用户名: 密码: 验证码:
基于联合信息处理的声矢量阵测向技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声矢量传感器由无指向性声压传感器和具有偶极子指向性的质点振速传感器复合而成,可以空间共点同步拾取声场中的标量信息(声压)和矢量信息(质点振速)。因此,与传统的声压传感器相比,声矢量传感器可以获取更为全面的声场信息。它的出现,为解决水下目标的检测、定位及噪声识别等诸多问题提供了一种新的方式和手段,深受国内外学者关注。目前,关于声矢量传感器的物理基础和工程制作等方面的问题已基本解决,基于声矢量传感器阵列(或简称声矢量阵)的信号处理问题已成为另一个令人瞩目的研究热点,一些成果相继被发表。但是,现有的声矢量阵信号处理技术都是将声矢量传感器的振速分量作为与声压相同的独立阵元信息来处理,而没有充分利用声压振速联合信息处理技术。事实上,在远程声场,相干源(尺度有限的信号源)信号的声压和振速是相干的,而对于各向同性噪声场,声压与振速是不相关的,所以基于平均声能流概念(即声强)的声压振速联合信息处理技术具有较强的抗各向同性噪声能力。基于单矢量传感器的声压振速联合信息处理技术已经为学者们广泛认可。
     与此同时,在DOA估计的诸多方法中,MUSIC、ESPRIT等基于特征分解理论的子空间类方法,以其较高的分辨能力和相对较小的计算复杂度而颇受关注,近来,已有学者将其引入到声矢量阵信号处理中,并取得了一定的效果。
     本文在回顾声矢量传感器的基本原理、声压振速联合信息处理的物理基础以及基于子空间类方法的声矢量阵信号处理技术研究现状的基础上,着眼于将声压振速联合信息处理技术引入到声矢量传感器阵列信号处理中。通过将联合信息处理技术与子空间类高分辨测向技术相结合,为解决声矢量阵在低信噪比条件下的信源检测、目标定位和噪声测量等方面的应用问题,提供一种新的思路和方法。本文的主要创新点如下:
     1) 在对声矢量传感器的基本原理以及声压振速联合信息处理的物理基础进行了深入分析的基础上,提出了一种声矢量阵声压与振速互协方差矩阵,论述了基于该互协方差矩阵的特征子空间分解原理。基于该互协方差矩
The acoustic vector sensor (AVS) is combined by traditional and omnidirectional pressure sensor and particle velocity sensor, which has natural dipole. It can measure both pressure and particle velocity of acoustic field at a point in space, whereas a traditional pressure sensor can only extract the pressure information. By taking advantage of the extra information, an acoustic vector sensor array (AVSA) is able to improve source localization performance without increasing array aperture size. In recent years, AVSA signal processing has been drawn much attention. And much work has been done for applying AVSA to the direction finding problem. However, these existing AVSA direction finding algorithms are all based on the same processing methodology that utilizes the particle velocity information of AVS as an independent array element (i.e. the particle velocity is regarded as an analog of the pressure information). Hence they don't make use of the pressure-velocity combined processing. In fact, there exists a coherence difference of pressure-velocity between radiated source signals based on the plane-wave model and the isotropic background noise. Therefore, the pressure-velocity combined processing has an outstanding ability to eliminate background noise in isotropic noise field.
    At the same time, subspace-based DOA estimation algorithms such as MUSIC, ESPRIT, and so on, have attracted a lot of attention in recent years due to its high resolution and low computational complexity. Recently, researchers has introduced them to the signal processing for AVSA successfully. As stated above, however, existing methods do not utilize the pressure-velocity combined processing, so its threshold SNR (signal-to-noise ratio) is still relatively higher.
    In this thesis we first review the fundamental principle of AVS, the physical basic of the pressure-velocity combined processing, as well as existing subspace methods based AVSA signal processing technologies. Its object is to investigate
引文
[1] B Hochwald, A Nehorai. Identifiability in array processing models with vector-sensor applications. IEEE Trans Signal Processing, 1996, 44(11): 83- 95P
    [2] A Nehorai, E. Paldi. Acoustic vector-sensor array processing.in Proc. 26th Asilomar Conf. Signals, Syst, Comput., Pacific Grove, CA, 1992: 192-198P
    [3] A.Nehora, E. Paldi. Acoustic vector sensor array processing. IEEE Trans. Signal Processing, 1994, 42(9): 2481-2491P
    [4] M. Hawkes, A. Nehorai. Bearing estimation with acoustic vector-sensor arrays. Velocity-Sensor Focused Workshop, 1995,3:345-358P
    [5] K. T. Wong, M. D. Zoltowski. Orthogonal velocity-hydrophone ESPRIT for sonar source localization, in Proc. MTS/IEEE Oceans Conf., Fort Lauderdale, FL, 1996, 3: 1307-1311P
    [6] K. T. Wong, M. D. Zoltowski. ESPRIT-based extended-aperture source locali- zation using velocity-hydrophones, in Proc. MTS/IEEE Oceans Conf., Fort Lauderdale, FL, 1996, 3:1427-432P
    [7] K. T. Wong, M. D. Zoltowski. Source localization by 2-D root-MUSIC with 'scalar triads' of velocity-hydrophones, in Proc. 39th Midwest Symp. Circuits Syst, Ames, IA, 1996: 677-80P
    [8] M. Hawke, A. Nehorai. Acoustic vector-sensor beamforming and Capon direction estimation, in Proc. Int. Conf. Acoust.,Speech,Signal Process. (ICASSP), Detroit, MI, 1995: 1673-676P
    [9] G. L. D'Spain, W. S. Hodgkiss, G. L. Edmonds. Energetics of the deep ocean's infrasonic sound field. J. Acoust. Soc. Amer., 1991, 89(3): 1134- 1142P
    [10] G. L. D'Spain et al. Initial analysis of the data from the vertical DIFAR array.in Proc. Mast. Oceans Tech. (Oceans'92), Newport, RI, 1992: 346-??351P
    [11] V. A. Shchurov,V. I. Ilyichev, and V. P. Kuleshov. The ambient noise energy motion in the near-surface layer in the ocean. J. Physique, 1994, 4(5): 1273- 1276P
    [12] Leslie C B et al. Hydrophone for measuring particle velocity. J.Acoust.Soc. Am., 1956, 28(4): 711-715P
    [13] Zakharov L N et al. Phase-gradient measurements in sound fields. Soy. Phys. Acoust., 1974,20(3); 241-245P
    [14] Gordienko V et al. Vector-phase method in acoustics. MOSCOW: Nauka, 1989
    [15] Shchurov V A et al. Coherent and diffusive fields of underwater acoustic ambient noise. Acoust. Soc. Am.. 1991, 90(2): 991-1001P
    [16] Shchurov V A et al. The interaction of energy flows of underwater ambient noise and local source. Acoust.Soc.Am., 1991, 90(2): 1002-1004P
    [17] Berliner M J, Lindberg J F. Acoustic particle velocity sensor: design, performance and applications. Woodbury, NY: AIPPress, 1996, 368 (American Institute of Physics, Woodbury, NY, 1995)
    [18] Skrebnev G K. Combined underwater acoustic receiver. St. Petersburg: Elmor, 1997
    [19] Skrebnev. Proceedings of the workshop on directional acoustic sensors. NUWC, Newport, RI. 2001
    [20] B. D. Kerler. Gradient hydrophone flow noise. J. Acoust. Soc. Amer. 1972 , 53(6): 1374-1380P
    [21] Pessy A. Feldman. Construction of a fiber gradient hydrophone using a nichelion configuration. J. Acoust. Soc. Amer.. 1980, 80(5): 700-706P
    [22] C. L. LeBlanc. Handbook of hydrophone element design technology. NUSC Technical Report 5813(Naval Underwater Systems Center, New London, CT, 1978
    [23] M. A. Josserand, C. Maerfeld. PVF2 velocity hydrophone. J.Acoust.Soc. Am. 1985,78(3): 860-867P[24] John E. Cole. Multipole hydrophone, Acoustic Particle Velocity Sensor: Design, performance and Applications. Mystic CT, 1995:328-334P
    [25] Robert L.T., Amherst N.H. Tilt compensation for acoustic transducing system. United States Patent. 4179682. Dec. 18, 1979
    [26] Thmoas E.W., Nashua N.H. Underwater direction finding system. United States Patent.3987404.Oct. 19, 1976
    [27] 杨德森等.矢量水听器湖试报告.中国国防科学技术报告.哈尔滨工程大学水声研究所.1998.10
    [28] 杨德森等.矢量水听器海试报告.中国国防科学技术报告.哈尔滨工程大学水声研究所.2000.9
    [29] 贾志富.同振球型声压梯度水听器的研究.应用声学.1997,16(3):20-25页
    [30] 贾志富.采用双迭片压电敏感元件的声压梯度水听器.传感器技术.1997,16(1):22-29页
    [31] 洪连进.三维矢量水听器的研究.哈尔滨工程大学博士后研究工作报告.2001
    [32] 洪连进,张揽月.用于电容式传感器的静电激振台的研究.仪表技术与传感器.2003,(4):7-11页
    [33] 陈洪娟,洪连进.采用双迭片压电敏感元件的同振柱型矢量水听器.哈尔滨工程大学学报,2003,22(3):23-26页
    [34] 陈洪娟,洪连进.基于压电加速度计的同振型矢量水听器的设计.传感器技术.2003,22(3):20-24页
    [35] 周福洪.水声换能器及基阵.国防工业出版社.1984
    [36] 杨士莪.单矢量传感器多目标分辨的一种方法.哈尔滨工程大学学报,2003,24(6):591-595页
    [37] 李春旭.声压振速联合信息处理.哈尔滨工程大学博士学位论文,2000
    [38] 冯海泓,梁国龙,惠俊英.目标方位的声压、振速联合估计.声学学报,2000,25(6):516-520页
    [39] 余华兵,刘宏,潘悦,惠俊英.小尺度声传感器的指向性锐化技术研究.声学学报,2000,25(4):311-322页
    [40] 惠俊英,李春旭,梁国龙,刘宏.声压和振速联合信号处理抗相干干扰.??声学学报,2000(5):389-394页
    [41] 孙贵青,杨德森,张林等.矢量水听器载水下目标低频辐射噪声测量中的应用.哈尔滨工程大学学报,2001(5):5-9页
    [42] 孙贵青,杨德森,张揽月,时胜国.基于矢量水听器的最大似然比检测和最大似然方位估计.声学学报,2003,28(1):66-72页
    [43] M. Hawkes, A.Nehorai. Acoustic vector-sensor processing in the presence of a reflecting boundary. IEEE Trans. Signal Processing, 2000, 48: 2981-2993P
    [44] 程彬彬,杨士莪.单矢量水听器目标方位估计.声学技术2004年增刊,233-235页
    [45] A.Banner. Simple velocity hydrophones for bioacoustic application. J. Acousti. Soc. Am, 1972, 53(4): 1134-1136P
    [46] 孙贵青.矢量水听器检测技术研究.哈尔滨工程大学博士学位论文,2001
    [47] V. A. Shchurov, Marianna V. Kuyanova. Use of acoustic intensity measurements in underwater acoustics (Modern States and Prospects), Chinese Journal of Acoustic, 1999, 18(4): 315-326P
    [48] Frank J. Fahy. Measurement of acoustic intensity using the cross-spectral density of two microphone signals. J. Acoust. Soc. Am. 1977, 62(4): 1057-1059P
    [49] Per Rasmussen. Source location using vector intensity measurements. Sound and Vibration. 1989: 28-33P
    [50] 时胜国,杨德森.矢量水听器的源定向理论及其定向误差分析.哈尔滨工程大学学报,2003,24(2):132-135页
    [51] 刘伯胜,田宝晶.矢量传感器估计目标方位的误差的仿真研究.哈尔滨工程大学学报,2003,24(5):491-494页
    [52] 时胜国,杨德森,王三德.矢量水听器的声场特性研究.声学技术增刊,2003:164-166页
    [53] 杨德森.利用声矢量水听器实现对水下目标辐射噪声测量的研究.声学技术增刊,2002:92-93页[54] 孙贵青,杨德森,张揽月.基于矢量水听器的水下目标低频辐射噪声测量方法研究.声学学报,2002,27(5):429-434页
    [55] 孙贵青,杨德森,张林,何元安,张揽月,洪连进.矢量水听器在水下目标低频辐射噪声测量中的应用.哈尔滨工程大学学报,2001,22(5):5-9页
    [56] 乔钢,桑恩方.基于矢量传感器的高速水声通信技术研究.哈尔滨工程大学学报.2003,24(6):596-599页
    [57] 乔钢,桑恩方.组合传感器在水声通信中的应用.声学技术增刊,2003:155-157页
    [58] 孙岩松.各向异性噪声场对矢量水听器检测性能影响的研究.哈尔滨工程大学硕士学位论文,2003
    [59] 王伟.基于矢量水听器的目标方位估计.西北工业大学硕士学位论文,2003
    [60] M. Hawkes, A. Nehorai. Acoustic vector-sensor beamforming and Capon direction estimation. IEEE Trans. Signal Processing, 1998, 46(9): 2291-2304P
    [61] M. Hawkes, A. Nehorai. Acoustic vector-sensor correlations in ambient noise. IEEE J. Oceanic Eng., 2001, 26(3): 337-347P
    [62] M. Hawkes, A. Nehorai. Effects of sensor placement on acoustic vectorsensor array performance. IEEE J. Oceanic Eng., 1999, 24(1): 33-40P
    [63] M. Hawkes, A. Nehorai. Hull-Mounted Acoustic Vector-Sensor Processing. Proceedings of ASILOMAR-29, 1996, 1046-1050P
    [64] M. Hawkes, A. Nehorai. Surface-mounted acoustic vector-sensor array processing. Proc, Intl Conf. on Acous., Speech and Sig. Proc(ICASSP96), Atlanta, GA, 1996: 3170-3173P
    [65] Malcolm Hawkes. Issues in acoustic vector-sensor processing. Yale University, 2000
    [66] J. P. Burg. Maximum entropy special analysis. Proc.of the 37th meeting of society of Exploration Geophysicists, 1967
    [67] J. Capon. High revolution frequency wavenumber spectrum analysis. Proc. Of IEEE Signal Processing. 1969, 57(8): 1408-1418P[68] R. O. Schmidt. Multiple emitter location and signal parameter estimation. IEEE Trans. Signal Processing, 1986, 34(3): 276-280P
    [69] R. Kumaresan, D. W. Tufts. Estimating the angle of arrival of multiple plane waves. IEEE Trans. Aerosapce Eletronic System. 1983, 19(5): 134-139P
    [70] A. Paulraj, R. Roy, T. Kailath. Estimation of Signal parameters via rotational invariance techniques-ESPRIT. Proc.19th Asilomar Conf. on Circuits, System and Computers. 1985: 83-89P
    [71] A. Paulraj, R. Roy, T. Kailath. A subspace rotation approach to signal parameter estimation. Proc. IEEE.1986, 74(7): 1044-1045P
    [72] R. Roy, T. Kailath. ESPRIT—Estimation of signal parameters via rotational invariance techniques, IEEE Trans. ASSP. 1989, 37(7): 984-995P
    [73] KUNDU D. Modified MUSIC algorithm for estimating DOA of signals. Signal Processing, 1996, 25(48): 85-89P
    [74] He Z S, Huang Z X, Xiang J C. The performance of DOA estimation for correlated signals by modified MUSIC algorithm. Journal of China Institute Communication, 2000, 21(10): 14-17P
    [75] Xu XL, Buckley K. M, Statistical performance comparison of MUSIC in element-space and beam-space. Proc. of Int.Conf.on Acoustic, Speech and Signal Processing. 1989: 2124-2127P
    
    [76] Xu XL, Buckley K. M. A comparison of element and beam space spatial- spectrum estimation for multiple source clusters. Proc. of Int. Conf. on Acoustic, Speech and Signal Processing. 1990: 2643-2646P
    [77] Zoltowski MD, S D. Silverstein. Development, performance analysis and experimental evaluation of beamspace root-MUSIC. Proc. of Int. Conf.on Acoustic, Speech and Signal Processing, 1991: 3049-3052P
    [78] Zoltowski MD, S D.Silverstein. Beamspace root-MUSIC. IEEE Trans. on Signal Processing. 1993, 41(11): 344-364P
    [79] Xu G, Silverstein SD. Beamspace ESPRIT, IEEE Trans.on Signal Processing. 1994,42(2): 349-356P
    [80] J. E. Evans et al. High revolution angular spectrum estimation techniques ??for terrain scattering analysis and angle of arrival estimation. Proc. First ASSP Workshop Spectral Estimation, Communication Research, Mc Matser University. Aug. 1981: 110-114P
    [81] T. J. Shan, T. Kailath. Adpative beamforming for coherent signals and interference. IEEE Trans.on ASSP. 1985, 33(6): 527-536P
    [82] T. J. Shan, M. Wax, T. Kailath. On spatial smoothing for estimation of coherent signals. IEEE Trans. on ASSP. 1985, 33(8): 806-811P
    [83] C. C. Yeh. Simple computation of projection matrix for bearing estimations. IEEE Proc. 1987, 134(2): 146-150P
    [84] T. S. liu, C. Y. Yin. An improved projection matrix technique for spatial spectrum estimation of coherent sources. Rroc. ISCP'90, 1990: 241-224P
    [85] 高世伟,保铮.利用数据矩阵分解实现对空间相关信号源的超分辨处理.通信学报,1988,9(1):4-13页
    [86] F. Haber, M. Zollowski. Spatial spectrum estimation in a coherent signal environment using a array in motion. IEEE. Trans AP. 1986, 34(3): 301-309P
    [87] 路鸣.高分辨率阵列信号处理方法研究.西安电子科技大学.博士学位论文,1990
    [88] H. Wang, M. Kaven. Coherent signal-subspace processing for the detection and estimation of angle of arrival of multiple wide-band sources. IEEE rans. SP, 1985, 33(4): 823-831P
    [89] M. wax, I. Kailath. Detection of signal by information theoretical criteria. IEEE Trans. ASSP. 1985, 33(2): 381-392P
    [90] M. wax, I. Ziskind. Detection the number of coherent signals by MDL Principle. IEEE Trans. ASSP. 1989, 37(8): 1190-1196P
    [91] A. Di. Multiple sources Location: a matrix decomposition approach. IEEE. Trans. ASSP. 1985, 33(4): 1086-1091P
    [92] J. H. Cozzens, M. J Sousa. Source enumeration in a correlatal signed enviro. IEEE Trans. SP. 1994, 42(2): 304-317P
    [93] Akaike H. A new look at the statistical model identification. IEEE Trans.??Automat. Contr., 1974, 19(6): 716-723P
    [94] Wax M, Kailath T. Detection of signals by information theoretic criteria. IEEE Trans. ASSP, 1985, 33(2): 381-392P
    [95] W. Chen, K M Wong, J. P. Reilly."Detection of the number of signals: a predicted eigen-threshold approach". IEEE Trans. Signal Processing, 1991, 39(5): 1088-1098P
    [96] Brcich R F, Zoubir A M, Pelin P. Detection of sources using bootstrap techniques. IEEE Trans. Signal Processing, 2002, 50(2): 206-215P
    [97] Wu H T, Yang J, Chen F K. Source number estimation using transformed Gerschgorim radii. IEEE Trans. Signal Processing, 1995, 43(6): 1325-1333P
    [98] Aouada S, Zoubir A M, See C M S. Source detection in the presence of nonuniform noise. Proceedings of the 29th IEEE International Conference on Acoustics, Speech and Signal Processing, Montreal, Canada, 2004:61 -68P
    [99] Aouada S, Bekara M, et al. A Gerschgorin-Kullback criterion for source number detection in nonuniform noise and small samples. Proceedings of the 3th IEEE Sensor Array and Multichannel Signal Processing Workshop, Barcelona, Spain, 2004:1143-1149P
    [100] Aouada S, Traskov D, et al. Application of the bootstrap to source detection in nonuniform noise. Proceedings of the 30th IEEE International Conference on Acoustics, Speech and Signal Processing, Pennsylvania, USA, 2005: 110-117P
    [101] Hwa-Tung Ong, Abdelhak M Z. Bootstrap-based detection of signals with unknown parameters in unspecified correlated interference. IEEE Trans. Signal Processing, 2003, 51(1): 135-141P
    [102] K. T. Wong, M. D. Zoltowski. Extended-aperture underwater acoustic multi-source azimuth/elevation direction-finding using uniformly but sparsely spaced vector hydrophones. IEEE J. of Oceanic Engineering. 1997, 22(4): 659-672P[103] K. T. Wong, M. D. Zoltowski. Closed-form underwater acoustic direction-finding with arbitrarily spaced vector hydrophones at unknown locations. IEEE Journal of Oceanic Engineering. 1997, 22(4): 649-658P
    [104] K. T. Wong. Root-MUSIC-based azimuth elevation angle-of-arrival estimation with uniformly space but arbitrarily oriented velocity hydrophones. IEEE Trans. Signal Processing. 1999, 47(12): 3250-3260P
    [105] K. T. Wong, M. D. Zoltowski. Self-initiating MUSIC-based direction finding in underwater acoustic particle velocity-field beamspace. IEEE J. of Oceanic Engineering. 2000, 25(2): 659-672P
    [106] 孙贵青.声矢量传感器均匀直线阵列研究.中国科学院声学所博士后研究工作报告,2003
    [107] 齐娜.基于确定脉冲信号的矢量传感器的目标方位估计研究.哈尔滨工程大学博士学位论文,2004
    [108] 陈新华.矢量传感器阵列信号处理.哈尔滨工程大学博士学位论文,2004
    [109] 赵羽.矢量阵阵处理研究.哈尔滨工程大学博士学位论文,2004
    [110] 吕钱浩.矢量阵处理技术研究.哈尔滨工程大学博士学位论文,2004
    [111] 吕钱浩,杨士莪等.矢量传感器阵列高分辨率方位估计技术研究.哈尔滨工程大学学报,2004;25(4):440-445页
    [112] 张揽月,杨德森.基于MUSIC算法的矢量水听器阵源方位估计.哈尔滨工程大学学报,2004;25(1):30-33页
    [113] 喻敏.声矢量传感器的Capon方位估计.哈尔滨工程大学硕士学位论文,2004
    [114] 江南,管静.基于水声矢量传感器阵的波达方向估计.贵州科学,2002,20(4):153-158页
    [115] 江南,黄建国,冯西安,李姗.基于矢量传感器阵列空间谱DOA估计.大连理工大学学报,2003,43(4):500-504页
    [116] 江南,黄建国,冯西安,管静.矢量传感器阵列的空间谱估计及定向性能分析.昆明理工大学学报,2003,28(2):77-82页
    [117] 张揽月,杨德森.矢量水听器高分辨率波束形成.声学技术增刊.2002,??21:437-438页
    [118] 肖卫国,高翔.基于AR谱的声矢量传感器阵方位估计.声学技术增刊,2004,23:250-252页
    [119] 田坦,齐娜,孙大军.矢量水听器阵波束域MVDR方法研究.哈尔滨工程大学学报,2004,25(3):295-298页
    [120] H. W. Chen, J. W. Zhao. Wideband MVDR beamforming for acoustic vector sensor linear array. IEE Proc. Radar Sonar Navig, 2004, 151(3): 158-162P
    [121] H. W. Chen, J. W. Zhao. Coherent signal-subspace processing of acoustic vector sensor array for DOA estimation of wideband sources. Signal Processing, 2005, 85(1): 837-847P
    [122] 陈华伟,赵俊渭.声矢量传感器阵宽带相干信号子空间最优波束形成.声学学报,2005,30(1):76-82页
    [123] 宋新见,殷冬梅,惠俊英.基于矢量信号处理的水声定位系统.海洋工程,2003,21(3):110-114页
    [124] 赵俊渭,陈华伟,李金明.基于矢量水听器的被动制导系统的研究.哈尔滨工程大学学报,2004,25(1):25-29页
    [125] 何心怡,蒋兴舟,李启虎.矢量水听器线阵的被动合成孔径技术.武汉理工大学学报,2003,27(6):799-801页
    [126] 杜选民,朱代柱等.拖曳阵左右舷分辨技术的理论分析与试验研究.声学学报,2000,25(5):395-401页
    [127] 何心怡,蒋兴舟,李启虎等.拖线阵的阵形畸变与左右舷分辨.声学学报,2004,29(5):409-413页
    [128] 余华兵.联合信号处理物理基础初探及二维组合传感器的制作.哈尔滨工程大学硕士学位论文,2000
    [129] 惠俊英,刘宏,余华兵,范敏毅.声压振速联合信息处理及其物理基础初探.声学学报,2000,25(4):303-307页
    [130] 岳剑平.水下动目标被动跟踪研究.哈尔滨工程大学博士学位论文,2004
    [131] 孟洪.矢量水听器及联合信号处理研究.哈尔滨工程大学硕士学位论文,2002[132] 何祚镛,赵玉芳.声学基础.国防工业出版社,1981
    [133] Noble B, Daniel J W. Applied linear algebra(2nd ed.). Englewood Cliffs: Prentice-Hall, 1997
    [134] 王永良,陈辉等.空间谱估计理论与算法.北京:清华大学出版社,2004
    [135] 张贤达.信号处理中的线性代数.北京:科学出版社,1997
    [136] V F Pisarenko. The retrieval of harmonics from a covariance function. Geophs.J.R. Astr. Soc. 1973(3): 134-139P
    [137] Brcich R F, Zoubir A M, Pelin P. Detection of sources using bootstrap techniques. IEEE Trans. Signal Processing, 2002, 50(2): 206-215P
    [138] Efron B, Tibshirani R J. A n Introduction to the Bootstrap. London: Chapman & Hall, 1993
    [139] Su G, Morf M. Signal subspace approach, for multiple wideband emitter location. IEEE Trans. On ASSP, 1983, 31(12): 1502-1522P
    [140] Bienvenu G. Eigensystem properties of the sample space correlation matrix. In proc. ICASSP, 1983: 332-335P
    [141] Wang H, Kaveh M. Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wideband sources. IEEE Trans. ASSP, 1985, 33(4): 823-831P
    [142] Valaee H, Kabal P. Wideband array processing using a two-sided correlation transformation. IEEE Trans. Signal Processing, 1995, 43(1): 160-172P
    [143] Jefrey Krolik, David Swingler. The detection perfor-mance of coherent wideband focusing for a spatially resampled array. IEEE ICASSP, 1990: 2827-2830P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700