用户名: 密码: 验证码:
编织结构生物可降解神经再生导管的制造及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
周围神经缺损后的再生和功能恢复一直是神经科学领域的热门问题。由于周围神经结构和功能上的特殊性,其再生能力较差,大多数神经缺损无法采用直接端端吻合方法修复。自体神经移植是目前用于修复周围神经缺损的最常用、最有效的方法。然而,自体神经移植必然伴随着供区的功能受损,且可供移植的神经来源有限。异体神经移植虽然来源充足、各种类型的神经段都可以得到,但存在着较强的免疫排斥反应。因此,人们一直在探寻一种更为理想的方法来取代自体神经移植。
     近年来,由医学、生物学、材料学和工程学等综合而成的组织工程学发展迅速,人们研究的重点已着眼于使用神经导管代替自体神经移植来促进神经再生,以达到神经快速生长、功能完全恢复的理想目标。
     通过对生物材料的筛选和评价,本文采用生物可降解材料聚乙丙交酯(PGLA)长丝在二维锭子式编织机上织造出管状编织物,再经壳聚糖浸泡涂层和热定型处理研制出具有一定机械强度和弹性的编织结构复合材料神经再生导管。该生物可降解神经再生导管具有良好的生物相容性和安全性。
     在进行实际编织神经导管之前,首先对管状编织物的上机编织工艺进行实验研究和理论分析。为了获得形状稳定、表面均匀的导管,本文采用带芯编织方法。在现有型号编织机的实验条件下,通过改变携纱器的安装方法和从角齿轮螺栓中心的通孔引入轴纱,神经导管的编织选用菱形结构、规则结构和三向结构等三种组织结构。除了组织结构,编织角也是影响神经导管性能的一个重要结构参数。在带芯编织的条件下,最终制得的神经导管的编织角近似地等于编织过程中的编织工艺角。在编织过程中,编织工艺角是通过改变编织机上变化齿轮的齿数使牵引轮的牵拉速度与携纱器的转动速度相匹配来进行控制的。然而,编织工艺角的最大值和最小值分别是由携纱器有效的纱线储藏量、编织机的尺寸决定的。
     采用侧向压缩方式,在专门制造的径向压缩仪上对编织结构神经导管进行径向压缩试验,以考察编织结构神经导管的径向压缩特性,分析组织结构、编织角等结构参数对编织结构神经导管的径向压缩性能以及因压缩引起的神经导管使用性能(横截面积)变化的影响。采用改进的夹持装置夹持试样对编织结构神经导管进行轴向拉伸试验,以考察编织结构神经导管的轴向拉伸特性,分析组织结构和编织角等结构参数对编织结构神经导管的轴向拉伸性能以及在初始很小拉伸力作用下神经导管使用性能(长度、横截面积和纱线覆盖率)变化的影响。通过试验与分析,作者发现改进组织结构和优化结构参数可以提高编织结构神经导管的径向抗压能力和轴向抗拉能力,以更好地满足桥接周围神经缺损的性能要求。
     对编织结构神经导管进行体外模拟降解试验,以探讨编织结构神经导管的径向压缩性能、质量损耗以及形貌在降解过程中的变化规律,分析原料组分配比、组织结构和涂层处理等制造工艺参数对神经导管性能在降解过程中变化的影响。采用壳聚糖涂层并预置入引导纤维的三向结构神经导管分别桥接大鼠坐骨神经缺损和犬胫神经缺损的动物实验表明,该神经导管具有良好的生物相容性和安全性,可以有效地桥接周围神经缺损。
     本课题的研究工作对优化编织结构神经导管的选材、制造工艺,探讨结构参数与神经导管性能之间的关系以及神经导管性能在体外降解过程中的变化规律等方面进行了有益的尝试,为进一步改进和优化编织结构神经导管的结构与性能提供了一定的依据。同时,也将会促进和推动生物医用纺织品的进一步发展。
Peripheral nerve defects continue to be one of the most challenging problems to surgeons. The ability to regeneration of peripheral nerve is very poor because of its unique structure and function, thus most of the peripheral nerve defects are not permit to repair by direct tensionless suture. In such situation, grafting with a segment of autologous nerve is a usual and effective clinical practice, but has drawbacks such as donor site morbidity, and incomplete recovery of function. In addition, grafting with allograft nerves has strong immunological rejection in spite of their abundant source. With the development of tissue engineering, recent approaches have been developed in which a nerve regeneration conduit may be used to replace the need for nerve grafting. Thanks to the use of artificial nerve regeneration conduits, much progress has been made in the repairs of peripheral nerve defects.
     After selection and evaluation of the constituent biological materials, a tubular braid was fabricated from biodegradable poly (glycolide-co-L-lactide) (PGLA) on a conventional 2-D tubular braiding machine. The braided composite nerve regeneration conduits with adequate mechanical strength and elasticity were made by coating and heat setting methods. This biodegradable braided nerve regeneration conduit possesses excellent biocompatibility and bioactive properties.
     Before braiding the nerve conduits, the author investigated the braiding process of tubular braids by experimental work and theoretical analysis. In order to prevent the tubular braids from being flattened due to taking-up operation and to get desired inner diameter, a cylindrical metal mandrel was adopted during braiding. Three kinds of braided structures, diamond, regular and triaixal were used by adjusting the arrangement of carriers and introducing the axial yarns through stationary guide eyes. Besides the braided structure, the braiding angle is another important geometric parameter of tubular braids. In the case of braiding with a cylindrical mandrel, the braiding process angle is considered approximately as the braiding angle of tubular braids. The braiding process angle is controlled by changing the teeth number of gear which accomplishes the matching of the velocities of both the traction wheel and the carriers. However, the maximum and minimum values of the braiding process angles were determined respectively by the effective yarn reserve of carriers and the dimension of braiding machine.
     The radial compressive tests of lateral compression of braided conduits were carried out on custom-built compression device to examine their radial compressive behaviors. The effects of braided structure and braiding angle on the compressive properties and the change of cross-sectional area of braided conduits caused by radial compression are analyzed. The axial tensile tests of braided conduits were carried out by clamping the samples with modified clamping device to examine their axial tensile behaviors. The effects of braided structure and braiding angle on the tensile properties and the changes of length, cross-sectional area and yarn cover factor of braided conduits caused by primary small axial tension are analyzed. The author finds that changing braiding structure and optimizing structure parameters can raise the radial compressive and axial tensional resistances to meet the requirements for the repair of peripheral nerve defects.
     Basic information about the changes of radial compressive property, mass loss and appearance of braided conduits were obtained through simulation in vitro degradation tests. The effects of the composition of polymeric materials, braided structure and coating on the changes of the properties of braided conduits during the degradation were analyzed. The animal tests were made by repairing rat sciatic nerve defects and dog tibial nerve defects with triaixal braided nerve conduit coated with chitosan and filled with a guide-fiber. The testing results have show that triaixal braided PGLA conduits coated with chitosan and filled with a guide-fiber offer a possible substitute for the repair of peripheral nerve defects.
     Achievements obtained from this research work could be used as a valuable reference which provides a certain foundation for the investigation of braided biodegradable nerve regeneration conduits and promote the development of textile products used in medical field.
引文
[1] Diao E., Vannuyen T., Techniques for primary nerve repair. Hand Clin., 2000, 16(1): 53-66
    [2] 张伯勋,正确认识周围神经断裂伤的修复方法.创伤外科杂志,2004,6(3):163-163
    [3] 张涵,袁芳,安沂华,应用组织工程学修复周围神经缺损的研究进展.中华实验外科杂志,2005,22(7):892-893
    [4] 张文怡,李曦光,周围神经组织工程学修复的研究进展.徐州医学院学报,2003,24(5):52-54
    [5] Terzis J. K., Sun D. D., Thanos P. K., Historical and basic science review: past, present and future of nerve repair. J. Reconstr. Microsurg., 1997, 13(3): 215-225
    [6] Seckel B. R., Enhancement of peripheral nerve regeneration. Muscle Nerve, 1990, 13: 785-800
    [7] Lundborg G., Longo F. M., Varon S., Nerve regeneration model and trophic factors in vivo. Brain Res., 1982. 28, 232(1): 157-161
    [8] Hudson T. W., Evans G. R., Engineering strategies for peripheral nerve repair. Clin. Plast. Surg., 1999, 26(10): 617-628
    [9] Daniel H., Kim L., et al, Comparison of macropore, semi-permeable and non-permeable collagen conduits in nerve repair. J. Reconstr. Microsurg., 1993, 9(8): 415-420
    [10] 刘俊宾,复合型神经桥接体在周网神经修复中的研究进展.中国矫形外科杂志,2000,7(5):463-465
    [11] Evans G. D., Brandt K., In vivo evaluation of poly(L-lactic acid) porous conduits for peripheral nerve regeneration. Biomaterials, 1999, 20: 1109-1115
    [12] Lundborg G., Bahlin L., Dohi D., Kanje M., Terada N., A new type of"bioartificial" nerve graft for bridging extended defects in nerves. J. Hand Surg., 1997, 22(3): 299-303
    [13] 裴国献,陈滨,医学临床对组织工程学的要求.中华创伤杂志,2001,17(7):389-391
    [14] 谢峰,李青峰,导管修复神经缺损的运用及发展.中华临床医药,2002,3(22):41-44
    [15] 杜天明,洗我权,人羊膜管桥接周围神经缺损的研究.暨南大学学报:自然科学与医学版,1995,16(4):58-62
    [16] 邵国善,王明礼,杨震宇,骨骼肌桥接与神经移植对大鼠周围神经缺损的修复作用.吉林大学学报,2005,31(4):530-532
    [17] 卫晓恩,韩西城,多种移植体修复周围神经的比较实验研究.中国修复重建外科杂志,1996,10:12-15
    [18] Mligilche N., Endo K,. Okamoto K., et al, Extracellular matrix of human ammion manufactured into tubes as conduits for peripheral nerve regeneration. J. Biomed. Mater. Res., 2002, 63: 591-600
    [19] 闫长祥,万虹,历俊华,刘淑玲,安沂华,于春江,张亚卓,王忠诚,雪旺氏细胞与自体筋膜联合修复面神经损伤的实验研究.中华神经外科杂志,2004,20(2):112
    [20] Merle M., Dellon A. L., Campbell J. N., et al, Complication from silicone-polymer intubulization of nerves. Microsurgery, 1989, 10(2): 130-133
    [21] Shen Z. L., Berger A., Hiemer R., et al., A schwmann cell-seeds intrinsic framework and its satisfactory biocompatibility for a bioartificial nerve graft. J. Microsurgery, 2001, 21: 6-11
    [22] 苟三怀,侯春林,几丁质桥接周围神经缺损的实验研究及临床应用.中华骨科杂志,1996,16(3):148-151
    [23] 于炎冰,左焕琮,壳聚糖导管桥接周围神经缺损的实验研究.中华神经外科杂志,2000,16(6):375-378
    [24] 屈振宁,许彪,几丁质神经再生室.口腔颌面外科杂志,2003,13(4):332-334
    [25] 于炎冰,张黎,胡萍,赵奎明,郭京,左焕琮,含神经生长因子的壳聚糖导管桥接周围神经缺损的实验研究.中华神经外科疾病研究杂志,2003,2(3):228-231
    [26] Evans G. R., Brandt K., Widmer M. S., et al, In vivo evaluation of poly(L-lactic acid) porous conduits for peripheral nerve regeneration. Biomaterials, 1999, 20: 1109-1115
    [27] Robinson P. H., Van der Lei B., Hoppen H. J., et al, Nerve regeneration through a two-ply biodegradable nerve guide in the rat. Microsurgery, 1991, 12: 412-419
    [28] Hudson T. W., Evans G. R., Schmidt C. E., Engineering strategies for peripheral nerve repair. Clin. Plast. Surg., 1999, 26: 617-628
    [29] den Dunnen W. F., Stokroos I., Blaauw E. H., et al, Light-microscopic and electron-microscopic evaluation of short-term nerve regeneration using a biodegradable poly(DL-lactide-epsilon-ε-canrolacton) nerve guide. J. Biomed. Mater. Res., 1996, 31(1): 105-115
    [30] Aebischer R, Salessiotis A. N., Ninn S. R., Basic fibroblast growth factor released from synthetic guidance channels facilitates peripheral nerve regeneration across long nerve gaps. J. Neurosci. Res., 1989, 23(3): 282-289
    [31] 吴志伟,陈峥嵘,周围神经组织工程进展.复旦学报:医学版,2004,31(1):103-106
    [32] 王身国,候建伟,贝建中,赵永强,组织工程及周围神经修复—Ⅲ聚d,1-乳酸管诱导神经修复的研究.中国科学(B辑),2001,31(4):110-114
    [33] 王身国,候建伟,贝建中,张涛,聚d,1-乳酸及其对20毫米断缺神经诱导修复的研究.高技术通讯,2000,8:15-18
    [34] 徐靖宏,丁晟,罗敏,李青峰,不同通透性复合导管桥接周围神经缺损对神经再生影响的实验研究.浙江医学,2001,23(6):336-338
    [35] 李青峰,徐靖宏,罗敏,干季良,不同通透性壳聚糖生物膜复合导管修复周围神经缺损的实验研究.上海医学,2000,23(7):390-392
    [36] 左焕琮,于炎冰,张黎,胡萍,赵奎明,郭京,含神经生长因子的壳聚糖导管桥接周围神经缺损的实验研究.中华神经外科疾病研究杂志,2003,2(3):228-231
    [37] 匡勇,侯春林,苟三怀,顾其胜,徐国祥,李清海,几丁糖管修复周围神经缺损的实验.研究中华创伤杂志,1998,14(2):72-74
    [38] 谢峰,李青峰,赵林森,新型复合生物材料导管修复大鼠周围神经缺损的实验研究.中华整形外科杂志,2005,21(4):295-298
    [39] Widmer M. S., Gupta R K., Lu L., et al, Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration. Biomateriats, 1998, 19(21): 1945-1955
    [4.] 王光林,杨志明,解慧琪,王翠莹,李胜富,周围神经组织工程材料的预构.中国修复重建外科杂志,2000,14(2):110-114
    [41] Williams L. R., Danielsen N., Muller H., Varon S., Exogenous matrix precursors promote functional nerve regeneration across a 15ram gaps within a silicone chamber in the rat. J. comp. Neurol., 1987, 264(2): 284-290
    [42] 李强,李民,伍亚民,神经组织工程研究进展.中国矫形外科杂志,2003,11(3,4):264-266
    [43] 李强,伍亚民,生物活性导管修复周围神经长距离缺损的研究进展.创伤外科杂志,2004,6(3):224-226
    [44] Keeley R., Atagi T., Sabelman E., Padilla J., Kadlcik S., Keeley A., Nguyen K., Rosen J., Peripheral nerve regeneration across 14-ram gaps: a comparison of auto graft and entubulation repair methods in the rat. J. Reconstr. Microsurg., 1993, 9(5): 349-358
    [45 Kiyotani T., Teramachi M., Takimoto Y., Nakamura T., Shimizu Y., Endo K., Nerve regeneration across a 25-mm gap bridged by a polyglycolic acid-collagen tube: a histological and electrophysiological evaluation of regenerated nerves. Brain Res., 1996, 740(1-2): 66-74
    [46] Madison R., da Silva C. F., Dikkes R, Chiu T. H., Sidman R. L., Increased rate of peripheral nerve regeneration using bioresorbable nerve guides and a laminin-containing gel. Exp. Neurol., 1985, 88(3): 767-772
    [47] Madison R. D., Da Silva C. F., Dikkes P., et al, Peripheral nerve regeneratin with entubulation repair: comparison of biodegradable nerve guides versus polyethylene tubes and the effects ofa laminin-containing gel. Exp. Neurol., 1987, 95: 378-390
    [48] Rosen J. M., Padilla J. A., Nguyen K. D., et al, Artificial nerve graft using collagen as an extracellular matrix for nerve repair compared with sutured autograft in a rat model. Ann. Plast. Surg., 1990, 25: 375-387
    [49] 杜劲松,王剑,张信英,骨髓源神经干细胞修复大鼠周围神经缺损的实验研究.中国矫形外科杂志,2005,13(10):764-766
    [50] Labrador R. O., Buti M., Navarro X., Influence of collagen and laminin gels concentration on nerve regeneration after resection and tube repair. Exp. Neurol., 1998, 149: 243-252
    [51] 张玉波,伍亚民,杨恒文,李应玉,NGF促周围神经再生过程中对血管生成的影响.第三军医大学学报,2005.27(14):1463-1466
    [52] 李强,伍亚民,李民,刘媛,曾琳,杨恒文,李应玉,NCF和CNTF对周围神经再生纤维超微结构影响的计量研究.第三军医大学学报,2005,27(2):146-149
    [53] Hadlock T., Elisseeff J., Langer R., et al, A tissue-engineered conduit for peripheral nerve repair. Arch. Otolaryngol Head Neck Surg., 1998, 124(10): 1081-1086
    [54] 董红让,徐永年,黄继锋,万涛,李德中,程文俊,聚乳酸/神经生长因子缓释管修复周围神经缺损的实验研究.中国临床解剖学杂志,2003,21(5):482-485
    [55 李德忠,徐永年,丁继兵,蔡贤华,尤锋,董红让,PDLLA/NGF复合导管促进周围神经缺损再生的形态学研究,中国临床外科杂志,2004,9(3):199-202
    [56] 程飚,陈峥嵘,组织工程化人工神经构建的方法研究.中国矫形外科杂志,2002,9(5):456-459
    [57] Levi A. D., Guenard V., Aebischer R, Bunge R. R, The functional characteristics of Schwann cells cultured from human peripheral nerve after transplantation into a gap within the rat sciatic nerve. J. Neurosci., 1994, 14(3 Pt 1): 1309-1319
    [58] Levi A. D., Sonnta V. K., Dickman C., Mather J., Li R. H., Cordoba S. C., Bichard B., Berens M., The role of cultured Schwann cell grafts in the repair of gaps within the peripheral nervous system of primates. Exp. Neurol., 1997, 143(1): 25-36
    [59] 苟三怀,侯春林,藏鸿声等,几丁质室内植入雪旺氏细胞对神经再生影响的实验研究.中国修复重建外科杂忐,1995,9(2):108-110
    [60] Brown R. E., Erdmann D., Lyons S. F., Suchy H., The use of cultured Schwann cells in nerve repair in a rabbit hind-limb model. J. Reconstr. Microsurg., 1996, 12(3): 149-152
    [61] Cheng B., Chen Z., Fabricating autologous tissue to engineer artificial nerve. Microsurgery, 2002, 22(4): 133-137
    [62] Guénard V., Kleitman N., Morrissey T. K., et al, Syngenic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve regeneration. J. Neurosci., 1992, 12: 3310-3320
    [63] 叶震海,顾立强,雪旺细胞和聚乳酸材料的体外相容性研究.中国创伤骨科杂志,2000,2(4):306-308
    [64] Lundorg G., Dehlin L. B., Dohi D., Kanjie M., Terada N., A new type of "bioartificial" nerve graft for bridging extended defects in nerves. J. Hand Surg. Br., 1997, 22(3): 299-303
    [65] Arai T., Lundborg G., Dahlin L. B., Bioartificial nerve graft for bridging extended nerve defects in rat sciatic nerve based on resorbable guiding filaments. Scand. J. Plast. Reconstr. Surg. Hand Surg., 2000, 34(2): 101-108
    [66] Matsumoto K., Ohnishi K., Kiyotani T., et al, Peripheral nerve regeneration across an 80-ram gap bridged by a polyglycolic acid (PGA)-collagen tube filled with laminin-coated collagen fibers: a histological and electrophysiological evaluation of regenerated nerves. Brain Res., 2000, 868(2): 315-328
    [67] Hadlock T., Sundback C., Hunter D., et al, A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration. Tissue Eng., 2000, 6(2): 119-127
    [68] Suzuki Y., Tanihara M., Ohnishi K., Suzuki K., Endo K., Nishimura Y., Cat peripheral nerve regeneration across 50ram gap repaired with a novel nerve guide composed of freeze-dried alginate gel. Neurosci. Lett., 1999, 259(2): 75-78
    [69] 戴传昌,曹谊林,许旺细胞在聚羟基乙酸纤维上三维定向培养.中华显微外科杂志,2000,23(4):286-289
    [70] 戴传昌,商庆新,用组织工程方法桥接周围神经缺损的实验研究.中华外科杂志,2000,38(5):388-390
    [71] Yoshii S., Oka M., et al, Collagen filaments as a scaffold for nerve regeneration. J. Biomed. Mater. Res., 2001, 56(3): 400-405
    [72] 王相如,钱济先,神经导管在周围神经修复中的临床应用.中国临床康复,2002,6(24):3704-3705
    [73] Mooney D. J., Mazzoni C. L., Breuer C., et al, Stabilized polyglycolic acid fibre-based tubes for tissue engineering. B iomaterials, 1996, 17(2): 115-124
    [1] Freed C. E., Vunjak-novakovic G., Iron R. J., Eagles D. B., Lesnoy D. C., Barlow S. K., Langer R., Biodegradable polymer scaffolds for tissue engineering. Biotechnology (N Y), 1994, 12(7): 689-693
    [2] Kim B. S., Mooney D. J., Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol., 1998, 16(5): 224-230
    [3] 周佩兰,黄庆森,周围神经缺损研究.中国矫形外科杂志,2004,12(8):620-622
    [4] 叶震海,周围神经组织工程研究—雪旺细胞和聚乳酸材料复合种植的体内外实验研究:[硕士学位论文].广州:第一军医大学,2000
    [5] 刘平,王常勇,聚乙交酯-丙交酯泡沫材料的生物学评价.西北农林科技大学学报:自然科学版,2005,33(5):23-26
    [6] 高成杰,余斌,PLA与PGA聚合物在矫形外科中的应用.中国矫形外科杂志,2001,8(9):903-906
    [7] 朱惠光,计剑,高长有,封麟先,沈家骢,聚乳酸组织工程支架材料.功能高分子学报,2001,14(4):488-492
    [8] 徐纪刚,陈功林,医用生物材料-聚乙丙交酯PGLA(90/10)的研究.合成纤维,2005,(9):21-23,27
    [9] 赵桦萍,白丽明,陈伟,生物降解材料.化学教育,2005,(8):11-13
    [10] 李宏卫,温玉明,王吕美,李龙江,祁兵,聚乳酸—乙醇酸膜材料的细胞培养液中的降解实验.口腔医学,2005,25(1):12-14
    [11] 戈进杰,生物降解高分子材料及其应用.北京:化学工业出版社,2002
    [12] Bhat Sujata V., B iomaterials. Alpha Science International Ltd., Pangboume, 2002
    [13] 吴颖,郭七明,生物降解聚酯—聚乙丙交酯的合成研究及应用.化工新型材料,2000,28(1):22-24
    [14] 周长忍,丁珊,可降解材料的制备及应用研究进展.第二届全国组织工程学术大会论文汇编,广州,2002
    [15] 李沁华,天然大分子及其生物材料在组织工程中的应用.第二届全国组织工程学术大会论文汇编,广州,2002
    [16] 刘白玲,胶原在生物医学领域的应用.皮革科学与工程,1999,9(1):32,35-42
    [17] 高丹文,甲壳质及其衍生物的开发利用.企业技术开发,1997,8:6-7
    [18] 江淼,季宇彬,张凡菲,甲壳素(chitin),壳聚糖(chitosan)及其衍生物在医药方面的应用.中国临床医药实用杂志,2004,25:7-11
    [19] 姚子昂,吴海歌,邢福有,韩宝芹,壳聚糖在组织工程中应用的研究进展.中国生物工程杂志,2003,23(10):32-36
    [20] 赵海霞,牟大可,甲壳素/壳聚糖及其衍生物的应用研究进展.山东医药,2004,44(17):59-60
    [21] 曹晶,孙淑爱,卢凤琦,壳聚糖的生物学评价.中国公共卫生,2005,21(3):332
    [22] 李立华,李红,罗丙红,周长忍,壳聚糖及其衍生物在组织工程中的应用.功 能高分子学报,2005,18(2):347-352
    [23] 孟哲,唐伟斌,于淑玲,壳聚糖及其衍生物的特性利应用.生物学教学,2005,30(10):7-8
    [24] Widmer M. S., Gupta P. K., et al, Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration. Biomaterials, 1998, 19(21): 1945-1955
    [25] 匡勇,侯春林,苟二怀,几丁质及几丁糖与雪旺氏细胞相容性的实验研究.中国修复重建外科杂志,1998,12(2):90-93
    [26] 魏欣,劳杰,顾玉东,几丁质-胶原复合物促进周围神经再生的实验研究.上海医学,2001,24(9):534-537
    [27] 国家质量技术监督局,医疗器械生物学评价 第12部分:样品制备与参照样品.GB/T 16886.12,2005
    [1] 黄故,现代纺织复合材料.北京:中国纺织出版社,2000.1
    [2] 杨桂,敖大新,张志勇,姚学锋等,编织结构复合材料制作、工艺及工业实践.北京:科学出版社,1999
    [3] 杜庆民,高学纯,管壁不同厚度的聚乳酸管对周围神经再生影响的实验研究.济宁医学院学报,2002,25(2):13-14
    [4] Engels H., Kronast C., On the theory of braiding production: Development from basic principles to the combined quantitative and qualitative effects of selected force parameters, their empirical testing and interpretation. Narrow Fabric and Braiding Industry, 1991, (2): 48-64
    [5] Brunnschweiler D., Braids and braiding. J. Textile Inst., 1953, (44): p666-p686
    [6] 刘国华,张佩华,王文祖,杨记,编织结构神经再生导管的编织工艺.东华大学学报:自然科学版,2003,29(6):54-57,65
    [7] Liu G. H., Zhang R H., Wang W. Z., Feng X, W., Liu H. E, Study on braiding parameters of a biodegradable nerve regeneration conduit with regular braided structure. Journal of Donghua University (Eng. Ed.), 2004, 21(6): 66-70
    [8] Dauner M., Considerations on braiding implants for ligament replacement-yarn twist in the braiding process. Narrow Fabric and Braiding Industry, 2002, (2): 164-166
    [9] Dauner M., The braiding process for ligament replacement prostheses-braiding angle and braiding process angle. Narrow Fabric and Braiding Industry, 1999, 36(5): 158-162
    [10] 罗瑞林,织物涂层.北京:中国纺织出版社,1994
    [11] 胡传炘,宋幼慧,涂层技术原理和应用.北京:化学工业出版社,2000
    [1] 刘国华,张佩华,王文祖,编织结构复合材料神经再生导管及其性能.上海纺织科技,2004,31(4):40-41
    [2] 殷玉芹,刘正津,何光麓,周围神经的力学特性及其生物学意义.中国临床解剖学杂志,1994,12(2):156-158
    [3] Margareta Nordin,Vicar H.Frankel著,过邦辅编译,临床骨科生物力学基础.上海:上海远东出版社,1993
    [4] 李汉云,钟世镇,胡耀民,朱青安,卢海俊,压力对周围神经传动功能影响的实验研究.中国临床解剖学杂志,1990,8(1):40-43
    [5] Liu G. H., Hu H., Zhang P. H., Wang W. Z., An experimental investigation on the radial compressive properties of the biodegradable braided regeneration conduits for peripheral nerve repair. Autex Research Journal, 2005, 5(2): 106-112
    [6] Liu G. H., Zhang P. H., Wang W. Z., Study on peripheral nerve conduit made from PGLA braided composite. Proceedings of the Textile Institute 83rd World Conference, May 23-27, Shanghai, 2004, 1021-1024
    [1] International Organization for Standardization, Cardiovascular implants-Tubular vascular prostheses. ISO 7198:1998
    [2] 叶卫平,Origin 7.0科技绘图及数据分析.北京:机械工业出版社,2004
    [3] 闫家智,姜宝国,周围神经的生物力学研究进展.中华实验外科杂志,2004,21(1):125-126
    [4] Wu H. C., Seo M. H., Backer S., Structural Modeling of double-braided synthetic fiber ropes. Textile Res. J., 1995, 65(11): 619-631
    [5] 胡良剑,丁晓东,孙晓君,数学实验;使用MATLAB.上海:上海科学技术出版社,2001
    [6] Potluri P. Rawal A., Rivaldi M. Porat I., Geometrical modeling and control of a triaxial braiding machine for producing 3D performs. Composites Part A: Applied Science and Manufacturing, 2003, 34(6): 481-492
    [7] Zhang Q., Beale D., Adanur S., Broughton R. M., Walker R. P., Structural analysis of a two-dimensional braided fabric. J. Text. Inst., 1997, 88(1): 41-52
    [1] 李德忠,徐永年,丁继兵,蔡贤华,尤锋,董红让,复合导管促进周围神经缺损再生的形态学研究.中国临床外科杂志,2004,9(3):199-202
    [2] Wendt S. J., Ziemecki T. L., Spagber L. S., et al, Indirect cytoxic evaluation of dental materials. Oral Surg. Oral Med. Oral Pathol., 1993, 75: 353-356
    [3] Metzler V., Bienert H., Lehmann T., et al, A novel method for quantifying shape deformation applied to biocompatibility testing. ASAIO J., 1999, 45: 264-271
    [4] Kue R., Sohrabi A., Nagle D., et al, Enhanced proliferation and osteocalein production by human osteoblast-like MG63 cells on silicon nitride ceramic disc. Biomaterials, 1999, 20: 1195-1201
    [5] Steven K., Nelson A., John C., et al, Cytotocity of dental casting alloys pretreated with biologic solutions. J. Prosthet. Dent., 1999, 81:591-597
    [6] International Organization for Standardization, Biological evaluation of medical devices-Part 5: Test for in vitro cytotoxicity. ISO10993. 5, 1999
    [7] 国家标准局,医疗器械生物学评价第13部分:聚合物医疗器械的降解产物的定性与定量.GB/T 16886.13,2001
    [8] 国家食品药品监督管理局,外科植入物 聚交酯共聚物和共混物 体外降解试验,YY/T 0473.2004
    [9] 郭尚春,孙皎,影响聚乙交酯丙交酯降解性能的因素.口腔材料器械杂志,2002,11(4):201-203
    [10] 朱爱萍,吴钧,张娜,沈健,壳聚糖—一种具有应用潜力的组织工程支架材料.化学通报,2002,65(1):1-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700