用户名: 密码: 验证码:
微细发泡注塑成型工艺的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着近年来能源的紧缺,导致塑料原料价格不断上升,如何在保证产品性能的前提下来节约塑料原料,是目前研究的一个热点。微细发泡注塑成型就是在这个背景下所开发和研究的一项新技术,该技术通过在塑料熔体中加入超临界的CO2或者N2,使得在注塑制品内部形成致密的微孔,大小为5~100μm微孔的存在能够大大节约塑料原料,同时使得塑料制品具有较好的机械性能。目前这项技术已被广泛地应用于家用电器、航空航天、汽车等领域。研究表明微孔的尺寸太大,将会造成制品的质量问题,所以如何控制微孔形态以保证注塑产品的质量是该领域的研究方向之一。本文主要从成型工艺角度研究了工艺参数对微孔形态以及对最终产品质量的影响。
     本文在经典成核理论的基础上,考虑了超临界气体对聚合物熔体*自由能的影响,建立了聚合物熔体和超临界气体二元体系模型,根据单位摩尔体系中质量守恒,以及热力学化学势的计算模型,建立了聚合物熔体的自由能改变数学模型;同样考虑了聚合物和超临界气体两相表面能与纯聚合物表面能的差别,利用混合溶体*中的气体重量分数,建立了混合物的表面能计算模型。通过这两者对经典成核理论进行修正,提出了新的微细发泡注塑成型成核理论模型,将该模型应用于发泡体系中,得到了成核速率与饱和压力和溶体温度的关系,以及饱和压力与溶体温度对成核密度的影响。模拟结果与实验数据的比较,证明了基于新模型预测的成核过程与Colton和Kumar的实验结果有着较好的吻合,从理论上解决了Colton和Kumar的实验结果与经典成核理论不符的问题,表明了新模型比经典成核理论模型更能准确地反映整个成核过程。
     在总结前人利用经典微孔长大理论研究微孔形态与实际结果差别较大的基础上,结合数值模拟技术,将新成核模型作为长大模型的基础,对经典微孔长大模型进行修正;同时从扩散率、熔体黏度、表面张力以及聚合物和气体的性质等方面入手,建立了单一相溶体的物性模型,以此建立单一相溶体的物性参数数据库。基于这两项研究,提出了新的微孔长大模型,并以平板零件为例,研究了熔体温度、预填充量、注塑时间、冷却时间、超临界气体含量等工艺参数对微孔尺寸的影响趋势。
     基于本文所提出的微孔成核和长大理论,采用数值模拟和田口实验技术相结合的方法,通过对实验结果进行信噪比分析和方差分析,得到了相关工艺参数对微孔尺寸的影响比重,提出了避免微细发泡注塑成型零件缺陷的工艺调整方案。在此基础上,利用多元回归分析方法,在充分考虑工艺参数之间相互作用的基础上,建立了主要工艺参数对微孔尺寸影响的关系模型,并将其作为优化的目标函数,采用模拟退火优化方法,建立了数值模拟和优化方法的动态联系,对成型工艺参数进行优化,并将优化结果应用到平板模型中,得到了较理想的结果,确保了微细发泡注塑成型工艺参数设置的准确性和科学性。
     同时本文建立了基于数值模拟技术的工艺参数设计系统模型。将本文所提出的微孔成核和长大理论、数值模拟技术、田口实验技术、多元回归技术和优化技术有机地融合到该设计系统中,并在其基础上,利用VB编程,建立了一套完整的微细发泡注塑成型计算机工艺参数设计软件系统。该系统的建立使本文所提出的理论、工艺优化设计方案等被生产实际所使用成为可能。
     最后将微细发泡注塑成型工艺设计系统应用到复杂零件的实际生产中,利用本文研究的工艺设计方案和软件系统对实际复杂零件进行工艺参数优化设计,将所得的工艺参数应用到实际生产中,使产品的变形量从1.8mm减低到0.3mm以内,从而提高了产品的质量和满足了产品的设计要求。这说明了本文所论述的理论及方法是正确有效的,且对实际生产具有一定的指导作用。
In recent years, the polymer resin price is rising due to the petroleum shortage. How to save plastics on the premise to ensure the plastics part quality is one of the research hotspots. Microcellular foam injection moulding process is developed in this background. There are large dense microcells in the injection plastics part because of the supercritical CO2 or N2 mixed into the plastics melt. It can save a lot of resin due to the microcells, which is about 5~100μm , in the part. At the same time, the parts also have good mechanical properties. So the technology is widely used in the homework appliance, aerospace and auto industy etc. But recent study shows that big cell size causes the injection part quality problems. Thus one of research directions in this domain is how to control the cell size to ensure the part quality. In this study, the effect of process parameters on the cell size and final part quality is deeply reserached.
     On the base of classical nucleation theory and effect of the supercritical gas on the free energy, the duality system model of polymer melt and supercritical gas is built. Thus refer to the constant of mass quantity in unit mole system and the calculation model of thermodynamic chemical potential, the free energy change mathematic model is founded. At the same time, considering the surface energy difference between the mixer of polymer melt and supercritical gas with only polymer melt, the mixer free energy calulation model is setup through the weight fraction of gas in the mixer. The free energy and surface energy of mixer is used to edit the classic nucleation theory. And the new nucleation model is built.The new nucleation theory is applied into a foam system. The relationship between nucleation velocity and density with the saturation pressure and melt temperature is obtained. At last the simulation result is compared with experiment results. The results by the new nucleation theory are consistent with experiment results by Mr. Colton and Vipin kumar well. So it shows that the new nucleation model is more accurate to present the whole nucleation process than the classical one.
     Considering the former work that large difference between the academic results with experiment, the classical cell growth model is edited from below two sides. One is the new nucleation theory is considered as the base of cell growth model. The other is that the material properties model of polymer-gas mixer is built by the improvement of diffusivity, melt viscosity, surface tension and the properties of polymer and gas. Thus the new cell growth theory is founded. The new model is applied into a flat part moulding process and the effect trend of melt temperature, pre-filled volume, injection time, cooling time and SCF percentage on the cell growth is studied.
     Based on the present nucleation and cell growth model, the effect proportion of process parameters on cell morphology is gotten by using of the numerical simulation and Taguchi experiment methods. The process conditions adjustment programme is proposed to avoid the shortcomings of microcellular foam injection molding parts. Thus the relationship model between main process parameters and cell morphology is gotten by multiple regression analysis method. The regression model is used as objective function in the optimization process. The optimization method is simulated annealing. The total process condition design method is used into the flat model and good result is obtianed. Thus the precision of microcellular foam injection molding process parameters design is guaranteed.
     The process conditions design system model , which is based on the numerical simulation technology, is founded. And then the whole computer aided design software system of microcellular foam injection molding process design system is programed by visual basic language. The software system includes Taguchi experimet design system and process condition design sysetm. In the latter system, the improved nucleation and cell growth models are integrated. With Taguchi experiment design method, multiple regression analysis method and simulated annealing, the accuracy of computer aided design system of process conditions has been ensured.
     At last the microcellular foam injection moulding process design system is used into the realitical production of complicated injection part. The process parameters are optimised through the process design methods and software system that are presented in this study. The optimized process conditions reduce the part warpage form 1.8mm to 0.3mm. Thus the part quality is improved and satisfied with the part design requirement. All these show the theories and deisgn methods in the study is accurate and effective on the actual production.
引文
[1]凯尔文T.奥卡莫特.微孔塑料成型技术[M].张玉霞译.北京:化学工业出版社, 2004
    [2]吴舜英,徐敬一.泡沫塑料成型[M].北京:化学工业出版社, 1992
    [3] Hyde LJ, Kishbaugh LA. The MuCell? Injection Molding Process: A Strategic Cost Savings Technology for Electronic Connectors[C]. Trexel Inc, IICIT Annual symposium, USA, 2003
    [4] Martini JE. Microcellular foam process[D]. Massachusetts institute of technology, 1981
    [5] Martini JE, Suh NP, Baldwin DF. Microcellular closed cell foams and their method of manufacture[P]. U.S. Patent. 4,473,665, 1984
    [6] Bill N, Mark B. The Supercritical Fluid (SCF) Delivery System[J/OL]. Trexel. Inc
    [7] Williams JM, Wrobleski DA. Microstructures and properties of some microcellular foams[J]. Journal of materials science, 1989, 24 (11):4062-4067
    [8] Matuana LM, Park CB, Balatinecz JJ. Structures and mechanical properties of microcellular foamed polyvinyl chloride[J]. Cellular polymers, 1998, 17(1): 1-16
    [9] Kumar V, Juntunen RP, Barlow C. Impact strength of high relative density solid state carbon dioxide blown crystallizable poly(ethylene terephthalate) microcellular foams[J]. Cellular polymers. 2000, 19(1): 25-37
    [10] Ozkul MR, Mark JE, Aubert JH. Elastic and plastic mechanical responses of microcellular foams[J]. Journal of applied polymer science. 1993, 48(5): 767-774
    [11] Ozkan E. Thermal and mechanical properties of cellular polystyrene and polystyrene and polyurethane insulation materials aged on a flat roof in hot-dry climate[J]. Journal of testing and evaluation, 1994, 22(2): 149-160
    [12] Nimmer RP, Stokes VK, Ysseldyke DA. Mechanical properties of rigid thermoplastic foams-Part II: Stiffness and strength data for modified polyphenyleneoxide forms[J]. Polymer engineering and science. 1988, 28(22): 1501-1508
    [13] Progelhof RC, Kumar S, Throne JL. High speed puncture impact studies of three low pressure styrene thermoplastic structural foam plaques[J]. Advances in polymer technology. 1983, 3(l): 15-22
    [14] Yin Z, Heath RJ, Hourston DJ. Morphology, mechanical properties, and thermal stability of polyurethane-epoxide resin interpenetrating polymer network rigid foams[J]. Journal of applied polymer science. 2000, 75(3): 406-416
    [15]钱志屏.泡沫塑料[M].北京:中国石化出版社, 1998
    [16] Hunter D, Magnusson B. Polyurethane foam catalysts for applications in non-staining instrument panels[C]. SAE Transactions 1990, 99(5): 769-774
    [17] Stevenson JF.聚合物成型加工新技术[M].刘廷华,张弓,陈利民等译.北京:化学工业出版社, 2004
    [18]李斌才.高聚物的结构和物理性能[M].北京:化学工业出版社, 1989
    [19] Kelvin O. Microcellular Processing[M]. Munich: Carl Hanser Velag, 2003
    [20]陈国华.超临界C02/PS挤出微孔发泡理论及实验研究[D].广州:华南理工大学.1998
    [21]向帮龙,管蓉,杨世芳.微孔发泡机理研究进展[J].高分子通报. 2005, 12(2): 7-15
    [22]李应林,向帮龙.微孔发泡成核理论新进展[J].现代塑料加工应用. 2006, 18(6): 59-61
    [23]李铁骑,齐昆.塑料挤出发泡制品的成型工艺与应用[J].塑料. 1994, 23(1): 24-28
    [24] Kumar V, Vander W, Weller J, et al. Experimental characterization of the tensile behavior of microcellular polycarbonate foams [J]. Journal of engineering materials and technology. 1994, 116(4): 439-445
    [25] Collias DI, Baird DG. Tensile toughness of microcellular foams of polystyrene, styrene-acrylonitrile copolymer, and polycarbonate, and the effect of dissolved gas on the tensile toughness of the same polymer matrices and microcellular foams[J]. Polymer engineering and science. 1995, 35(14): 1167-1177
    [26] Park CB, Sub NP, Baldwin DF. Method for providing continuous processing microcellular and supeanicrocellular foamed materials[P]. U.S. Patent. 5,866,053, 1999
    [27] Goel SK, Beckman EJ. Generation of microcellular polymeric foams using supercritical carbon dioxide. I:Effect of pressure and temperature on nucleation[J]. Polymer engineering and science, 1994, 34(14): 1137-1147
    [28] Singh SN, Bums SB, Costa JS. Method of increasing the solubility of hydrocarbons and HFCs in polyurethanes raw materials and the effects on the performance and processing characteristics of construction foams[J]. Cellular polymers. 1997, 16(6): 444-467
    [29] Vincent JH, Aitken RJ, Mark D. Porous plastic foam filtration media: penetration characteristics and applications in particle size-selective sampling[J]. Journal of aerosol science. 1993, 24(7) : 929-944
    [30]牟文杰.动态条件对微孔塑料用超临界C02发泡成核的影响[D].广州:华南理工大学2003
    [31] Siripurapu S, Desimone JM, Khan SA, et al. Low temperature, surface mediated foaming of polymer films[J]. Advance material, 2004, 16(12): 989-994
    [32] Kumar V. Phenomenology of bubble nucleation in the solid-state nitrogen–polystyrene microcellular foams[J]. Colloids and surfaces A: physicochemistry engineering. 2005, 263(3): 336–340
    [33] Tsivintzelis I, Angelopoulou AG, Costas P. Foaming of polymers with supercritical CO2 : An experimental and theoretical study[J]. Polymer, 2007, 48(20): 5928-5939
    [34] Reverchon E, Cardea S. Production ofcontrolled polymeric foams by supercritical CO2[J]. Journal of supercritical fluids, 2007, 40(26): 144-152
    [35] Goel SK, Beckman EJ. Generation of Microcellular Polymeric Foams Using Supercritical Carbon DioxideⅡ[J]. Polymer engineering and science, 1994, 34(14): 1148-1156
    [36] Qingping G, Jin W, Park CB. A microcelluar foaming simulation system with a high pressure-drop rate[J]. Industry engineering chemistry resource, 2006, 45(18): 6153-6161
    [37]徐晓.对塑料发泡中应用的经典成核理论的研究[D].广州:华南理工大学. 1999
    [38] Behravesh AH, Rajabpou M. Experimental study on filling stage of microcellular injection molding process [J]. Cellular polymers, 2006, 25(4): 85-94
    [39] Leicher S, Walter A, Schneebaue M, et al. Key processing parameters for microcellular molded polystyrene material [J]. Cellular polymers, 2006, 25(2): 99-108
    [40] Yuxiang Zh, Jincheng W, Yujuan Y, et al. Phase-field modeling of the influence of elastic field on the nucleation and microstructure evolution in precipitation[J]. Chinese journal of aeronautics, 2007, 20(2): 107-110
    [41] Mingcheng G, Heuzey MC, Carreau PJ. Cell structure and dynamic properties of injection molded polypropylene foams[J]. Polymer engineering and science, 2007, 47(7): 1070~1081
    [42] Ramesh NS. Foam extrusion principles and practices[M]. Technomic publishing Co., 2000
    [43] Baldwin DF, Park CB, Sub NP, et al. Supermicrocellular foamed plastics[P]. U.S.Patent. 5,334,356, 1994
    [44] Handa YP, Yin. Z. New pathways to microcellular and ultramicrocellular polymeric foams[J]. American Society of Mechanical Engineers Materials Division, 1998, 82(1): 1-4
    [45] Handa YP, Yin Z. New technique for measuring retrograde vitrification in polymer-gas systems and for making ultramicrocellular foams from the retrograde phase[J]. Journal of polymer science, Part B: polymer physics. 2000, 38(5): 716-725
    [46] Baldwin DF, Park CB, Sub NP. Extrusion system for the processing of microcellular polymer sheets: shaping and cell growth control [J]. Polymer engineering and science. 1996, 36(10): 425-1435
    [47]陈国华,彭玉成.微孔塑料物理发泡微孔控制[J].塑料科技, 1998, 13(3): 30-33
    [48]孙先伟,王敏杰,姜开宇.泡沫塑料气泡膨胀过程的数学模型和数值模拟研究[J].塑料科技. 2001, 16 (4): 16-19
    [49]吴舜英,马小明.泡沫塑料气泡膨胀过程的研究[J].中国塑料. 1997, 11(5): 46 -52
    [50]刘小平,吴舜英,田森平, et al.发泡塑料气泡膨胀数学模型的简化及求解[J].材料科学与工程. 2001, 19 (3): 84-86
    [51] Amon M, Denson CD. A study of the dynamics of foam growth: Analysis of the growth of closely spaced spherical bubbles [J]. Polymer Engineering and Science, 1984, 24(13): 1026-1034
    [52] Amon M, Denson CD. A Study of the dynamics of foam growth: simplified analysis and experimental results for bulk density in structural foam molding [J]. Polymer engineering and science, 1986, 26(33): 255-267
    [53] Lye SW, Lee SG, Tor SB. Parametric study of the shock characteristics of expandable polystyrene foamprotective packaging [J]. Polymer engineering and science. 1998, 38(4): 558-565
    [54] Grunbauer HJM, Broos JAF, Thoen JA, et al. Fine celled CFC-free rigid foam-new machinery with low boiling blowing agents[J]. Journal of reinforced plastics and composites. 1994, 13(4): 361-370
    [55] Krueger DC, Reichel CJ. Fluoromethane as the primary blowing agent for rigid urethane foams using conventional low and high pressure foam mixing equipment[C]. Polyurethanes world congress. 1991: 220-224
    [56] Toensmeier PA. Blowing agents, CFC replacement becomes more promising[J]. Modern plastics. 1989, 66(9): 53-56
    [57] Grunbauer HJM, Thoen JA, Smits GF. Low boiling blowing agents for rigid polyurethane foams: a new concept for nucleation and expansion of CFC-11 free foams. Polymeric materials science and engineering[C]. proceedings of the ACS division of polymeric materials science and engineering. 1992, 67: 503-505
    [58] Arefmanesh A, Advani SG, Michaelides EE. A numerical study of bubble growth during low pressure structural foam molding process [J]. Polymer engineering and science, 1990, 30(20): 1330-1337
    [59] Arefmanesh A, Advani SG. Diffusion-induced growth of a gas bubble in a viscoelastic fluid [J]. Rheologica acta, 1991, 30(3): 1435-1528
    [60] Arefmanesh A, Advani SG, Michaelidese E. An accurate numerical solution for mass diffusion-induced bubble growth in viscous liquids containing dissolved gas [J]. International journal of heat and mass transfer, 1992, 35(7): 1711-1722
    [61] Arefmanesh A, Advani SG. Nonisothermal bubble growth in polymeric foams [J]. Polymer engineering and science, 1995, 35(3): 252-263
    [62] Singh SN, Bums SB, Costa JS, et al. Method of increasing the solubility of hydrocarbons and HFCs in polyurethanes raw materials and the effects on the performance and processing characteristics of construction foams[J]. Cellular polymers. 1997, 16(6): 444-467
    [63] Perman CA, Hendrickson WA, Riechert ME. Method of making thermoplastic articles using supercritical fluids[P]. U.S. Patent, 1997
    [64] Arora KA, Lesser AJ, McCarthy TJ. Preparation and characterization of microcellular polystyrene foams processed in supercritical carbon dioxide [J]. Macromolecules. 1998, 31(14): 4614-4620
    [65]傅志红,彭玉成,王洪.微孔塑料成型技术和关键步骤[J].塑料. 2003, 32(4): 46-52
    [66]王进,程兴国,袁明君, et al.超临界CO2在微孔聚合物制备中的应用[J].高分子通报. 2001, (6): 8-17
    [67]龚宪生,许南绍,黄德君.超微多孔塑料成型技术研究[J].塑料科技. 2000, 15(5): 1-4
    [68] Ran. Z, Kennedy P, Jin X, et al. Simulation of microcellular foaming in injection molding[C]. 2002, SPE Antec Paper
    [69] Sejin H, Ran. Z, Kennedy P, Jin X et al. Numerical analysis of microcellular injection molding [C]. Annual technical conference - ANTEC, SPE, 2003 , Volume 1
    [70] Hernandez JP, Chandra A, Winardi A, et al. Modeling cell nucleation during microcellular injection molding [C]. SPE ANTEC , 2003, 2210-2214
    [71] Chitai Y, Kelvin LL. Dimensional stability of LDPE foams: modeling and experiments [J]. Journal of cellular plastics, 2002, 38(3): 113-128
    [72] Yoon JD, Hong SK, Kim JH, et al. A mold surface treatment for improving surface finish of injection molded microcellular parts[J]. Cellular polymer, 2004, 23(1): 39–47
    [73] Sung WC, Yoon JD. The relationship of mold temperatures and swirl marks on the surface of microcellular plastics[J]. Polymer plastics technology engineering, 2005, 44(5): 795–803
    [74] Baldwin DF, Park CB, Suh NP. An extrusion system for the processing of microcellular polymer sheets: shaping and cellgrowth control [J]. Polymer engineering and science, 1996, 36(10): 1425–1435
    [75]丁浩.塑料工业实用手册[M].北京:化学工业出版社, 2000
    [76]格兰维尔.塑料工程手册[M].《塑料工业手册》翻译组译,北京:轻工业出版社, 1985
    [77]张镜澄.超临界流体萃取[M].北京:化学工业出版社. 2000
    [78]朱自强.超临界流体技术[M].北京:化学工业出版社. 2000
    [79]朱诚身.聚合物结构分析[M].北京:科学出版社. 2004
    [80]张权.聚合物显微学[M].北京:化学工业出版社. 1993
    [81]李如生.平衡和非平衡统计力学[M].北京:清华大学出版社. 1995
    [82]刘冠昆.物理化学[M].广州:中山大学出版社. 2000
    
    [1]吴舜英,徐敬一.泡沫塑料成型[M].北京:化学工业出版社, 1999
    [2] Goel SK, Beckman EJ. Generation of microcellular polymeric foams using supercritical carbon dioxide I [J]. Polymer engineering and science, 1994, 34(14): 1137-1147
    [3] Kumar V. Phenomenology of bubble nucleation in the solid state nitrogen-polystyrene microcellular foams [J]. Colloids and surfaces A : physicochemsitry engineering aspects, 2005, 263(3): 336-340
    [4] Kelvin O.微孔塑料成型技术[M].张玉霞译.北京:化学工业出版社, 2004
    [5] Tsivintzelis I, Angelopoulou AG, Panayiotou C. Foaming of polymer with supercritical CO2: An experimental and theoretical study [J], Polymer, 2007, 48(20): 5928-5939
    [6]傅志红,彭玉成.微孔塑料物理发泡的成核理论[J].中国塑料, 2000, 14(10): 27-32
    [7]傅志红.微孔塑料气泡成核的聚合物刷子模型[D].广州:华南理工大学, 2001
    [8]向帮龙,管蓉,杨世芳.微孔发泡机理研究进展[J].高分子通报. 2005, 12(2): 7-15
    [9]李应林,向帮龙.微孔发泡成核理论新进展[J].现代塑料加工应用. 2006, 18(6): 59-61
    [10] Colton JS, Suh NP. Nucleation of microcellular foam: theory and practice[J]. polymer engineering and science, 1987, 27(7): 500-509
    [11] Colton JS, Suh NP. The nucleation of microcellular thermoplastic foam with additives [J]. Polymer engineering and science, 1987, 27(7): 485-492
    [12]徐祖耀.相变原理[M].北京:科学出版社, 1998
    [13] Wasia K, Kaptay G, Mukai K, et al. Modified classical homogeneous nucleation theory and a new minimum in free energy change I [J]. Fluid phase equilibria, 2007, 254(1): 67-74
    [14] Pantoula M, Panayiotou C. Sorption and swelling in glassy polymer/carbon dioxide systems part I: Sorption [J]. Journal of supercritical fluids, 2006, 37(2): 254-262
    [15] Ramesh NS. Heterogeneous nucleation of microcellular foams assisted by the survival of microvodds in polymers containing low glass transition particles[J]. Polymer engineering and science, 1994, 34(22): 1685-1697
    [16] Leung LH, Park SN. The consequences of approximating the classical nucleation theory in simulation of polymer foaming process [C]. SPE ANTEC, Tech Papers.2005, 10: 2665-2669
    [17]徐晓.对塑料发泡中应用的经典成核理论的研究[D].广州:华南理工大学, 1999
    [18] Kin KY, Kang SL, Kwak HY. Bubble nucleation and growth in polymer solutions [J]. Polymer engineering and science, 2004, 44(10): 1890- 1899
    [19] Baldwin DF, Park CB, Suh NP. A microcellular processing study of poly (ethylene-terephthslate) in the amorphous and semicrystalline states [J]. Polymer engineering and science, 1996, 36(11): 1446-1453
    [20] Han JH, Han CD. A study of bubble nucleation in a mixture of molten polymer and volative liquid in shear flow field [J]. Polymer engineering and science, 1988, 28(24): 1616-1627
    [21] Lees ST. Shear effect on thermoplastic foam nucleation [J]. Polymer engineering and science, 1993, 33(7): 418-422
    [22]滕建新,吴舜英,田森平.剪切流场对塑料发泡成核行为的影响[J].材料科学与工程, 2000, 181(1): 66-69
    [23] Kbyon S, Youn JR. Ultrasonci processing of thermoplastic foam. [J]. Polymer engineering and science, 1990, 30(3): 147-152
    [24] Youn JR, Hark P. Bubble growth in reaction injection molded parts foamed by ultrasonic excitation [J]. Polymer engineering and science, 1999, 39(3): 457-468
    [25] Siripurapu S, Desimone JM, Khan SA, et al. Lower-temperature Surface-Mediated foaming of polymer films [J]. Advance material, 2004, 16(12): 989-994
    [26] Reid RC, Prausnitz JM, Poling BE. The prorerties of gas and liquids[M]. New York: Mcgraw-hill book Co., 1986
    [27] Nalawade SP, Picchioni F, Janssen. LPBM. Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications [J]. Progress on polymer science, 2006, 31(1): 19–43
    [28] Tsivintzelis I, Angelopoulou AG, Panayiotou C. Foaming of polymers with supercritical CO2: An experimental and theoretical study [J]. Polymer, 2007, 48(6): 5928-5939
    [29] Leicher S, Walter A, Schneebauer M, et al. Key processing parameters for microcellular molded polystyrene material [J]. Cellular polymers, 2006, 25(2): 99-106
    [30] Baldwin DF, Park CB. A microcellular processing study of poly(ethylene terephthalate) in the amorphous and semicrystalline states. Part I: Microcell nucleation [J]. Polymer engineering and science, 1996, 36(1l): 1437-1453
    [1] Iizuka TG, Miyamoto M. Simulation of polimeric flows in the cavity filling process of jnjection molding [J]. Journal of sharp technical, 1986, 34 (1): 63-70
    [2] Schlichting H. Boundary layer theory[M]. New York: McGraw - hill , 1968
    [3] B.S. Chen, W.H. Liu. Numerical simulation and experimental investigation of injection mold filling with melt solidification[J]. Polymer engineering and science, 1989, 29(15): 1039-1050
    [4] Amon M, Denson CD. A study of the dynamics of foam growth: Analysis of the growth of closely spaced spherical bubbles [J]. Polymer engineering and science. 1984, 24(13): 1026-1034
    [5] Amon M, Denson CD. A Study of the dynamics of foam growth: simplified analysis and experimental results for bulk density in structural foam molding [J]. Polymer engineering and science, 1988, 26(3): 255-267
    [6] Andres O, Lih-sheng T. Mathematical modeling and numerical simulation of cell growth in injection molding of microcellular plastics [J]. Polymer engineering and science, 2004, 44(12): 2274-2287
    [7]陈国华,彭玉成.微孔塑料物理发泡新技术[J].高分子材料科学与工程, 2000, 16(1): 167-172
    [8]陈国华,彭玉成.微孔塑料物理发泡微孔控制[J].塑料科技, 1998, 13(3): 30-33
    [9]傅志红,彭玉成.微孔塑料物理发泡的成核理论[J].中国塑料, 2000, 14(10): 27-32
    [10] Ramesh NS. Foam extrusion principle and pratices [M]. New York: Technomic publishing Co., 2000
    [11] Arefmanesh A, Advani SG. Diffusion-induced growth of a gas bubble in a viscoelastic fluid [J]. Rheologica acta, 1991, 30(3): 1435-1528
    [12] Arefmanesh A, Advani SG, Michaelidese E. An accurate numerical solution for mass diffusion-induced bubble growth in viscous liquids containing dissolved gas [J]. International journal of heat and mass transfer, 1992, 35(7): 1711-1722
    [13] Arefmanesh A, Advani SG. Nonisothermal bubble growth in polymeric foams [J]. Polymer engineering and science, 1995, 35(3): 252-263
    [14] Ran Z, Kennedy P, Jin X, et al. Simulation of microcellular foaming in injection molding[C]. SPE Antec Paper, 2002
    [15] Sejin H, Ran Z, Kennedy P, et al. Numerical Analysis of Microcellular Injection Molding [C]. SPE ANTEC, 2003
    [16]孙先伟,王敏杰,姜开宇.泡沫塑料气泡膨胀过程的数学模型和数值模拟研究[J].塑料科技. 2001, 16 (4): 16-19
    [17] Hernandez JP, Chandra A, Winardi A, et al. Modeling cell nucleation during microcellular injection molding [C]. SPE ANTEC , 2003
    [18] Krevelen DWV, Hoftyzer PJ. Their estimation and coorelation with chemical structure [C]. Elsevier, Properties of polymers, Amsterdam,1976
    [19]吕坤.微孔塑料的制备及其相关理论的研究进展[J].现代塑料加工应用. 2002, 14(4): 53-56
    [20]刘彦昌,彭玉成,宗殿瑞, et al.微孔塑料连续挤出加工技术[J].中国塑料. 2000, 14(8): 49-54
    [21] Baird DG, Collias I. Polymer processing : Principles and design [M]. Boston: Butterworth Heinemann, 1995
    [22]李开林,彭玉成,颜家华.微孔塑料及其挤出成型技术[J].工程塑料应用, 1998, 26(7): 13-15
    [23]张鹰.微孔发泡塑料的研究进展[J].功能高分子学报, 1999, 12(2): 207-210
    [24] Heiber CA. Injection and compression molding fundamentals [M]. Marcel Dekker: A. I. Isayev, 1987
    [25] Bird RB, Stewart WE, Lightfoot EN. Transport phenomena [M]. New York: John wiley and sons, 1960
    [26] Maxwell JC. A treatise on electricity and magnetism [M]. Oxford: Oxford university press, 1998
    [27] Behravesh AH, Rajabpour M. Experimental study on filling stage of microcellular injection molding process[J]. Cellular polymers, 2006, 25:85-94
    [28]吴舜英,马小明.泡沫塑料气泡膨胀过程的研究[J].中国塑料. 1997, 11 (5): 46-52
    [29]刘小平,吴舜英,田森平, et al.发泡塑料气泡膨胀数学模型的简化及求解[J].材料科学与工程, 2001,19 (3): 84-87
    [30]国明成,彭玉成.微孔发泡塑料挤出过程中各种影响因素的研究[J].中国塑料, 2002, 16(2): 52-55
    [31]陈国华,彭玉成,颜家华. CO2/PS挤出微孔发泡实验研究[J].高分子材料科学与工程, 2000, 16(3): 110-112
    [32]滕建新,吴舜英.微孔塑料性能及制备[J].材料科学与工程, 2000, 18(2): 105-109
    [1]架军.现代实验设计优化方法[M].上海:上海交通大学出版社, 1995
    [2]王大忠,徐文,周泽存.模糊理论、专家系统及人工神经网络在电力变压器故障诊断中应用[J].中国电机工程学报, 1996, 16(5): 349-352
    [3] Patricia RJ, Syed MI, Tian W, et al. A class of hybrid intelligent system for fault diagnosis in electric power systems[J]. Neurocomputing, 1998, 23(13): 207-224
    [4]李德英,张跃.锅炉系统故障诊断模糊推理方法[J].系统工程理论与实践, 1998, (6): 125-129
    [5]飞思科技产品研发中心. MATLAB6.5辅助神经网络分析与设计[M].北京:电子工业出版社, 2003
    [6]楼顺天,施阳.基于MATLAB的系统分析与设计[M].西安:西安电子科技大学出版社, 2000
    [7] Hua Y. Optimization of injection molding process with genetic algorithms[C]. ANTEC, 1999
    [8] Hua Y, Minghui W. An optimization scheme for part quality in injection molding[C]. CAE and intelligent processing of polymetric materials, ASME 1997, 139-149
    [9] James T. Effects of process conditions on shrinkage and warpage in the injection molding process[C]. ANTEC, 1999
    [10] Kim S., Sub N. Knowledge-based Synthesis System for Injection Molding[J]. Robotics and computer integrated manufacturing, 1987, 3(2): 181-186
    [11] Lih-sheng T, DeAugistine D. A Web-based knowledge management system for the injection molding process[C]. ANTE, 1999
    [12] Felix TS, Henry C, Lau W, et al. In-line process conditions monitoring expert system for injection molding [J]. Journal of materials processing technology, 2000, 101(2): 268-274
    [13] Nezhad KS, Siores E. An intelligent system for plastic injection molding process design[J]. Journal of materials processing technology, 1997, 63(2): 458-462
    [14] Shih-Jung L. Effects of processing parameters on formation of sinkmarks on injection moulded parts [J]. Plastics, rubber and composites, 2001, 30(4): 170-174
    [15] Tao C. Shrinkage behavior and optimization of injection molded parts studied by Taguchi method [J]. Polymer engineering and science, 2001, 41(5): 703-710
    [16] Shih-Jung L, Jer-Haur C. Application of the taguchi method to optimize the surface quality of gas assist injection molded composites[J]. Journal of reinforced plastics and composites, 2000, 19(17): 1352-1363
    [17] Vadtdinen O, Jarveld P, Valta K, et al. Effect of processing parameters on the quality of injection moulded parts by using the Taguchi Parameter Design method [J]. Plastics, rubber and composites processing and applications, 1994, 21(4): 211-217
    [18] Pandelldis I, Qin Z. Optimization of injection molding design, part II: molding conditions optimization[J]. Polymer engineering and science, 1990, 30(15): 883-889
    [19] Kumar A, Ghoshdastidar PS, Muju MK. Computer simulation of transport processes during injection mold-filling and optimization of the molding condition[J]. Journal of materials processing technology , 2002, 120(1): 438-449
    [20] David K, Philip B. Mufti-Cavity pressure control in the filling and packing stage of the injection molding process [J]. Polymer engineering and science, 1997, 37(11): 1865-1879
    [21] David K, Philip B. The process capability of Mufti-Cavity pressure control for injection molding process [J].Polymer engineering and science, 1997, 37(11): 1880-1895
    [22]吕砚山,赵正琦. BP神经网络优化及应用[J].北京化工大学学报, 2001, 28(1): 68-71
    [23]张乃尧,阎平凡.神经网络与模糊控制[M].北京:清华大学出版社, 1998
    [24]易继错,侯媛彬.智能控制技术[M].北京:北京工业大学出版社, 1999
    [25]汪嘉旻,孙永广,吴宗鑫.时间和费用具有不确定性的优化进度计划[J].系统工程理论与实践, 2002, (1): 93-98
    [1]孙国正.优化设计及应用[M].北京:人民交通出版社, 1992
    [2]孙靖国.机械优化设计[M].北京:机械工业出版社, 1990
    [3]汪萍.机械优化设计[M].湖北:中国地质大学出版社, 1986
    [4]薛履中.工程最优化技术[M].天津:天津大学出版社, 1988
    [5] James T. Effects of process conditions on shrinkage and warpage in the injection molding process[C]. ANTEC, 1999
    [6] Kim S, Sub N. Knowledge-based Synthesis System for Injection Molding[J]. Robotics and computer integrated manufacturing, 1987, 3(2): 181-186
    [7] Lih-sheng T, DeAugistine D. A Web-based knowledge management system for the injection molding process[C]. ANTEC, 1999
    [8] Felix TSC, Henry C, Lau W, et al. In-line process conditions monitoring expert system for injection molding[J]. Journal of materials processing technology, 2000, 101(2): 268-274
    [9] Pandelldis I, Qin Z. Optimization of injection molding design, part II: molding conditions optimization[J]. Polymer engineering and science, 1990, 30(15): 883-889
    [10] Kumar A, Ghoshdastidar PS, Muju MK Computer simulation of transport processes during injection mold-filling and optimization of the molding condition[J]. Journal of materials processing technology, 2002, 120(1):438-449
    [1]《塑料模设计手册》编写组.塑料模设计手册[M].北京:机械工业出版社, 1994
    [2]连昌伟,胡广洪.工艺参数对注塑制品变形影响的研究[J].模具技术, 2006, (2): 36-38
    [3]张翅飞,胡广洪.注塑件变形分析[J].塑料2003, 32(4): 58-60
    [4] Moldflow company. MPI training manual[M]. Australia: Moldflow company, 2006
    [5]陈美谦. Moldflow软件在注射模具设计中的运用[J].厦门理工学院学报, 2005, 13(1): 63-66
    [6]马浩军,胡广洪,阮雪榆.利用Mold Flow软件分析解决注塑件翘曲问题[J].模具技术, 2002, (5): 55-58
    [7]黄晨华. Moldflow在注射模具优化设计中的应用[J].模具技术, 2005, (5): 10-12
    [8]单岩,王蓓,王刚. Moldflow模具分析技术基础[M].北京:清华大学出版社, 2004
    [9] Tao C. Shrinkage behavior and optimization of injection molded parts studied by Taguchi method [J]. Polymer engineering and science, 2001, 41(5): 703-710
    [10] Shih-Jung L, Jer-Haur C. Application of the taguchi method to optimize the surface quality of gas assist injection molded composites[J]. Journal of reinforced plastics and composites, 2000, 19(17): 1352-1363
    [11] Vadtdinen O, Jarveld P, Valta K, et al, The effect of processing parameters on the quality of injection moulded parts by using the Taguchi Parameter Design method [J]. Plastics, rubber and composites processing and applications, 1994, 21(4): 211-217
    [12] Pandelldis I, Qin Z. Optimization of injection molding design, part II: molding conditions optimization [J]. Polymer engineering and science, 1990, 30(15): 883-889
    [13]凯尔文T.奥卡莫特.微孔塑料成型技术[M].张玉霞译.北京:化学工业出版社, 2004.
    [14]吴舜英,徐敬一.泡沫塑料成型[M].北京:化学工业出版社, 1992
    [15] Hyde LJ, Kishbaugh LA. The MuCell? Injection Molding Process: A Strategic Cost Savings Technology for Electronic Connectors[C]. Trexel Inc, IICIT Annual Symposium, USA, 2003
    [16]胡广洪,姜朝东,濮仲佳, et al.微细发泡注塑成型工艺与微孔尺寸的关系[J].塑料工业, 2007, 35(2): 20-22
    [17]胡广洪,姜朝东,崔振山.基于数学模型的微细发泡注塑成型工艺与微孔关系的研究[J].塑料工业, 2007, 35(3): 42-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700