用户名: 密码: 验证码:
缺氧-SBR技术处理焦化废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了缺氧-SBR处理焦化废水的技术。通过缺氧反应提高焦化废水的
    可生化性,然后通过SBR反应系统的生物降解以及硝化和反硝化作用达到去除
    COD_(Cr)和氨氮的目的,并确定缺氧-SBR处理焦化废水的工艺参数。
     本实验研究的焦化废水氨氮浓度较高,所以首先采用直接曝气吹脱,去除废
    水中的大部分游离氨。曝气10h,氨氮去除率达73.7%。吹脱作用对于COD_(Cr)影
    响不大,24h去除率仅为6.4%。
     在缺氧反应初期,停留时间在2~6h,可能是水解作用使得废水中的部分分
    子量大、结构复杂难生物降解有机物分解成一些分子量较少、结构简单且易生物
    降解的有机物,BOD_5/COD_(Cr)值由0.23提高到0.29,提高了焦化废水的可生化性;
    随着缺氧停留时间的增加,COD_(Cr)去除率提高。
     缺氧预处理后废水通过限量曝气进入SBR系统,曝气反应在5~8h内,
    COD_(Cr)、氨氮的去除率的降解速率较快,之后趋缓。当污泥浓度在2.7~3.0g/L,SVI
    ≤100,温度在20~35℃,污泥沉降性能良好,去除效果较好。
     用缺氧-SBR处理焦化废水,当进水浓度为COD_(Cr) 1368mg/L、NH_3-N 648.0
    mg/L时,采用缺氧停留时间10h,SBR进水0.5h,曝气10h,沉降2h的工艺时,
    出水COD_(Cr) 186mg/L、NH_3-N 290.25mg/L,去除率分别达到87.4%、55.2%,除
    了氨氮之外,COD_(Cr)、挥发酚、氰化物、硫化物等均可达标排放。
     对SBR处理焦化废水的活性污泥进行菌种筛选、分离,得到6种菌株,其
    中1号和6号菌株的对COD_(Cr)、酚的降解能力较强,但混合菌的降解效果不如单
    一菌。将混合菌投加到污泥中,有利于提高污泥的活性。
     本文还进行了SBR工艺脱氮机理的探讨。影响硝化和反硝化作用的因素除
    了温度、pH、溶解氧外,在反应周期内增加好氧-缺氧的交替次数可以降低硝态
    氮的累积浓度,提高总氮的去除率。要达到理想的脱氮效果则进水碳氮比至少要
    维持在3~5。
Treatment on coke-plant wastewater by Anoxic-SBR process had been studied m
     this paper. Firstly, anoxic reaction was applied to improve the capability of biological
     oxidation, then through biodegradation and nitrificaiion and denitrification of SBR
     process, COD and ammonia were removed, and the technical parameters of coke-plant
     wastewater treatment was also confirmed.
    
     Because of the higher concentration of ammonia in coke-plant wastewater, it was
     necessary to adopt direct aeration to remove most of ammonia. After 10 hours aeration,
     ammonia removal was up to 73.7%.Yet aeration had little effect on COD~ and the
     removal was only 6.4% after 24 hours.
    
     At the initial stage of anoxic reaction, After 2-6 hours retention, part of great
     molecular and complicated structure organic compounds which were hard to degraded
     could probably be decomposed to small molecular and simple structure and easy to be
     decomposed organism. By the hydrolyzing, the capability of biological oxidation was
     improved and the index of BOD5/COD0 was from 023 up to 0.29. Along with the
     increasing retention time of anoxic, the removal efficiency was enhanced.
    
     Alter the pretreatment of anoxic, the effluent flowed into SBR system by
     controlling aeration. In this process, the aeration time is 5? hours, the removal was
     higher alter 5-8 hours aeration. When the sludge concentration was among
     2.7?.OglL, SVI 100, and temperature 20-35, the settling capability of sludge and
     the removal efficiency was excellent.
    
     When the influent concentration was COD0 1825mg/L NH3-N 648.0 mgtL, the
     optimum operation procedure of anoxic-SBR process were: anoxic retention time lOh,
     filling 0.5h, aeration lOh, settling 2h. The effluent results were: COD0 186mg/L NH3-
     N 290.25 mgIL, and the removal rates of COD~NH3-N were 87.4% and 55.2%. Except
     for NH3-N, the concentration of COD volatile phenol . cyanide sulfide could all reach
     the national discharge standard.
    
     Six strains were obtained by screening and isolation from the sludge of SBR system,
     of which No.1 and No.6 bacteria had the better degrading capability on COD0 and
    
    
    
    
    phenol. The degradation efficiency of mixed bacteria was not as better as the single, yet
     added the mixed bacteria to sludge, the activity of sludge could be improvecL
    
     In addition, the denitrification mechanism of SBR process was discussed in detail.
     The influence factors on nitriflcation and denitrification were including tempemture~. pH
     and dissolved oxygen. Besides, increased the number of alternate anoxic-oxic, the
     cumulate concentration of NOR-N could be decreased so that the removal of TN was
     increased. To get ideal denitirfication efficiency , the influent rate of C/N must be keep in
    
     3.
引文
[1]国家环境保护局.钢铁工业废水治理.中国环境科学出版社.1992,第一版:103~120;
    [2]严煦世主编.水和废水技术研究.中国建筑工业出版社.1992,第一版:669~670;
    [3]杜锡康,贾高雄.焦化废水生物脱氮.煤化工.1999,(3):
    [4]国家环保总局,国家技术监督局.钢铁工业污染物排放标准[S].GB13456-92;
    [5]巩志坚,靳瑛.利用纷顿试剂处理焦化废水.工业水处理.1997,17(6):4~6;
    [6]杜鸿章,房廉清,江义等.高活性、高稳定性的湿式氧化催化剂的研制.水处理技术,1997,23(2);
    [7]尹承龙,单忠健,曾锦之.焦化废水处理存在的问题及其解决对策.给水排水.2000,26(6):35~37;
    [8]Larson RA,Weber EJ.Reaction mechanism in environmental organic chemistry.USA:Lewis pubishers.1994:402~404;
    [9]魏宏斌.光催化氧化法的影响因素和发展趋势,上海环境科学.1995,14(3):7;
    [10]Tennakone K.Photodegradation of visible light absorbing organic compounds in the presence of semiconductor for catalysts.[J].Photoehem.and photobiol.1992,88:289;
    [11]Zepp RG,Scblotzhauer PF.Photoreactivity of selected aromatic hydrocarbons in water.Polycyclic aromatic hydrocarbons.USA:Ann Arbor Science Publishers.1979:141~156;
    [12]朱春媚、陈双全、杨曦等.几种难降解有机废水的光化学处理研究.环境科学.1997,18:27~30;
    [13]程志久,殷广瑾,杨丽琴,王玮,程丹丹,烟道气处理焦化剩余氨水.环境科学学报2000,20(5):
    [14]张昌鸣、窦秀云.焦化废水中NH_3-N脱除研究.工业水处理.1999,19(1):20~21;
    [15]赵玲.焦化废水生化处理工艺的改进.工业水处理.1999,19(1):44;
    [16]李奇勇.三钢焦化污水治理现状及对策探讨.福建能源开发与节约.2000,(3)45~46;
    
    
    [17]唐丽贞.缺氧-好氧生物脱氮技术在焦化废水处理中的应用.化工环保.1994,14(4):216~219;
    [18]尹承龙,单忠健,曾锦之.焦化废水处理存在的问题及其解决对策.给水排水.2000,26(6):35~37;
    [19]刘柒变,孙亚玲等.A/O生物法脱除焦化废水中氨氮的工艺及影响因素.煤化工.1994,68:53~57;
    [20]刘俊新,李伟光.生物膜-活性污泥工艺处理焦化废水.哈尔滨建筑大学学报.1997,30(3):50~53;
    [21]何苗,张晓健,雷晓玲,顾夏声.厌氧/缺氧/好氧工艺(A/A/O)与常规活性污泥法工艺的处理效果的比较.给水排水.1997,23(6):31~34;
    [22]Margater Mukete Tonge,XuXiang-yang,Feng Xiao-shan.Sequential biological removal of COD and ammonia-nitrogen from coke plant wastewater.Journal of Zhejiang University(Arg.&Life Sci.).2000,26(3):241~246;
    [23]郭大陆.焦化水NH3-N、COD降解技术研究.环境工程.1994,11(3):6~11;
    [24]王秀蘅,徐桂琴,刘俊新,李伟光.A/O活性污泥系统与生物膜系统处理煤气废水对比试验研究.给水排水.1997,23(12):25~27;
    [25]刘荣桂、嵇小玲.A/O生物膜法处理煤气制气废水.工业用水与废水.1999,30(3):27;
    [26]刘俊新,李伟光.生物膜-活性污泥工艺处理焦化废水.哈尔滨建筑大学学报.1997,30(3):50~53;
    [27]邵林广,陈斌,黄霞,钱易.缺氧-好氧固定床生物膜系统处理焦化废水的试验研究.城市环境与城市生态.1995,8(1):1~4;
    [28]蔡建安,李俊,钟梅英,王效东.三相气提升循环流化床处理焦化废水.水处理技术.1997,23(2):110~114;
    [29]朱玉娟,李文利.混凝处理降低焦化废水中COD值的研究.河北化工.1997,(3):48;
    [30]刘鹤年.厌氧/好氧生物脱氮-絮凝法处理焦化废水.化工环保.1995,15(6):343~346;
    [31]张芳西,周淑芬,田晓东,项雄康,陆斌.聚铁絮凝澄清工艺在焦化废水深度处理中的应用.水处理技术.1995,21(6):355~358;
    
    
    [32]卢建杭,王红斌,刘维屏.焦化废水中有机污染物的混凝去除作用机理探讨.工业水处理.2000,20(6):20;
    [33]钱易,文一波,张辉明.焦化废水中难降解有机物去除的研究.环境科学研究.1992,5(5):1~8;
    [33]郑道敏,李恩斯.SBR法处理合成洗涤剂废水的研究.四川环境.2000,19(3):17~20
    [34]郝瑞霞.铁屑过滤-SBR工艺处理棉纺印染废水.上海环境科学.1998,17(8):58~62;
    [35]道敏,李恩斯.SBR法处理合成洗涤剂废水的研究.四川环境.2000,19(3):17~20;
    [36]韩相奎,周春生,姚秀芹.SBR法处理中药废水的试验研究.环境科学.1996,17(1):65~67;
    [37]刘国斌,张本兰.SBR生化法处理有机磷农药废水.化工环保.2000,20(3):3~6;
    [38]张本栏,裴健等.SBR活性污泥法处理乐果生产废水.化工环保.1994,14(5):384~387;
    [39]田庆国.SBR系统处理制革污水技术.中国皮革.1996,25(9):16~18;
    [40]李哲,刘振华,张俊贞.SBR处理油田采废水.城市环境与城市生态.2000,13(1):41~44;
    [41]李明哲,李再兴.SBR法处理聚酰胺生产废水.河北工业科技.1999,16(4):31~34;
    [42]刘敏等.SBR工艺处理涂装废水.材料保护.2000,33(2):32~35;
    张传书,张德寿.SBR法在屠宰废水处理中的应用.山东环境.1999,(4):47~48;
    [43]赵韵琪等.微电解-SBR组合工艺处理漂染废水.上海环境科学.1998,17(9);
    [44]陈郭建,魏兴义.PAC-SBR法处理高浓度有机废水.环境工程.1995,13(5):3~6;
    [45]毕学军.肉食厂废水的DAF-SBR法处理工艺研究.上海环境科学.1998,17(6):
    [46]詹伯君等.皮革废水SBR工艺对比实验研究.污染防治技.1998,11(3):
    [47]Selvaratnam S,Schoedel B A,Mefarland B L.Application of the Polymerase Chain-Reaction(PCR) and Reverse Transcriptase PCR for Deternnining the Fate of Phenol-Degrading Pseudomonas-Putida ATCC-11172 in a Bioaugmented Sequencing Batch Reactor.[J] Applied Microbiology and Biotechnology. 1997, 47: 3;
    
    
    [48]胡勤海.吹脱-SBR-吸附混凝法处理垃圾填埋厂渗滤液.环境污染与防治,
    [49]Tardif O, Hall E T.Atternatives for Treating Recirculated Newsprint Whitewater at High-Temperatures.[J] Water Sci.Tech..1997, 35: 2~3;
    [50]周国成.焦化废水处理.化工给排水设计.化学工业出版社.1995,(4):9~14;
    [51] Luthy G, et al.Removal of organic contaminants from coal conversion process condensates.[J].WPCF. 1983, 55(2): 275~281;
    [52] Ganczarczyk J J.Fate of basic pollutions in treatment of coke-plant effluents Proc 36th Ind. Waste Conf.Purdue University, 1981, 147~154;
    [53] Richard W, et al. Biological treatment of coal gasification wastewater. Water Research. 1984, 18 (7): 913~924;
    [54]杜军,鲍卫仁,李文英,朱素渝.SBR去除废水中的氨氮.炭转化2000,23(1):
    [55]何苗,张晓健等.焦化废水中有机物曝气吹脱条件下的挥发特征.环境科学.1997,18(5):34~36;
    [56]赵建夫,钱易,顾夏声.用厌氧酸化预处理焦化废水的研究.环境科学.1990,11(3):30~34;
    [57]高廷耀主编.水污染控制工程.高等教育出版社(第—版).1989,181;
    [58]王家玲主编.环境微生物学.高等教育出版社.(第—版).1988,128;
    [59] Ganzarczyk J J.Second-stage Activated Sluge Treatment of Coking-plant wastewater Effulents. Water Research. 1979, 13(2): 337~342;
    [60] Cooper R L, et al. The Biological Treatment of Carbonization Effluents. Water Research. 1972, 7: 1137~1157;
    [61]胡家骏,周群英.环境工程微生物.高等教育出版社(第—版),1988,103;
    [62]马文漪,杨柳燕主编.环境微生物工程.南京大学出版社(第一版),1998,127~148;
    [63]徐亚同编著.废水中氮磷的处理.华东师范大学出版社(第一版).1996,1~5;
    [64] Barnard J L, et al. Design and operation of Bardenpho plants in and African Country. Water Pollution Control. 1984,
    
    
    [65]Murthy DUS, Arora ML, Coperman JL.Anaysis of full scale SBR operation at grunely control.J.water pollution control Fed. 1987, 59(3):132~138;
    [66]Alleman JE, Irvine RL.Storage induced denitrification using sequencing batch reactor operation.waterRes.1980,(14):1483~1488;
    [67]Abufayed AA, Schroeder ED.performance of SBR/denitrification with a primary sludge carb on source. J.water pollution control Fed.1986,58(5):387~397;
    [68]周岳溪,钱易,顾夏生.循序间歇式生物脱氮脱磷工艺.环境工程.1993,11(1):3~7;
    [69]Christensen MH.Biological denitrification in water treatment. Prog water technology.1975, 47(7): 339~345;
    [70]严煦世主编.水和废水技术研究.中国建筑工业出版社.1992,第—版:261;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700