用户名: 密码: 验证码:
蜂毒肽和神蜂精抗HSV-1病毒作用及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文考察了采用层析法分离蜂毒得到的纯蜂毒肽和神蜂精(内含蜂毒肽0.05 mg/ml的中药外搽剂)的抗HSV-1病毒作用,同时对其抗HSV-1病毒的机理进行了探索,并研究了HSV-1感染后小鼠脑细胞中p53和p21 WAF1/CIP1蛋白表达的变化。结果如下:
     1、QF-1取毒器蜂箱内取毒法采集意大利蜜蜂的蜂毒,过滤提纯蜂毒后经葡聚糖凝胶G-25,G-50,G-75层析和溶血试验分离纯化后得到蜂毒肽。经SDS-PAGE电泳Marker及蜂毒肽标准品对分离所得的组分进行鉴定,证实其为电泳级纯度的蜂毒肽,利用分离所得的蜂毒肽进行后续试验。
     2、CPE法测定并经过Reed- Meuench法计算得出HSV-1病毒的半数感染量TCID50为10-5.2 / 100uL,MTT法测定和Reed- Meuench法计算得出蜂毒肽和神蜂精对Vero细胞的半数中毒剂量CC50分别为10-2.1 mg/100uL和10-2.4mg /100uL。体外实验结果表明1、3、6、9倍CC50的蜂毒肽对HSV-1病毒的抑制率分别为55.12%,55.12%,59.30%,66.51%,药物对照组(阿昔洛韦试验组)的抑制率为74.88%。四个梯度浓度的神蜂精对HSV-1病毒的抑制率分别为69.50%,71.52%,62.11%,45.74%,阿昔洛韦试验组的抑制率为75.34%。
     3、体内试验结果表明蜂毒肽和神蜂精均有提高小鼠存活率和延长小鼠存活时间的作用。蜂毒肽在低、中和高剂量(1×10-3mg/mL,3×10-3mg/mL,6×10-3mg/mL)时小鼠的存活率分别为40%,40%和50%。神蜂精试验组的小鼠存活率分别为40%,50%和60%,均高于病毒对照组的20%。蜂毒肽试验组小鼠的平均存活时间分别为11.4d,12d,12.7d,中、高剂量蜂毒肽试验组的平均存活时间明显高于病毒对照组(p<0.05)。神蜂精试验组小鼠的平均存活时间分别为11.6d,11.8d,12.8d,明显高于病毒对照组(p<0.05)。高剂量组的蜂毒肽和神蜂精的小鼠平均存活时间均高于阳性对照组(阿昔洛韦试验组)。
     4、蜂毒肽和神蜂精的抗HSV-1病毒机理的研究结果表明,蜂毒肽和神蜂精没有直接杀死HSV-1病毒的作用,但是对HSV-1病毒的吸附、合成和释放均有明显的抑制作用。1CC50,3CC50,6CC50,9CC50的蜂毒肽对HSV-1病毒的吸附均有抑制作用,抑制率分别为31.25%,32.92%,32.92%,32.08%。四个梯度浓度1CC50,3CC50,6CC50,9CC50的神蜂精对HSV-1病毒吸附的抑制率分别为29.17%,31.25%,32.08%,32.08%。四个梯度浓度的蜂毒肽对HSV-1病毒合成的抑制率分别为29.05%,29.91%,31.69%,33.06%。四个梯度浓度的神蜂精对HSV-1病毒合成的抑制率分别为23.12%,23.49%,24.25%,23.72%。四个浓度的蜂毒肽对HSV-1病毒释放的抑制率分别为29.31%,18.37%,13.28%,10.70%。四个梯度浓度的神蜂精对HSV-1病毒释放的抑制率分别为42.89%,33.77%,31.32%,30.67%。
     5、小鼠在注射0.05 mL 100LD50 HSV-1病毒液感染后,连续两天进行蜂毒肽和神蜂精腹腔注射给药,小鼠感染病毒后第4天进行免疫组化试验,结果显示:正常试验组,病毒对照组,低、中、高剂量蜂毒肽组,低、中、高剂量神蜂精组小鼠的脑细胞p21 WAF1/CIP1蛋白阳性细胞率分别为100%,2.1%±0.6, 14.2%±0.4,28.5%±0.6,33.8%±0.8, 13.7%±0.5,22.3%±0.4,29.4%±0.6。各试验组小鼠脑细胞的p53蛋白的阳性细胞率分别为3.5%±0.2,40.2%±0.5,31.2%±0.5,22.4%±0.4,20.5%±0.3,27.3%±0.6,20.9%±0.3,14.1%±0.2。
     经层析分离蜂毒得到的电泳级纯度的蜂毒肽和蜂毒制剂神蜂精通过抑制病毒的吸附、合成和释放,从而达到体内外抗HSV-1病毒的作用,进而调节小鼠脑细胞p21 WAF1/CIP1和p53蛋白的表达,调节细胞周期,保护细胞DNA免受HSV-1的损伤。
     神蜂精中蜂毒肽的含量约为0.05 mg/mL,100uL 1CC50神蜂精所含蜂毒肽约为0.0002 mg,100uL 1CC50蜂毒肽溶液含蜂毒肽0.00799mg。神蜂精中的蜂毒肽含量只有相应试验浓度的蜂毒肽溶液的1/40。比较试验组神蜂精和蜂毒肽的体内外抗HSV-1病毒的能力,抑制病毒吸附、合成和释放的能力,对蛋白p53和p21的阳性表达的影响,二者的差别却并不大。这可能有以下几个原因:一方面,神蜂精中的中药成分可能也参与了病毒释放的抑制;另一方面,中药成分改变了蜂毒肽的构象,使得蜂毒肽的抗病毒释放能力大大增强,或者兼而有之。此类增效作用的研究结果为蜂毒肽的开发利用和蜂毒制剂神蜂精的抗HSV-1病毒等的药效作用机理提供新的理论依据。
In this paper, the antiviral effects as well as the mechanism of melittin purified from bee venom by chromatography and Shen Fengjing on HSV-1 virus were investigated. At the same time, the differences of the expression of p53 and p21 WAF1/CIP1 proteins in the brain cells of mice infected by HSV-1 were explored. The results were as follow:
     1. The melittin was isolated and purified through polydextran gel G-25,G-50,G-75 combined with hemolysis test from venom of honeybee (Apis mellifera lijustica) workers which was collected by QF-1 Bee Venom Collector in the top of hives. The separated component was used in next experiments after confirmed by comparing to melittin standard and protein marker in SDS-PAGE.
     2. The TCID50 of HSV-1 virus on Vero cell was 10-5.2 /100uL, which was tested by CPE method and calculated by the Reed-Meuench method. And the CC50 of melittin and Shen Fengjing, which were tested by MTT method, were 10-2.1mg/100uL and 10-2.4mg/100uL. In vitro test results showed that suppression rates of 1,3,6,9 times CC50 of melittin on the virus HSV-1 were 55.12%, 55.12%, 59.30% and 66.51% respectively, and the inhibition rate of drug control (Acyclovir) was 74.88%. Those of Shen Fengjing were 69.50%, 71.52%, 62.11% and 45.74% respectively, and the control was 75.34%.
     3. In vivo results showed that melittin and Shen Fengjing could improve the survival rate and the survival time of mice. The mice’survival rates subjected to melittin at the low, medium and high dose(1×10-3mg/mL,3×10-3mg/mL,6×10-3mg/mL) were 40%, 40% and 50% respectively, and those to Shen Fengjing were 40%, 50% and 60%, 20% higher than that of virus control group. The average mice’survival duration subjected to melittin were 11.4d, 12d, 12.7d, respectively, and those of median and high doses of melittin were significantly higher than that of the virus control group (p <0.05). Those of Shen Fengjing were 11.6d, 11.8d, and 12.8d respectively, significantly higher than that of virus control group (p <0.05). The survival time of high dose of melittin and Shen Fengjing were higher than the positive control group(ACV).
     4. The antiviral mechanism research of melittin and Shen Fengjing showed that HSV-1 virus couldn’t directly be killed, but the adsorption, synthesis and release of HSV-1 virus were inhibited. The suppression rates of 1, 3, 6 and 9 times CC50 of melittin against adsorption of HSV-1 were 31.25%, 32.92%, 32.92% and 32.08% respectively. The inhibitive percentages caused by Shen Fengjing against virus adsorption were 29.17%, 31.25%, 32.08% and 32.08% respectively. The inhibition rates of melittin against viral synthesis were 29.05%, 29.91%, 31.69% and 33.06% respectively. Those of Shen Fengjing against synthesis were 23.12%, 23.49%, 24.25% and 23.72% respectively. The suppression rates of the four concentrations of melittin against the release of virus were 29.31%, 18.37%, 13.28% and 10.70% respectively, and as for Shen Fengjing groups they were 42.89%, 33.77%, 31.32% and 30.67% respectively.
     5. Mice were injected with 0.05 mL 100LD50 HSV-1 virus, Melittin and Shen Fengjing was injected for the following two days, then immunohistochemical tests were conducted 4 days after virus injection. The results showed that the protein p21 WAF1/CIP1 positive rates of the normal test group, the virus control group, low , median and high doses of melittin group, low, medium and high doses of Shen Fengjing group were 100%, 2.1%±0.6%, 14.2%±0.4%, 28.5%±0.6%, 33.8%±0.8%, 13.7%±0.5%, 22.3%±0.4% and 29.4%±0.6% respectively. The protein p53 positive cells rates were 3.5%±0.2, 40.2%±0.5%, 31.2%±0.5%, 22.4%±0.4%, 20.5%±0.3%, 27.3%±0.6%, 20.9%±0.3% and 14.1%±0.2% respectively.
     Melittin purified by chromatogram methods and Shen Fengjing had the antiviral effects on HSV-1 virus in vivo and in vitro by inhibiting the virus adsorption, synthesis and release. And the expression of p21 WAF1/CIP1 and p53 proteins and the cell cycle were adjusted and DNA damage by HSV-1 was protected.
     The content of bee venom in Shen Fengjing is about 0.1 mg / mL, and the content of melittin is about 0.05 mg / mL. The melittin in 100uL 1CC50 Shen Fengjing and melittin solution are about 0.0002 mg and 0.0079mg. The concentration of melittin tested is 40 times higher than that of Shen Fengjing. There were no significant differences between Shen Fengjing and melittin in the ability of in vivo and in vitro viral resistance to HSV-1, the inhibition against viral adsorption, synthesis and release, and the effects on the positive expression rates of protein p53 and p21. The reasons maybe as followings: The Chinese medicine in Shen Fengjing inhibited the virus releasing too, they might change the conformation of melittin so the antiviral effects were improved. This enhancement effects provided new theoretic basis on pharmacodynamic mechanism for the development and utilization of melittin and Shen Fengjing.
引文
[1]李晓眠.疱疹病毒[EB/OL].哈尔滨:哈尔滨医科大学微生物学教研室、病原生物学实验中心. [2010-01-15]. http://www.hrbmu.edu.cn/wlkj/HMU_Microbiol/index_ Textbook_33_PathogenicViruses_08.html.
    [2]赵帆,钟辉,马清钧.病毒感染与宿主细胞DNA损伤应答[J].生物技术通讯,2008,17(6):981-984.
    [3]陈金.单纯疙疹病毒感染研究进展[J].现代临床医学,2007,33(2):230-234.
    [4] Yang J, Yu Y, Hamrick HE, et al. ATM, ATR and DNA- PK: initiators of the cellular genotoxic stress responses [J]. Carcinogenesis, 2003, 24:1571.
    [5] Valyi - Nagy T, Olson SJ, Valyi - Nagy K, et al. Herpes simplex virus type 1 latency in the murine nervous system is associated with oxidative damage to neurons[J]. Virology, 2000, 78: 309.
    [6] Huang KJ, Zemelman BV, Lehman IR. Endonuclease G, a candidate human enzyme for the initiation of genomic inversion in herpes simplex type 1 virus[J]. J Biol Chem, 2002,277(23):21071.
    [7] Wohlrab F, Chatterjee S, Wells RD. The herpes simplex virus 1 segment inversion site is specifically cleaved by a virus–induced nuclear endonuclease[J]. Proc Natl Acad Sci USA,1991,88(15):6432.
    [8] Wilkinson DE, Weller SK. Herpes simplex virus typeⅠdisrupts the ATR dependent DNA- damage response during lytic infection [J]. J Cell Sci, 2006,119(Pt13):2695.
    [9] Shirata N, Kudoh A, Daikoku T, et al. Activation of ataxia telangiectasia-mutated DNA damage checkpoint signal transduction elicited by herpes simplex virus infection[J]. J Biol Chem, 2005,280(34):30336.
    [10] Lilley CE, Carson CT, Muotri AR, et al. DNA repair proteins affect the lifecycle of herpes simplex virus 1[J]. Proc Natl Acad Sci USA, 2005,102(16):5844.
    [11] Chibo D, Mijch A, Doherty R, et al. Novel mutations in the thymidine kinaseand DNA polymerase genes of acyclovir and foscarnet resistant herpes simplex viruses infecting an immunocompromised patient[J]. J Clin Virol, 2002, 25: 165-170.
    [12] Stranska R, van Loon AM, Bredius RG, et al. Sequential switching of DNA polymerase and thymidine kinase-mediated HSV-1 drug resistance in an immunocompromised child[J]. Antivir Ther, 2004, 9:97-104.
    [13] Shin YK, Weinberg A, Spruance S, et al. Susceptibility of herpes simplex virus isolates to nucleoside analogues and the proportion of nucleoside-resistant variants after repeated topical application of penciclovir to recurrent herpes labialis[J]. J Infect Dis, 2003, 187:1241-1245.
    [14] Kriesel JD, Spruance SL, Prichard M, et al. Recurrent antiviral-resistant genital herpes in an immunocompetent patient [J]. J Infect Dis, 2005, 192: 156-161.
    [15] Danve-Szatanek C, Aymard M, Thouvenot D, et al. Surveillance network for herpes simplex virus resistance to antiviral drugs: 3-year follow-up[J]. J Clin Microbiol, 2004, 42: 242-249.
    [16] Suzutani T, Ishioka K, De Clercq E, et al. Differential mutation patterns in thymidine kinase and DNA polymerase genes of herpes simplex virus type 1 clones passaged in the presence of acyclovir or penciclovir [J]. Antimicrob Agents Chemother, 2003, 47:1707-1713.
    [17] Duan J, Liuzzi M, Paris W, et al. Oral bioavailability and in vivo efficacy of the helicase-primase inhibitor BILS 45 BS against acyclovir-resistant herpes simplex virus type 1[J]. Antimicrob Agents Chemother, 2003, 47: 1798-1804.
    [18] Suzutani T, Saijo M, Nagamine M, et al. Rapid phenotypic characterization method for herpes simplex virus and Varicella-Zoster virus thymidine kinases to screen for acyclovir-resistant viral infection[J]. J Clin Microbiol, 2000, 38: 1839-1844.
    [19] Hwang YT, Zuccola HJ, Lu Q, et al. A point mutation within conserved region VI of herpes simplex virus type 1 DNA polymerase confers altered drug sensitivity and enhances replication fidelity [J]. J Virol, 2004, 78: 650-657.
    [20] Sarisky RT, Quail MR, Clark PE, et al. Characterization of herpes simplex viruses selected in culture for resistance to penciclovir or acyclovir[J]. J Virol, 2001, 75: 1761-1769.
    [21] Saijo M, Suzutani T, Morikawa S, et al. Genotypic characterization of the DNA polymerase and sensitivity to antiviral compounds of foscarnet-resistant herpes simplex virus type 1 (HSV-1) derived from a foscarnet-sensitive HSV-1 strain[J]. Antimicrob Agents Chemother, 2005, 49: 606-611.
    [22] Us D. Herpes simplex virus vaccine studies: from past to present [J]. Mikrobiyol Bul, 2006, 40 (4) : 413-433.
    [23] Rajcani J, Durmanova V. Developments in herpes simplex virus vaccines: old problems and new challenges [J]. Folia Microbiol ( Praha) , 2006, 51 (2) : 67-85.
    [24] Stanberry LR, Sp ruance SL, Cunningham AL, et al. Glycop rotein-D-adjuvant vaccine to prevent genital herpes[J]. N Engl JMed,2002, 347 (21) : 165221661.
    [25] Stanberry LR. Clinical trials of p rophylactic and therapeutic herpes simplex virus vaccines[J]. Herpes, 2004,11 (Supp l3 ) :A161-A169.
    [26] Bernstein D. Glycop rotein D adjuvant herpes simplex virus vaccine [J]. Expert Rev Vaccines, 2005, 4 (5) : 615-627.
    [27] Rupp R, Rosenthal SL, Stanberry LR. Pediatrics and herpes simplex virus vaccines [J]. Semin Pediatr InfectDis, 2005, 16 (1):31-37.
    [28] Xu F, Schillinger JA, Sternberg MR, et al. Serop revalence and co-infection with herpes simplex virus type 1 and type 2 in the United States, 1988-1994[J]. J Infect Dis, 2002, 185 ( 8 ) : 1019-1024.
    [29] Jones CA, Cunningham AL. Vaccination strategies to prevent genital herpes and neonatal herpes simplex virus (HSV) disease [J]. Herpes, 2004, 11 (1) : 12-17.
    [30] Koelle DM, Magaret A, McClurkan CL, et al. Phase I dosees calation study of a monovalent heat shock protein 70-herpes simplex virus type 2 ( HSV-2 ) pep tide2based vaccine designed to prime or boost CD8 T2cell responses in HSV2naive and HSV-2–infected subjects[J]. Clin Vaccine Immunol, 2008, 15 (5) : 773-782.
    [31] Parker JN, Pfister LA, Quenelle D, et al. Genetically engineered herpessimplex viruses that express IL-12 or GM2CSF as vaccine candidates [J]. Vaccine, 2006, 24 (10) : 164421652.
    [32] PrichardMN, Kaiwar R, JackmanWT, et al. Evaluation ofAD472, a live attenuated recombinant herpes simplex virus type 2 vaccine in guinea pigs [J]. Vaccine, 2005, 23 (46247) : 5424-5431.
    [33] Casanova G, Cancela R, Alonzo L, et al. A double-blind study of the efficacy and safety of the ICP10delta PK vaccine against recurrent genital HSV-2 infections [J]. Cutis, 2002, 70 (4) : 235-239.
    [34] Aurelian L. Herpes simp lex virus type 2 vaccines: new ground for op timism [J]? Clin Diagn Lab Immunol, 2004, 11 (3) : 437-445.
    [35] Dudek T, Knipe DM. Rep lication2defective viruses as vaccines and vaccine vectors [J]. Virology, 2006, 344 (1) : 230-239.
    [36] Hoshino Y, Dalai SK, Wang K, et al. Comparative efficacy and immunogenicity of replication-defective, recombinant glycoprotein, and DNA vaccines for herpes simplex virus 2 infections in mice and guinea pigs[J]. J Virol, 2005, 79 (1) : 410-418.
    [37] Hoshino Y, Pesnicak L, Dowdell KC, et al. Comparison of immunogenicity and protective efficacy of genital herpes vaccine candidates herpes simplex virus 2 dl5-29 and dl5-29-41L in mice and guinea pigs[J]. Vaccine, 2008, 26 (32) : 4034-4040.
    [38] de Bruyn G, Vargas2CortezM, Warren T, et al. A randomized controlled trial of a rep lication defective ( gH deletion) herpes simplex virus vaccine for the treatment of recurrent genital herpes among immunocompetent subjects[J]. Vaccine, 2006, 24 (7) : 914-920.
    [39] Domingo C, Gadea I, PardeiroM, et al. Immunological properties of a DNA plasmid encoding a chimeric protein of herpes simplex virus type 2 glycoprotein B and glycoprotein D [J]. Vaccine,2003, 21 (25226) : 3565-3574.
    [40] Natuk RJ, CooperD, GuoM, et al. Recombinant vesicular stomatitis virus vectors expressing herpes simplex virus type 2 gD elicit robust CD4 + Th1 immune responses and are protective in mouse and guinea p ig models of vaginalchallenge[J]. J Virol,2006, 80 (9) : 4447-4457.
    [41] Koelle DM, Gonzalez JC, Johnson AS. Homing in on the cellular immune response to HSV-2 in humans[J]. Am J Rep rod Immunol, 2005, 53 (4) : 172-181.
    [42] Koelle DM, Huang J, HenselMT, et al. Innate immune responses to herpes simplex virus type 2 influence skin homingmolecule expression by memory CD4 + lymphocytes[J]. J Virol, 2006, 80(6) : 2863-2872.
    [43] Wathen MW. Non2nucleoside inhibitors of herpes viruses [J]. Rev Med Virol, 2002, 12 (3) : 1672178.
    [44] Madan RP,Mesquita PM, Cheshenko N, et al. Molecular umbrellas: a novel class of candidate topical microbicides to prevent human immunodeficiency virus and herpes simplex virus infections[J]. J Virol, 2007, 81 (14) : 763627646.
    [45]王志玉,许斌,宋艳艳,等.大黄乙醇提取物体内抗单纯疱疹病毒作用的研究[J].中华实验和临床病毒学杂志, 2003, 17 ( 2) :1692173.
    [46]王千秋,张怀亮,赖伟红,等.中药对沙眼衣原体和单纯疱疹病毒作用的筛选[J].中国艾滋病性病, 2004, 10 (4) : 2782280.
    [47] Lyu SY. Antiherpetic activities of flavonoids against herpes simplex virus type 1 (HSV-1) and type2 (HSV-2) in vitro [ J ]. Arch Pharm Res, 2005, 28 (11) : 129321301.
    [48]李玉环.格尔德霉素的抗病毒作用和抗单纯疱疹病毒1型作用机制的研究[D].北京:中国协和医科大学, 1998.
    [49]高川,容蓉,孟红,等.白颖苔草抗病毒药用价值的初步研究[J].山东中医药大学学报,2009,33(4):343-346.
    [50]谷中瑞.病毒宁体外抗Ⅰ型单纯疱疹病毒的活性研究[J].河北医药,2009,31(12):1440-1442.
    [51]陈恬,贾文祥,曾蔚.藏药紫金标抗HSV-1作用的体内实验研究[J].中国人兽共患病学报,2007,23(6):562-565.
    [52]刘妮,孟以蓉,张俊丽,等.大黄素体外抗单纯疤疹病毒I型和II型的药效学研究[J].广州中医药大学学报,2008,25(3):241-243.
    [53]于红,张文卿,赵磊.钝顶螺旋藻多糖抗病毒作用的实验研究[J].中国海洋医药研究,2006,25(5):19-24.
    [54]赵高年,谢鹏.甘草甜素抗单纯疱疹病毒Ⅰ的实验研究[J].蛇志, 2008,20(3):182-184.
    [55]黄文,谢鹏,赵高年,等.甘草甜素抗单纯疱疹病毒-Ⅰ感染机制的实验研究[J].中风与神经疾病杂志,2007,24(2):189-191.
    [56]夏柯,颜钫,叶杨,等.苦瓜籽总甙体外抗HSV-Ⅰ和RSV活性研究[J].四川大学学报(自然科学版),2007,44(1):160-162.
    [57]王玉芝,张向宇,刘剑,等.柠檬提取物抗单纯疱疹病毒实验研究[J].实用口腔医学杂志,2008,24(5):627-629.
    [58]叶绍明,岑颖洲,张美英,等.麒麟菜硫酸酯多糖体外抗病毒作用的研究[J].中国海洋药物杂志,2007,26(3):14-19.
    [59]于囡,刘赛,王海桃,等.扇贝裙边糖胺聚糖体外抗I型单纯疱疹病毒实验研究[J].中国药理学通报,2008,24(2):210-213.
    [60]陈光福,尹飞,张红媛,等.天花粉蛋白对单纯疱疹病毒-1DNA复制的影响[J].实用儿科临床杂志,2007,22(22):1693-1694.
    [61]陈光福,尹飞,张红媛,等.天花粉蛋白对体内体外单纯疱疹病毒-1的抑制作用[J].中国现代医学杂志,2008,18(19):2760-2763.
    [62]杨海霞,陈廷,宋烨,等.无花果叶乙醇提取物体内抗单纯疱疹病毒的实验研究[J].实用预防医学,2009,16(4):1228-1229.
    [63]陈美娟,葛李,肖顺汉,等.银黄注射液在小鼠体内的抗病毒作用[J].华西药学杂志,2006,21(6):554-555.
    [64]张军峰,马肖兵,詹臻.泽漆体外抗单纯疱疹病毒活性研究[J].安徽农业科学, 2008,36(19): 8134.
    [65]陈盛禄.中国蜜蜂学[M].北京:中国农业出版社,2001:666.
    [66]李邵祥.蜂毒素的研究新进展[J].中草药,2001,32(10):942-945.
    [67]卫应,杨申,江明华.蜂毒的药理研究、临床应用及开发现状[J].中国医院药学杂志, 2000,20(11):682-683.
    [68] Henk WG, Todd WJ, Enright FM, et al. The morphological effects of two antimicrobial peptides, hecate-1 and melittin, on Escherichia coli [J]. Scanning Microsc, 1995, 9(2): 501-507.
    [69] Juvvadi P., Vunnam S., Merrifield EL, et al. Hydrophobic effects onantibacterial and channel-forming properties of cecropin A-melittin hybrids[J]. Journal of Peptide Science, 1996,2(4):223-232.
    [70]刘国栋.蜂毒肽片段类似物结构与生物活性的研究[D].天津:南开大学,2001.
    [71]朱伟,王本祥,朱迅.蜂毒素的研究进展[J].白求恩医科大学学报.2001,27(2):212 -214.
    [72] Belloj, Bellohr, Granadose. Conformation and aggregation of melittin: dependence of pH and concentration [J]. Biochemistry,1982, 21(3):461-465.
    [73] Dempsey CE.The actions of melittin on membranes [J].Biochim Biophys Acta, 1990,1031(2):143-161.
    [74] J.T. Gerig.Structure and solvation of melittin in 1,1,1,3,3,3-hexafluoro -2-propanol/water[J]. Biophysical Journal, 2004,86(5):3166-3175.
    [75] Sansom MS. The biophysics of peptide models of ion channels [J]. Progress in Biophysics and Molecular Biology, 1991, 55(3):139-235.
    [76] Saberwalg, Nagarajr. Cell-lytic and antibacterial peptides that act by perturbing the barrier function of membranes: facets of their conformational features, structure-function correlation and membrane-perturbing abilities [J] . Biochim Biophys Acta, 1994, 1197(2): 109-131.
    [77] Anderson D,Terwilliger TC,Wickner W ,et a1.Melittin forms crystals which are suitable for high resolution X-ray structural a.nalysis and which reveal a molecutai 2-fold axis of symmetry [J].Biol Chem , 1980, 255(6):2578-2582.
    [78] H Vogel, F Jahnig.The structure of melittin in membranes[J]. Biophysical Journal, 1986, 50: 573-582.
    [79]施婉军.2种蜜蜂和4种胡蜂溶血肽基因克隆与表达研究[D].杭州:浙江大学,2003.
    [80]刘洪云,童富淡.蜂毒的研究进展及其临床应用[J].中药材,2003,26(6):456-458.
    [81] N.A. Marsh,B.C. Whaler. The effects of honey bee (Apis mellifera L.) venom and two of its constituents, melittin and phospholipase A2, on the cardiovascular system of the rat [J].Toxicon,l980,l8(4):427-435.
    [82]宋长城,吕祥,李柏,等.蜂毒素抑制鸡胚绒毛尿囊膜血管生成的实验研究[J].中华中医药学刊,2007,25(12):2501-2503.
    [83]杨申,刘俊娥,张敖珍,等.蜂毒肽对离体豚鼠心房的双向作用[J].中国药理学报,2000, 21(3):221-224.
    [84]陈素霞,孙学军,李顺子,等.蜂毒肽C末端片段的反序肽的抗菌活性和溶血活性[J].高等学校化学学报,2005,26(12):2233-2236.
    [85]徐彭.蜂毒活血化瘀作用的实验观察[J].中草药,1996,27(9):542-544.
    [86]严序炳.蜂毒注射液治疗风湿性及类风湿性关节炎86例[J].中国中西医结合杂志,1995,15(6):370.
    [87]李顺子.蜂毒肽片段类似物的合成及其生物活性研究[D].天津:南开大学,2002.
    [88] Vick,J., Mehlman, Brooks, Phillips, et al. Effect of bee venom and melittin on plasma cortisol in the unanesthetized monkey[J]. Toxicon, 1972, 10: 581- 586.
    [89]李亚非,时述山,李欣等.纯化蜂毒肽对兔免疫性关节炎的抑制作用[J].中华疑难病学杂志,2000,4(5):293-295.
    [90]徐淑文.蜂毒治疗类风湿性关节炎32例[J].四川中医,1999,17(11):21-22.
    [91]王关林,邢卓.蜂毒肽的研究及展望[J].辽宁师范大学学报(自然科学版),2005,28 (1):87-90.
    [92]赵亚华,张微,李日清,等.蜂毒溶血肽对鸡红细胞及膜的生化作用[J].昆虫学报2008,51(6):586-594.
    [93]李大力,王关林,方宏筠.蜂毒溶血肽的研究进展[J].中国现代应用药学杂志,2003, 20(2):115-117.
    [94] SunXJ,Chen SX,Li SZ, et al.Deletion of two C-terminal Gin residues of 12-26-rnsidue fragment of melittin improvesitsan timierobial activity[J].Peptides, 2005, 26:369-375.
    [95] Wachinger M, Saermark T, Erf1e V. Influence of amphipathic peptides on the HIV-1 productionin persistently infected T lymphoma cells[J]. Federation of European Biochemical Societies Letters, 1992, 309(3):235-241.
    [96]孙丽萍,董捷,闫继红.蜂毒肽的结构、功能及分子生物学研究进展[J].蜜蜂杂志, 2002,8:7-9.
    [97]巴拉克?维尔纳.德研究用蜂毒对付艾滋病[J].山东中医药大学学报,2000,24(1):55.
    [98]刘岭,凌昌全,黄雪强.蜂毒素的纯化方法及体外抗肿瘤作用研究[J].中国生化药物杂志, 2003,24(4):163-166.
    [99]陈永强,朱振安,郝永强.蜂毒素诱导骨肉瘤细胞U2OS凋亡与坏死的实验研究[J].中西医结合学报,2004,2(3):208-209.
    [100]李玉梅,顾伟,高启龙.蜂毒素对人成骨肉瘤细胞体外增殖抑制作用的机制探讨[J].江苏中医药,2008,40(3):85-87.
    [101]高启龙,陈永强,李柏.蜂毒素抗骨肉瘤裸鼠移植瘤的作用及对肿瘤血管生成拟态的影响[J].肿瘤,2008,28(9):771-775.
    [102]李爱剑,梁枫.蜂毒素对人胃癌BGC823细胞生长抑制作用的实验研究[J].2009,18(5):780-781.
    [103]丁守怡,钱冬萌.蜂毒肽-IL-2嵌合蛋白的生物学活性检测[J].细胞与分子免疫学杂志, 2005,21(4):502-505.
    [104]宋旭霞,刘明军,王斌.蜂毒素与基因变构IL-2嵌合蛋白的体外生物活性研究[J].医学研究生学报,2009,22(5):464-468.
    [105] Dunn JD, Killion JJ. Effect of melittin on pituitary-adrenal responsiveness to stress [J].Acta-Endocrinologica,1988,119(3):339.
    [106] Winder D,Gunzbu W H,Erfle V,et a1.Expression of antimicrobial peptides has an antitumour effect in human cells [J].Biochem Biophys Res Commun,1998,242(3):608.
    [107]张晨,李柏,黄雪强.蜂毒素对肝癌细胞BE L一7 4 0 2的增殖抑制作用[J].浙江中医药大学学报,2007,3l(5):560-562.
    [108]靳弟,李俊,吴宝明,等.蜂毒素的体内外抗肿瘤研究[J].安徽医科大学学报,2009 ,44(5):590-593.
    [109]杨志林,柯以铨,徐如祥,等.蜂毒肽对人神经胶质瘤细胞的增殖抑制和诱导凋亡作用[J].南方医科大学学报,2007,27(11):1775-1777.
    [110]许天敏,崔满华,苏曼曼,等.蜂毒肽对卵巢癌生长抑制作用的实验研究[J].中国试验诊断学,2007,11(8):1027-1029.
    [111]高启龙,李玉梅,陈永强,等.蜂毒素对骨肉瘤UMR-106细胞裸鼠移植瘤血管生成的影响[J].中华中医药学刊,2008,26(3):522-524.
    [112]宋长城,吕祥,程彬彬,等.蜂毒素体外抑制内皮细胞血管生成及其作用机制[J].第四军医大学学报,2007,28(21):1925-1929.
    [113]李大力.蜂毒溶血肽及其前体蛋白cDNA的克隆、定点突变和在大肠杆菌中表达的研究[D].大连:大连理工大学,2000.
    [114]陶毓顺,周素华,房柱,等.蜂毒抗辐射效应研究初报[J].中国养蜂,1981,(1):15-16.
    [115]杨文超.蜂毒肽抗辐射及其机理研究[D].福州:福建农林大学,2007.
    [116]缪晓青,潘炳芳,吴珍红等.神蜂精的药效学试验I神蜂精的消炎镇痛作用[J].福建农业大学学报,24(4):466-469.
    [117]吴珍红,朱龙坤,俞昌喜.神蜂精的药效学试验II神蜂精对虎斑蛙神经传导和肌肉收缩力的影响[J].福建农业大学学报,1999,28(4):488-491.
    [118]缪晓青,林立旺,吴珍红等.神蜂精的药效学研究(三)杀菌消毒抗炎作用与药物稳定性[J].中国养蜂,2003,54(2)6-7.
    [119]陈昌利,陈潮,陈鸿钦等.以神蜂精为主综合治疗腰肌劳损分析[J].医药与保健,2009 (29):255.
    [120]程林兵.以神蜂精为主综合治疗腰椎间盘突出症疗效观察[J].现代中西医结合杂志,2008,17(4):506-507.
    [121]陈昌利,缪晓青,张其康等.神蜂精治疗腰椎间盘突出症效果的观察与分析[J].中国养蜂,2000,51(5):17-18.
    [122]吴珍红,缪晓青,程林兵等.神蜂精主治疗神经根型颈椎病330例机理性研究[J].中国养蜂,2004,55(5):33-34.
    [123]缪晓青,程林兵,陈昌利.神蜂精治疗神经根型颈椎病研究分析[J].中国养蜂,2002,53(1):11-12.
    [124]程林兵,陈昌利,缪晓青等.神蜂精外用加局部刮疗法治疗肩关节周围炎[J].福建农业大学学报,2000,29(3):383-385.
    [125]陈潮.神蜂精刮痧疗法为主治疗周围性面瘫42例[J].中医药通报,2003,2(1): 61-62.
    [126]程林兵,黄婧,徐丽金等.蜂疗配合皮肤针综合治疗类风湿性关节炎35例[J].针灸经络,2007,20(10): 61-62.
    [127]程林兵,吴珍红,杨文超等.综合蜂疗配合皮肤针治疗类风湿性关节炎体会[C].第九届国际蜂疗与蜂产品博览会(泰国)论文集,2009:10.
    [128]程林兵,池贤清,陈首玲.综合蜂疗配合叩刺拔罐治疗第三腰椎间盘突出综合症80例[J].临床报道,2008,21(4):39-40.
    [129]缪晓青,吴珍红,陈潮等.一种蜜蜂毒制品—“神蜂精”治疗中老年不同期带状疱疹临床治疗分析研究[C].第九届国际蜂疗与蜂产品博览会(泰国)论文集,2009:19.
    [130]吴珍红,陈潮,程林兵.以神蜂精为主综合治疗踝关节扭伤72例[C].第九届国际蜂疗与蜂产品博览会(泰国)论文集,2009:21.
    [131]缪晓青,程林兵,杨文超.神蜂精刮痧配合围刺治疗网球肘体会[C].第九届国际蜂疗与蜂产品博览会(泰国)论文集,2009:21.
    [132]赵永芳.生物化学技术原理及应用(第四版)[M].北京:科学出版社, 2008:.
    [133]徐彭,欧阳永伟,黄敬耀.从蜂毒中分离纯化蜂毒肽的实验研究[J].中草药,2000,31 (14):892-894.
    [134]邢东炜等.天冬胶的溶血实验[J].时珍国医国药.2005,16(11):1067-1068.
    [135]汪家政,范明.蛋白质技术手册[M].北京:科学出版社,2000:232-236.
    [136]陆健.蛋白质纯化技术及应用[M].北京:化学工业出版社,2005:29-52.
    [137]刘叶青.生物分离工程实验[M].北京:高等教育出版社.2007.
    [138]于红,张文卿,赵磊.钝顶螺旋藻多糖抗病毒作用的实验研究[J].中国海洋医药研究,2006,25(5):19-24.
    [139]张卓然.实用细胞培养技术(第1版)[M].北京:人民卫生出版社,1997.
    [140]杨佃志,张永萍.复方大果木姜子乳膏体外抗HSV-1病毒的实验研究[J].时珍国医国药,2007,18(5):1154-1155.
    [141] A. BAGHIAN, J. JAYNES, F. ENRIGHT, K. G. KOUSOULAS. An Amphipathic a-Helical Synthetic Peptide Analogue of Melittin Inhibits Herpes Simplex Virus-1 (HSV-1)-Induced Cell Fusion and Virus Spread [J]. Peptides, 1997, 18(2) 177–183.
    [142]赵高年,谢鹏.甘草甜素抗单纯疱疹病毒Ⅰ的实验研究[J].蛇志,2008,20(3): 182-184.
    [143] Person, S.; Knowles, R. W.; Read, G. S.; Warner, S. C.; Bond, V. C. Kinetics of cell fusion induced by a syncytia-producing mutant of herpes simplex virus type-1[ J ]. Virol., 1976., 17:183–190.
    [144] Fatemeh Fotouhi, Hoorieh Soleimanjahi, Mohammad Hasan Roostaee1, Abdolhossein Dalimi Asl. Expression of the Herpes Simplex Virus Type 2Glycoprotein D in Baculovirus Expression System and Evaluation of Its Immunogenicity in Guinea Pigs[J]. Iranian Biomedical Journal, 2008,12 (2): 59-66.
    [145] Bernstein, D.I. and Stanberry, L.R. Herpes simplex virus vaccines [J]. Vaccine, 1999,17: 1681-1689.
    [146] Wachinger M, Saermark T, Erfle V. Influence of amphipathic peptides on the HIV-1 production in persistently infected T-lymphoma cells [J]. FEBS Lett 1992, 309:235–241.
    [147]杨海霞,陈廷,宋烨,等.无花果叶乙醇提取物体内抗单纯疱疹病毒的实验研究[J].实用预防医学, 2009, 16(4):1228-1229.
    [148] LorkeD. . A new approach to practical acute toxicity testing [J].Archives of Toxieology. l983, 54:275一287
    [149]陈允硕.现代实用免疫细胞化学技术[M].上海:上海科学技术出版社, 1996: 81- 85.
    [150]黄祯祥.医学病毒学基础及实验技术[M].北京:北京科学技术出版社, 1990: 661.
    [151]陈勤,周君,胡冠宇.石蜡切片免疫组化过程中存在的问题及解决方法[J].安徽大学学报(自然科学版), 2009, 33(2): 85-88.
    [152]陈允硕.现代实用免疫细胞化学技术[M].上海:上海科学技术出版社, 1996: 81- 85.
    [153]荣玮,刘海燕.关于石蜡切片在染色中脱蜡的探讨[J].解剖学杂志, 2006, 29(1): 92.
    [154]任学军,江昌新.煮沸法在石蜡切片抗原修复中应用的探讨[J].天津医科大学学报, 2001, 7(1): 108-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700