0.053MHz/μ,径向应变系数实验值为0.029MHz/μ。此实验结论扩展了光纤布里渊频移关于应变的传感理论,并为利用不同光纤护套实现不同压力灵敏度提供理论基础。
     基于上述布里渊频移与光纤轴向和径向应变的关系模型,本文进而通过数值分析和实验验证方法,量化分析了典型双层聚合物护套结构光纤的外层护套各参数对布里渊频移的温度灵敏度和压力灵敏度影响。分析表明:这两种灵敏度都能通过聚合物护套得以大大增强,其中,温度灵敏度与护套泊松比关系不大,而随着护套的弹性模量、厚度、热膨胀系数增加而增大;然而,压力灵敏度却随着护套弹性模量和泊松比增大而减弱,只能随着护套厚度增加而增强。这些分析为后续利用不同护套结构设计不同温度和压力灵敏度的分布式布里渊传感器提供依据和参考。
     虽然布里渊频移对压力敏感,但同时也对温度敏感,即压力和温度交叉敏感,而且在现场应用中又难以保持恒温环境。于是,本文利用上述不同护套结构的光纤具有不同压力和温度灵敏度系数的特点,设计了基于双通道分布式光纤布里渊频移的传感器,解决了压力和温度的交叉敏感问题,并实现了压力和温度的同时测量。而且,本文还对该类双通道布里渊传感器的测量误差进行了理论分析和设计质量评估,并得到了基于误差分析的设计准则。以本文所构建的双通道分布式光纤布里渊传感器为例,其理论压力精度和温度精度分别为0.256MPa和0.284°C,此结果对于30MPa左右的井下压力已达到高于1%的精度,而且通过护套的优化设计还可以实现更高精度。
     最后,本文在井下压力监测的实用化方面做了相关研究工作。不仅根据井下地层分层分块的特点,设计了井下准分布式光纤布里渊压力传感器方案;还根据井下空间狭长的特点,围绕传感探头的小型化做了相关实验和研究:一方面,对于光纤缠绕式传感探头,本文通过实验研究了光纤缠绕对背向布里渊散射信号强度的影响,其结果显示,对于普通单模光纤,为避免布里渊散射信号的强度受到明显影响,光纤缠绕的直径应大于30mm,即所设计的保护壳体的内径应大于30mm;另一方面,对于非缠绕式传感探头,提出了错位布里渊频移法以优化传感器在局部位置的最小可测量长度,使作为传感探头的光纤最短长度可由传统的1m缩短到30cm以下,并且提高被测量(温度或光纤应变)较小时的频谱拟合精度和测量精度。
The sensors which based on the Brillouin frequency shift (BFS) distributedalong the optical fibers have advantages of explosion-proof and weatherability, aswell as distributed sensing along dozens of miles. And they are comparativelysuitable for downhole applications. This technology has been widely employed inhealth mornitoring for many engineering infrastructures and architectures bypossessing the ability of sensing temperature and strain. However, there are fewreports on hydrostatic pressure measuring by this technology, and also it has notbeen introduced to pressure monitoring in downhole. Therefore, this work studieshydrostatic pressure detection technology based on the BFS distributed along theoptical fibers with the background of mornitoring an important geologic paremeter,i.e. pressure, for oil well.
     After studing the basic principle and method of measuring the BFS distributedalong the optical fibers, this paper sets up an experimental arrangement of Brillouinoptical time domain analysis (BOTDA) based on stimulate Brillouin scattering(SBS). The brillouin spectrums stimulated by different pulse-width are evaluated bygoodness of Lorentz fitting, and the full width at half maximum (FWHM) arecompared with a commercially available Brillouin optical time domain reflectory(BOTDR). And thus it is validated that this experimental arrangement has highprecision for BFS measurement. This experimental arrangement is the mainworkbench for the following work.
     Based on the BOTDA technology, this study carries out a trial on the responseof the BFS to pressure along two different bare fibers. The experimental resultshows that the BFS has a linear relation with the applied pressure, and thepropotional coefficient is-0.742MHz/MPa for the standard (G652) single modefibers (SMF). What’s more, this result has a good agreement with the theoreticalanalysis according to bulk silica glass. This experiment and analysis offers afoundation for pressure sensing based on the distributed FBS along optical fibers.
     To compare with the exist relation between the BFS and strain while the fiberssuffers no radial stress, this research designs a mechanical experiment to decouplethe axial strain and radial strain due to pressure along the fiber. This experiment gains the mathematical expression model of the relation between the BFS and bothaxial and radial strains. And the result shows that the BFS in fiber can be caused byboth strains, and has linear relations with the both strains. Yet, the propotionalcoefficients are different; the axial strain coefficient is0.053MHZ/μ, whereas theradial strain coefficient is0.029MHz/μ. This conclusion extends the relationbetween the BFS and strain, and can be a theretical basis for enhancing pressuresensitivity of the BFS by different coatings.
     Based on the relation model between the BFS and both axial and radial strains,it have been studied with theoretical and experimental anylysis that the influences ofthe fiber coatings on both the pressure sensitivity and temperature sensitivity of BFSwithin typical double coated fibers. The analysis shows that both the sensitivitiescan be enhanced by polymer coatings. The temperature sensitivity of the BFS growswith the Young’s modulus, thickness and thermal expansion coefficient of the outercoating and has neglegt relation with Poisson’s ratio of the coating. For pressuresensitivity, it decreases with the increasement of Youn’s modulus and Poisson’s ratioof the outer coating, and it can be enhanced by the increasement of the coatingthickness. This analysis can be a reference for designing senors with differenttemperature/pressure sensitivities by utilizing different fiber coatings.
     Although the BFS is sensitivitive to pressure, it is also sensitivitive totemperature. That is to say, the BFS has cross sensitivity to pressure and temperature.And it is hard to keep the temperature constant at field. Accordingly, this workdesigns a dual-path sensor based on the BFS distributed along optical fibers bymaking use of different coated fibers with different pressure/temperaturesensitivities. Thus it resolves the issue of cross-sensitivity between pressure andtemperature and can measure pressure and temperature simultaneously. Moreover, itevaluats the design quality of the sensor by error analysis, and gains the designprinciple to reduce error. For the dual-path sensor designed in this paper, itsprecision can reach theoretically up to0.256MPa and0.284°C, respectively. Thusthe precision of the pressure can be higher than1%of the pressure in downhole(more then30MPa), and it can be further enhanced by designing the configuration ofcoatings.
     Finally, this work has studied some practicalized researches for pressuredetection in downhole. It not only designs a quasi-distributed fiber Brillouin sensor for downhole pressure sensing, but also studies the small-size design for sensingheads since the space is nallow in downhole. One hand, it studies the effect of thefiber winding on the intensity of the Brillouin spectrum. To avoiding abviousweakening, the winding diameter should be larger than30mm for commensingle-mode fiber. On the other hand, it develops a technique for high spatialresolution locally at the sensing sections by dislocating the BFS. And the techniquecan enhance the frequency accuracy when the measurand (temperature or strain) issmall and the length is also smaller than the tradional spatial resolutions. It can thusreduce the spatial resolution from1m to30cm or less.
引文
[1]赵仲刚,杜柏林,逢永秀,等.光纤通信与光纤传感[M].上海:上海科学技术文献出版社,1993:382-447.
    [2]丁小平,王薇,付连春.光纤传感器的分类及其应用原理[J].光谱学与光谱分析,2006,26(6):1176-1178.
    [3] Grattan K T V, Sun T. Fiber optic sensor technology: an overview[J]. Sensorsand Actuators A: Physical,2000,82(1):40-61.
    [4]冰石,王刚.光纤传感器的构造特点,应用与分类[J].红外,2004(1):48.
    [5]王昊.关于光纤传感器的应用及发展方向探讨[J].才智,2012(32):48.
    [6]中国行业研究网.我国光纤传感器发展潜力广阔探讨[EB/OL].[2012-10-24]. http://www.chinairn.com/news/20121024/457470.html
    [7]中国行业研究网.未来5年连续分布式光纤传感器发展趋势预测[EB/OL].[2011-10-07]. http://www.chinairn.com/news/20111007/626934.html
    [8] Morey W W, Dunphy J R, Meltz G. Multiplexing fiber Bragg gratingsensors[C]. Distributed and Multiplexed Fiber Optic Sensors. InternationalSociety for Optics and Photonics,1992:216-224.
    [9] Dai Y, Liu Y, Leng J, et al. A novel time-division multiplexing fiber Bragggrating sensor interrogator for structural health monitoring[J]. Optics andlasers in engineering,2009,47(10):1028-1033.
    [10] Ko J, Kim Y, Park C S. Fiber Bragg grating sensor network based on codedivision multiple access using a reflective semiconductor optical amplifier[J].Microwave and Optical Technology Letters,2010,52(2):378-381.
    [11] Barnoski M K, Jensen S M. Fiber waveguides: a novel technique forinvestigating attenuation characteristics[J]. Applied Optics,1976,15(9):2112-2115.
    [12] Adachi S. Distributed optical fiber sensors and their applications[C]. SICEAnnual Conference,2008. IEEE,2008:329-333.
    [13] Juarez J C, Maier E W, Choi K N, et al. Distributed fiber-optic intrusionsensor system[J]. Journal of lightwave technology,2005,23(6):2081.
    [14] Tateda M, Horiguchi T. Advances in optical time domain reflectometry[J].Journal of Lightwave Technology,1989,7(8):1217-1224.
    [15] Rogers A J. Polarization-optical time domain reflectometry: A technique forthe measurement of field distributions[J]. Applied Optics,1981,20(6):1060-1074.
    [16] Dakin J P, Pratt D J, Bibby G W, et al. Temperature distribution measurementusing Raman ratio thermometry[C].29th Annual Technical Symposium.International Society for Optics and Photonics,1986:249-256.
    [17] Dakin J P, Pratt D J, Bibby G W, et al. Distributed optical fibre Ramantemperature sensor using a semiconductor light source and detector[J].Electronics Letters,1985,21(13):569-570.
    [18] Stierlin R, Ricka J, Zysset B, et al. Distributed fiber-optic temperature sensorusing single photon counting detection[J]. Applied optics,1987,26:1368-1370.
    [19] Soto M A, Nannipieri T, Signorini A, et al. Raman-based distributedtemperature sensor with1m spatial resolution over26km SMF usinglow-repetition-rate cyclic pulse coding[J]. Optics letters,2011,36(13):2557-2559.
    [20] Park J, Bolognini G, Lee D, et al. Raman-based distributed temperature sensorwith Simplex coding and link optimization[J]. Photonics Technology Letters,IEEE,2006,18(17):1879-1881.
    [21] Kurashima T, Horiguchi T, Tateda M. Distributed-temperature sensing usingstimulated Brillouin scattering in optical silica fibers[J]. Optics Letters,1990,15(18):1038-1040.
    [22] Horiguchi T, Kurashima T, Tateda M. Tensile strain dependence of Brillouinfrequency shift in silica optical fibers[J]. Photonics Technology Letters, IEEE,1989,1(5):107-108.
    [23] Culverhouse D, Farahi F, Pannell C N, et al. Potential of stimulated Brillouinscattering as sensing mechanism for distributed temperature sensors[J].Electronics Letters,1989,25(14):913-915.
    [24] Kurashima T, Horiguchi T, Tateda M. Thermal effects of Brillouin gainspectra in single-mode fibers[J]. Photonics Technology Letters, IEEE,1990,2(10):718-720.
    [25] Horiguchi T, Shimizu K, Kurashima T, et al. Development of a distributedsensing technique using Brillouin scattering[J]. Journal of LightwaveTechnology,1995,13(7):1296-1302.
    [26] Nikles M, Thevenaz L, Robert P A. Brillouin gain spectrum characterization insingle-mode optical fibers[J]. Journal of Lightwave Technology,1997,15(10):1842-1851.
    [27] Parker T R, Farhadiroushan M, Feced R, et al. Simultaneous distributedmeasurement of strain and temperature from noise-initiated Brillouinscattering in optical fibers[J]. IEEE Journal of Quantum Electronics,1998,34(4):645-659.
    [28] Smith J, Brown A, DeMerchant M, et al. Simultaneous distributed strain andtemperature measurement[J]. Applied optics,1999,38(25):5372-5377.
    [29] Brown K, Brown A W, Colpitts B G. Characterization of optical fibers foroptimization of a Brillouin scattering based fiber optic sensor[J]. Optical FiberTechnology,2005,11(2):131-145.
    [30] Kurashima T, Horiguchi T, Izumita H, et al. Brillouin optical-fiber timedomain reflectometry[J]. IEICE Transactions on Communications,1993,76(4):382-390.
    [31] Hecht E. Optics,2nd Edition[M], Addison-Wesley Publishing Company,1987:56-68.
    [32] Thévenaz L. Advanced fiber optics: concepts and technology[M]. EPFL Press,2011:264-276.
    [33] Horiguchi T, Tateda M. BOTDA-nondestructive measurement of single-modeoptical fiber attenuation characteristics using Brillouin interaction: Theory[J].Journal of Lightwave Technology,1989,7(8):1170-1176.
    [34] Garcus D, Gogolla T, Krebber K, et al. Brillouin optical-fiberfrequency-domain analysis for distributed temperature and strainmeasurements[J]. Journal of Lightwave Technology,1997,15(4):654-662.
    [35] Bernini R, Crocco L, Minardo A, et al. Frequency-domain approach todistributed fiber-optic Brillouin sensing[J]. Optics letters,2002,27(5):288-290.
    [36] Mizuno Y, Zou W, He Z, et al. Proposal of Brillouin opticalcorrelation-domain reflectometry (BOCDR)[J]. Optics Express,2008,16(16):12148-12153.
    [37] Hotate K, Hasegawa T. Measurement of Brillouin Gain Spectrum Distributionalong an Optical Fiber Using a Correlation-Based Technique—Proposal,Experiment and Simulation[J]. IEICE transactions on electronics,2000,83(3):405-412.
    [38] Hotate K, Tanaka M. Distributed fiber Brillouin strain sensing with1-cmspatial resolution by correlation-based continuous-wave technique[J].Photonics Technology Letters, IEEE,2002,14(2):179-181.
    [39] Hotate K, Abe K, Song K Y. Suppression of signal fluctuation in Brillouinoptical correlation domain analysis system using polarization diversityscheme[J]. Photonics Technology Letters, IEEE,2006,18(24):2653-2655.
    [40] Song K Y, He Z, Hotate K. Optimization of Brillouin optical correlationdomain analysis system based on intensity modulation scheme[J]. OpticsExpress,2006,14(10):4256-4263.
    [41] Tkach R W, Chraplyvy A R, Derosier R M. Spontaneous Brillouin scatteringfor single-mode optical-fibre characterisation[J]. Electronics Letters,1986,22(19):1011-1013.
    [42] Tateda M, Horiguchi T, Kurashima T, et al. First measurement of straindistribution along field-installed optical fibers using Brillouin spectroscopy[J].Journal of Lightwave Technology,1990,8(9):1269-1272.
    [43] Shimizu K, Horiguchi T, Koyamada Y, et al. Coherent self-heterodynedetection of spontaneously Brillouin-scattered light waves in a single-modefiber[J]. Optics letters,1993,18(3):185-187.
    [44] Nikles M, Thevenaz L, Robert P A. Simple Distributed temperature sensorbased on Brillouin gain spectrum analysis[C].10th Optical Fibre SensorsConference. International Society for Optics and Photonics,1994:138-141.
    [45] Wait P C, Newson T P. Landau Placzek ratio applied to distributed fibresensing[J]. Optics Communications,1996,122(4):141-146.
    [46] Geinitz E, Jetschke S, R pke U, et al. The influence of pulse amplification ondistributed fibre-optic Brillouin sensing and a method to compensate forsystematic errors[J]. Measurement Science and Technology,1999,10(2):112.
    [47] Anthony W B, Michael D D, Bao Xiaoyi, et a1. Analysis of the precision of aBrillouin scattering based distributed strain sensor Proceeding[J]. SPIE,1999.(3670):359-365.
    [48] Brown A W, DeMerchant M D, Bao X, et al. Spatial resolution enhancementof a Brillouin-distributed sensor using a novel signal processing method[J].Journal of lightwave technology,1999,17(7):1179.
    [49] Hotate K. Recent progress in Brillouin based fiber sensor technologycorrelation-based continuous-wave technique[C]. Optical Fiber SensorsConference Technical Digest,2002. OFS2002,15th. IEEE,2002:297-300.
    [50] Mizuno Y, He Z, Hotate K. Measurement range enlargement in Brillouinoptical correlation-domain reflectometry based on double-modulationscheme[J]. Optics Express,2010,18(6):5926-5933.
    [51] Soto M A, Bolognini G, Di Pasquale F. Optimization of long-range BOTDAsensors with high resolution using first-order bi-directional Ramanamplification[J]. Optics Express,2011,19(5):4444-4457.
    [52] Soto M A, Bolognini G, Di Pasquale F, et al. Long-range Brillouin opticaltime-domain analysis sensor employing pulse coding techniques[J].Measurement Science and Technology,2010,21(9):094024.
    [53] Bernini R, Minardo A, Zeni L. Long-range distributed Brillouin fiber sensorsby use of an unbalanced double sideband probe[J]. Optics express,2011,19(24):23845-23856.
    [54] Minardo A, Bernini R, Zeni L. A simple technique for reducing pumpdepletion in long-range distributed Brillouin fiber sensors[J]. Sensors Journal,IEEE,2009,9(6):633-634.
    [55] Dong Y, Chen L, Bao X. High-spatial-resolution time-domain simultaneousstrain and temperature sensor using Brillouin scattering and birefringence in apolarization-maintaining fiber[J]. Photonics Technology Letters, IEEE,2010,22(18):1364-1366.
    [56] Dong Y, Bao X, Li W. Differential Brillouin gain for improving thetemperature accuracy and spatial resolution in a long-distance distributed fibersensor[J]. Applied optics,2009,48(22):4297-4301.
    [57] Zan M S D, Horiguchi T. A new electrical signal configuration for modulatingpump light of coded discrete-phase shift pulse-BOTDA[C]. Photonics (ICP),2012IEEE3rd International Conference on. IEEE,2012:294-298.
    [58] Song K Y, Kishi M, He Z, et al. High-repetition-rate distributed Brillouinsensor based on optical correlation-domain analysis with differentialfrequency modulation[J]. Optics letters,2011,36(11):2062-2064.
    [59] Thévenaz L, Foaleng S M, Song K Y, et al. Advanced Brillouin-baseddistributed optical fibre sensors with sub-meter scale spatial resolution[C].Optical Communication (ECOC),201036th European Conference andExhibition on. IEEE,2010:1-6.
    [60] Zan M S D B, Sasaki T, Horiguchi T, et al. Phase shift pulse Brillouin opticaltime domain analysis (PSP-BOTDA) employing dual Golay codes[C].Computer and Communication Engineering (ICCCE),2010InternationalConference on. IEEE,2010:1-6.
    [61] Soto M A, Bolognini G, Di Pasquale F. Enhanced simultaneous distributedstrain and temperature fiber sensor employing spontaneous Brillouinscattering and optical pulse coding[J]. Photonics Technology Letters, IEEE,2009,21(7):450-452.
    [62] Foaleng S M, Tur M, Beugnot J C, et al. High spatial and spectral resolutionlong-range sensing using Brillouin echoes[J]. Journal of LightwaveTechnology,2010,28(20):2993-3003.
    [63] Minardo A, Bernini R, Zeni L. Limitations and strategies to improvemeasurement accuracy in differential pulse-width pair Brillouin opticaltime-domain analysis sensing[J]. Applied Optics,2013,52(13):3020-3026.
    [64] Zornoza A, Minardo A, Bernini R, et al. Pulsing the probe wave to reducenonlocal effects in Brillouin optical time-domain analysis (BOTDA)sensors[J]. Sensors Journal, IEEE,2011,11(4):1067-1068.
    [65] Liu X, Bao X. Brillouin spectrum in LEAF and simultaneous temperature andstrain measurement[J]. Journal of Lightwave Technology,2012,30(8):1053-1059.
    [66] Zou W, He Z, Hotate K. Demonstration of Brillouin distributed discriminationof strain and temperature using a polarization-maintaining optical fiber[J].Photonics Technology Letters, IEEE,2010,22(8):526-528.
    [67] Dong Y, Chen L, Bao X. Truly distributed birefringence measurement ofpolarization-maintaining fibers based on transient Brillouin grating[J]. Opticsletters,2010,35(2):193-195.
    [68] Dong Y, Chen L, Bao X. Characterization of the Brillouin grating spectra in apolarization-maintaining fiber[J]. Optics Express,2010,18(18):18960-18967.
    [69] Mizuno Y, He Z, Hotate K. Distributed strain measurement using a telluriteglass fiber with Brillouin optical correlation-domain reflectometry[J]. OpticsCommunications,2010,283(11):2438-2441.
    [70] Bao X, Chen L. Recent progress in Brillouin scattering based fiber sensors[J].Sensors,2011,11(4):4152-4187.
    [71] Zhang X, Lu Y, Wang F, et al. Development of fully-distributed fiber sensorsbased on Brillouin scattering[J]. Photonic Sensors,2011,1(1):54-61.
    [72] Zan M S D B, Tsumuraya T, Horiguchi T. The use of Walsh functions inmodulating pump light of high-spatial-resolution BOTDA with NRZ pulses[C].Proc. of SPIE Vol.2012,8421:84219J-1.
    [73] Soto M A, Bolognini G, Di Pasquale F, et al. Simplex-coded BOTDA fibersensor with1m spatial resolution over a50km range[J]. Optics letters,2010,35(2):259-261.
    [74] Beugnot J C, Tur M, Mafang S F, et al. Distributed Brillouin sensing withsub-meter spatial resolution: modeling and processing[J]. Optics express,2011,19(8):7381-7397.
    [75] Rodríguez-Barrios F, Martín-López S, Carrasco-Sanz A, et al. DistributedBrillouin fiber sensor assisted by first-order Raman amplification[J]. Journalof Lightwave Technology,2010,28(15):2162-2172.
    [76] Bernini R, Amato L, Minardo A, et al. Bridge Monitoring by DistributedStrain Measurement Using a Time-Domain Brillouin Sensing System[M].Sensors and Microsystems. Springer Netherlands,2011:439-442.
    [77] Bernini R, Minardo A, Zeni L. Dynamic strain measurement in optical fibersby stimulated Brillouin scattering[J]. Optics letters,2009,34(17):2613-2615.
    [78] Minardo A, Bernini R, Zeni L. Numerical analysis of single pulse anddifferential pulse-width pair BOTDA systems in the high spatial resolutionregime[J]. Optics Express,2011,19(20):19233-19244.
    [79] Wang Z, Jia X, Rao Y, et al. Novel long-distance fiber-optic sensing systemsbased on random fiber lasers[C]. Asia Pacific Optical Sensors Conference.International Society for Optics and Photonics,2012:835142-835142-4.
    [80] Jia X H, Rao Y J, Chang L, et al. Enhanced sensing performance in longdistance Brillouin optical time-domain analyzer based on Raman amplification:theoretical and experimental investigation[J]. Journal of LightwaveTechnology,2010,28(11):1624-1630.
    [81] Jia X H, Rao Y J, Wang Z N, et al. Theoretical investigations on the non-localeffect in a long-distance Brillouin optical time-domain analyzer based onbi-directional Raman amplification[J]. Journal of Optics,2012,14(4):045202.
    [82] Wang F, Li C, Zhao X, et al. Using a Mach–Zehnder-interference-basedpassive configuration to eliminate the polarization noise in Brillouin opticaltime domain reflectometry[J]. Applied Optics,2012,51(2):176-180.
    [83]张旭苹,王峰,路元刚.基于布里渊效应的连续分布式光纤传感技术[J].激光与光电子学进展,2009,46(11):14-20.
    [84] Song M, Zhao B, Zhang X. Optical coherent detection Brillouin distributedoptical fiber sensor based on orthogonal polarization diversity reception[J].Chinese Optics Letters,2005,3(5):271-274.
    [85] Shen Y C, Song M P, Zhang X M, et al. Analysis and measurement ofstimulated Brillouin scattering threshold in single mode fiber[J]. ZhongguoJiguang(Chin. J. Lasers),2005,32(4):497-500.
    [86] Song M P, Zhao B. Accuracy enhancement in Brillouin scattering distributedtemperature sensor based on Hilbert transform[J]. Optics communications,2005,250(4):252-257.
    [87]宋牟平,鲍翀,叶险峰.基于正交偏振控制的布里渊光时域分析长距离分布式光纤传感器[J].中国激光,2010(3):757-762.
    [88]谢杭,宋牟平,沈逸铭,等.布里渊光时域分析仪与马赫-曾德尔干涉仪共同检测传感技术[J].中国激光,2012,39(s1):114002.
    [89] Zhang Z, Li L, Geng D, et al. Study on forward stimulated Brillouin scatteringin a backward pumped fiber Raman amplifier[J]. Chinese Optics Letters,2004,2(11):627-629.
    [90] Zhang F, Li Y, Yang Z, et al. Investigation of wind turbine blade monitoringbased on optical fiber Brillouin sensor[C].Sustainable Power Generation andSupply,2009. SUPERGEN'09. International Conference on. IEEE,2009:1-4.
    [91]李星蓉,李永倩.基于布里渊散射的分布式光纤传感系统的应用[J].电力系统通信,2009(012):62-65.
    [92] Ravet F. Distributed Brillouin Sensor Application to Structural FailureDetection[M]. New Developments in Sensing Technology for StructuralHealth Monitoring. Springer Berlin Heidelberg,2011:93-136.
    [93] Chen C H, Shen Y L, Shin C S. Using distributed Brillouin fiber sensor todetect the strain and cracks of steel structures[J]. Journal of Mechanics,2010,26(4):547-551.
    [94]何建平.全尺度光纤布里渊分布式监测技术及其在土木工程的应用[D].哈尔滨工业大学,2010.
    [95] B. Guo, A. Ghalambor. A Guideline to Optimizing Pressure Differential inUnderbalanced Drilling for Reducing Formation Damage[C]. InternationalSymposium and Exhibition on Formation Damage Control, Lafayette[SPE98083], Louisiana,2006:15-17.
    [96]平立秋,汪志明,魏建光.欠平衡钻井井底压力预测与控制技术[J].石油钻采工艺,2005,27(6):16-20.
    [97]钟敬敏,齐从丽,王希勇,等.钻井动态坍塌压力探讨[J].钻采工艺,2012,35(5):11-14.
    [98]王月杰,张宏友,马奎前,等.全压力史拟合在现代试井解释中的应用[J].油气井测试,2011,20(6):26-27,30.
    [99]陈珺,王保军,周兵,等.低渗油藏试井新技术研究及应用[J].石油化工应用,2011,30(6):39-43.
    [100]程时清,唐恩高,李相方.试井分析进展及发展趋势评述[J].油气井测试,2003,12(1):66-68,72.
    [101]郭秩瑛,甄宝生,孟红霞,等.井下压力监测数据试井解释方法初探[J].2007,16(1):31-33.
    [102]张士诚,王鸿勋.国外水力压裂工艺技术近期发展水平综述[J].世界石油工业,1995,2(6):38-44.
    [103]范姝.注采压力系统及合理注采比研究的一种方法[J].断块油气田,2009(005):72-74.
    [104]黄小兰,刘建军,杨春和.注水油田剪切套损机理研究与数值模拟[J].武汉工业学院学报,2009,28(3):94-97.
    [105]尹中民,武强,刘建军,等.注水井泄压对套管挤压力影响的数值模拟[J].岩石力学与工程学报,2004,23(14):2390-2395.
    [106]许涛,殷桂琴,张公社,等.高压注水引起套损的机理研究[J].断块油气田,2007,14(1):70-71.
    [107]韩修廷,阎建文,盖德林等.大庆油田套损机理及防护技术研究[C].首届全国套损治理研讨会论文集(西安).2003,(7):1-3
    [108]李美艳.存储式深井电子压力计的研究与开发[D].西安:西北工业大学,2004:8-10.
    [109]张鹏.井下PQT检测技术研究[D].西安石油大学:测试计量技术及仪器,2009:2-3.
    [110]牛景理,叶庆伟.油田压力动态监测技术综述[J].内蒙古石油化工,2009,35(21):102-104.
    [111]王省德,李文彬.普鲁特(PRUETT)7000型毛细钢管试井测压装置在塔里木油田的应用[J].油气井测试,1995,3(4):62-67.
    [112]牟忠波.毛细钢管测压技术在海上油田开发中的研究应用[J].油气井测试,2004,13(3):61-62.
    [113] Kersey A D. Optical fiber sensors for permanent downwell monitoringapplications in the oil and gas industry[J]. IEICE transactions on electronics,2000,83(3):400-404.
    [114]靳海英.智能完井永久型井下传感系统现状综述[J].安徽电子信息职业技术学院学报,2012,11(6):51-54.
    [115] Qi B, Pickrell G R, Zhang P, et al. Fiber optic pressure and temperaturesensors for oil down hole application[C]. Environmental and IndustrialSensing. International Society for Optics and Photonics,2002:182-190.
    [116] Nellen P M, Mauron P, Frank A, et al. Reliability of fiber Bragg grating basedsensors for downhole applications[J]. Sensors and Actuators A: Physical,2003,103(3):364-376.
    [117] Hay A D. Oil and gas well packer having fiber optic Bragg Grating sensors fordownhole insitu inflation monitoring: U.S. Patent5,925,879[P].1999-7-20.
    [118] Bao X, Dhliwayo J, Heron N, et al. Experimental and theoretical studies on adistributed temperature sensor based on Brillouin scattering[J]. Journal ofLightwave Technology,1995,13(7):1340-1348.
    [119] C. Zha, R. J. Hemley, H. Mao, et al. Acoustic velocities and refractive index ofSiO2glass to57.5GPa by Brillouin scattering[J]. Physical review. B,1994,50(18):13105-13112.
    [120] D. Tielbürger, R. Merz, R. Ehrenfels, et al. Thermally activated relaxationprocesses in vitreous silica: An investigation by Brillouin scattering at highpressures[J]. Physical review. B,1992,45(6):2750-2760.
    [121] K.Vedam, E.D.D.Schmidt, R. Roy, Nonlinear Variation of Refractive Index ofVitreous Silica with Pressure to7Kbars[J]. Journal of the American CeramicSociety,1966,49(10):531-535.
    [122] Lagakos N, Bucaro J A. Pressure desensitization of optical fibers[J]. Appliedoptics,1981,20(15):2716-2720.
    [123] Bouten P C P, Broer D J, Jochem C M G, et al. Optical fiber coatings: Highmodulus coatings for fibers with a low microbending sensitivity[J]. PolymerEngineering&Science,1989,29(17):1172-1176.
    [124] Bouten P C P, Broer D J, Jochem C M G, et al. Doubly coated optical fibreswith a low sensitivity to temperature and microbending[J]. Journal ofLightwave Technology,1989,7(4):680-686.
    [125] Blyler Jr L L, DiMARCELLO F V. Fiber drawing, coating, and jacketing[J].Proceedings of the IEEE,1980,68(10):1194-1198.
    [126] Seraji F E, Toutian G. Effect of temperature rise and hydrostatic pressure onmicrobending loss and refractive index change in double-coated opticalfiber[J]. Progress in Quantum Electronics,2006,30(6):317-331.
    [127] Yang Y C. Combining optical effects of axial strain, thermal loading, andhydrostatic pressure in tightly jacketed double-coated optical fibers[J]. Opticalengineering,2001,40(10):2107-2114.
    [128] Lagakos N, Bucaro J A, Jarzynski J. Temperature-induced optical phase shiftsin fibers[J]. Applied Optics,1981,20(13):2305-2308.
    [129] Hughes R, Jarzynski J. Static pressure sensitivity amplification ininterferometric fiber-optic hydrophones[J]. Applied Optics,1980,19(1):98-107.
    [130] Liu Y, Guo Z, Zhang Y, et al. Simultaneous pressure and temperaturemeasurement with polymer-coated fibre Bragg grating[J]. Electronics letters,2000,36(6):564-566.
    [131] Hill D J, Cranch G A. Gain in hydrostatic pressure sensitivity of coated fibreBragg grating[J]. Electronics letters,1999,35(15):1268-1269.
    [132] Kurashima T, Tateda M. Thermal effects on the Brillouin frequency shift injacketed optical silica fibers[J]. Applied optics,1990,29(15):2219-2222.
    [133] Capps R N. Optical fiber coatings. An overview with regard to opto-acousticunderwater detection systems[J]. Industrial&Engineering Chemistry ProductResearch and Development,1981,20(4):599-608.
    [134] Alahbabi M N, Cho Y T, Newson T P.100km distributed temperature sensorbased on coherent detection of spontaneous Brillouin backscatter[J].Measurement Science and Technology,2004,15(8):1544.
    [135] Alahbabi M, Cho Y T, Newson T P. Comparison of the methods fordiscriminating temperature and strain in spontaneous Brillouin-baseddistributed sensors[J]. Optics letters,2004,29(1):26-28.
    [136] Smith J, Brown A, DeMerchant M, et al. Simultaneous distributed strain andtemperature measurement[J]. Applied optics,1999,38(25):5372-5377.
    [137] Maughan S M, Kee H H, Newson T P. Simultaneous distributed fibretemperature and strain sensor using microwave coherent detection ofspontaneous Brillouin backscatter[J]. Measurement Science and Technology,2001,12(7):834.
    [138] Liu X, Bao X. Brillouin spectrum in LEAF and simultaneous temperature andstrain measurement[J]. Journal of Lightwave Technology,2012,30(8):1053-1059.
    [139] Bao X, Zou L, Yu Q, et al. Development and applications of the distributedtemperature and strain sensors based on Brillouin scattering[C]. Sensors,2004.Proceedings of IEEE. IEEE,2004:1210-1213.
    [140] Zou W, He Z, Kishi M, et al. Stimulated Brillouin scattering and itsdependences on temperature and strain in a high-delta optical fiber withF-doped depressed inner-cladding[C]. Optical Fiber Sensors. Optical Societyof America,2006: paper ThE38.
    [141] Alahbabi M N, Cho Y T, Newson T P. Simultaneous temperature and strainmeasurement with combined spontaneous Raman and Brillouin scattering[J].Optics letters,2005,30(11):1276-1278.
    [142] Belal M, Cho Y T, Ibsen M, et al. A temperature-compensated high spatialresolution distributed strain sensor[J]. Measurement Science and Technology,2010,21(1):015204.
    [143] Bao X, Webb D J, Jackson D A. Combined distributed temperature and strainsensor based on Brillouin loss in an optical fiber[J]. Optics letters,1994,19(2):141-143.
    [144] Dong Y, Bao X, Chen L. Distributed temperature sensing based onbirefringence effect on transient Brillouin grating in apolarization-maintaining photonic crystal fiber[J]. Optics letters,2009,34(17):2590-2592.
    [145] Foaleng S M, Tur M, Beugnot J C, et al. High spatial and spectral resolutionlong-range sensing using Brillouin echoes[J]. Journal of LightwaveTechnology,2010,28(20):2993-3003.
    [146] Ravet F, Bao X, Chen L. Simple approach to determining the minimummeasurable stress length and stress measurement accuracy in distributedBrillouin sensing[J]. Applied optics,2005,44(25):5304-5310.
    [147]李庆扬,关冶,白峰杉.数值计算原理[M].北京:清华大学出版社,2002:291-295.
    [148]何俊.分布式光纤传感系统关键技术研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2010:52-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700