用户名: 密码: 验证码:
图像稀疏表示模型及其在图像处理反问题中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像的过完备稀疏表示作为一种新兴的图像模型,能够用尽可能简洁的方式表示图像,即大部分原子系数为零,只有很少的非零大系数,非零系数揭示了图像的内在结构与本质属性,并且冗余系统能够对噪声与误差更为稳健,从而有利于后续的图像处理。同时稀疏表示模型能够有效匹配哺乳动物本原视觉皮层中神经元的稀疏编码机制。稀疏表示理论已经引起了国内外广大学者的普遍关注,是当前的研究热点与难点。本文主要围绕图像稀疏表示理论中过完备字典设计、稀疏分解(逼近)算法以及过完备稀疏表示模型在图像处理反问题中的应用三个方面进行了系统和深入的研究,取得的主要研究成果及创新点包括:
     (1)根据图像的几何结构特性,从人类视觉系统感知特性出发,选取二维Gabor函数作为字典的生成函数,建立了匹配各层面图像结构的Gabor感知多成分字典,包含平滑、边缘与纹理三种结构类型的子成分字典,同时依据视觉皮层中神经元感受野的结构特性与图像几何结构特征来分配生成函数中自由参数的采样密度,大幅度缩减了原子个数,进而提出了一种高效的基于匹配追踪的图像稀疏分解算法。实验结果表明Gabor感知多成分字典具有对图像中平滑、边缘与纹理结构的自适应性,与Anisotropic refinement-Gauss混合字典相比能够以较少的原子实现对图像更为高效的稀疏逼近。
     (2)提出了一种图像结构自适应的子空间匹配追踪稀疏分解快速算法,首先对待分解图像进行结构自适应的四叉树区域剖分,并将剖分后的每一子块分类为平滑、边缘或纹理三种结构类型之一,进一步将每一子块只在与其结构类型一致的单一子成分字典中进行低维子空间的匹配追踪搜索,从而降低了图像维数与字典搜索复杂度,大幅度提高了稀疏分解效率。
     (3)基于图像在过完备字典下的稀疏表示,在Bayesian-MAP框架下,建立了针对泊松噪声的稀疏性正则化图像去噪与恢复凸变分模型,采用负log的泊松似然函数作为数据保真项,模型中非光滑的正则性约束图像表示系数的稀疏性,并附加非负性约束保证恢复图像的非负性。进一步基于分裂Bregman方法,提出了数值求解该模型的多步迭代快速算法,通过引入辅助变量与Bregman距离可将原问题转化为两个简单子问题的迭代求解,降低了计算复杂性。实验结果验证了本文模型与数值算法的有效性。
     (4)利用图像的稀疏性先验知识,建立了稀疏性正则化的图像恢复模型,目标泛函建模为实希尔伯特空间中两个下半连续凸泛函之和,并无光滑性要求。根据恢复模型中稀疏性正则项的不同,分为分解(Decompsition)与综合(Synthesis)两种形式。在Peaceman-Rachford算子分裂框架下对模型进行数值求解,对于综合形式下的恢复模型,问题变量为稀疏分解系数,稀疏性正则项通常具有可分离形式,直接采用原始(Primal) Peaceman-Rachford算法进行求解,迭代算法中的子问题通过共轭梯度法进行快速计算。而分解形式下的恢复模型,问题变量为图像自身,稀疏性正则项关于问题变量通常是非光滑且不可分离的,采用对偶(Dual)Peaceman-Rachford算法进行求解,对偶算法能够将原始问题解耦,解耦后的子问题通过FFT变换算法进行快速计算,简化了问题的求解,提高了运算效率。
     (5)建立了稀疏性正则化的多帧图像超分辨重建凸变分模型,模型中的正则项刻画了理想图像在字典下的稀疏性先验约束,保真项度量其在退化模型下与观测信号的一致性,分析了该模型解的存在性、唯一性以及最优性条件。进一步,分别采用前向后向算子分裂与线性化Bregman迭代算法进行快速求解,两种数值算法均能够将每一次迭代分解为仅对保真项的前向(显式)步与仅对正则项的后向(隐式)步,从而大幅度降低了计算复杂性,并分析比较了两种数值算法各自的优缺点。实验结果表明该模型能够有效保持重建图像中的边缘轮廓结构。
     (6)针对图像的卡通与纹理结构形态,分别建立符合类内强稀疏而类间强不相干的卡通和纹理分量子成分字典,形成了图像的多形态稀疏表示模型,进而提出了一种基于多形态稀疏性正则化的多帧图像超分辨重建凸变分模型,模型中的正则项刻画了理想图像在多成分字典下的稀疏性先验约束,保真项度量其在退化模型下与观测信号的一致性,采用交替迭代算法对该多变量优化问题进行数值求解,每一子问题采用前向后向算子分裂法进行快速求解。该模型能够同时保持重建图像中的边缘轮廓与纹理结构。
The sparse and overcomplete representations of images are a new image model, which can represent images in a compact and efficient way. Most atom coefficients are zero, only few coefficients are big, and the nonzero coefficients can reveal the intrinsic structures and essential properties of images. Besides, redundant systems are also robust to noise and error. For these reasons, sparse representations are beneficial to subsequent image processing applications. At the same time, sparse representation model can effectively match the sparse coding strategy in the primary visual cortex of mammal. Sparse representation theory has already attracted large numbers of international and domestic scholars. At present it is a research hotspot and difficult problem. This paper mainly revolves around the three aspects of sparse representation theory, which include the design of overcomplete dictionary, sparse decomposition (approximation) algorithms and the application of overcomplete and sparse representation model to inverse problems in image processing. The obtained achievements include:
     (1) In terms of geometric properties of the image structures and the perception characters of human visual system, two dimensional Gabor function is adopted as the generating function of the dictionary and a multi-component Gabor perception dictionary matching various image structures is constructed, which includes smooth, edge and texture sub-dictionaries. Meanwhile, discretization sampling densities of all free parameters in the Gabor function are allocated according to the receptive field properties of neurons in visual cortex and geometric characters of the image structures.Thus, the number of atoms in the dictionary is reduced dramatically.Furthermore, an effective algorithm based on the matching pursuit method is proposed to obtain sparse decomposition of images with our dictionary. The experimental results indicate that the Gabor multi-component perception dictionary can adaptively provide a precise and complete characterization of local geometry structures, such as plain, edge and texture structures in images. In comparison with the anisotropic refinement-Gaussian (AR-Gauss) mixed dictionary, our dictionary has a much sparser representation of images.
     (2) A structure adaptive matching pursuit subspace search algorithm is proposed to obtain effective sparse representations of images. Firstly, images are adaptively segmented into quad-tree blocks in terms of geometrical structure character. Then each block is classified as one of smooth, edge or texture structure types. When seeking for sparse decomposition of every quad-tree block, it is only to search in subspace of single component sub-dictionary with the same structure type as current block. Due to the reduction of dimension of image and complexity of search in the dictionary, our algorithm for sparse decomposition is effective and fast.
     (3) Adopting Bayesian-MAP estimation framework and using the sparse representations of the underlying image in an overcomplete dictionary, a sparsity regularized convex functional model is proposed to deconvolve (denosie) Poisson noisy image. The negative-log Poisson likelihood functional is used for data fidelity term and non-smooth regularization term constrains the sparse image representation over the dictionary. An additional term is also added in the functional to ensure the non-negative of the restored image. Inspired form the Split Bergman iteration method, a multi-step fast iterative algorithm is proposed to the model above numerically. By introducing an intermediate variable and Bergman distance, the original problem is transformed into solving two simple sub-problems iteratively, thus decreases the computational complexity rapidly. Experimental results demonstrate the effectiveness of our recovery model and numerical iteration algorithm.
     (4) Making use of the prior knowledge of image sparse representation, a general variational model is proposed for image recovery with sparsity regularization. The objective functional can be formulated as minimizing the sum of two lower semicontinuous convex functions (not necessarily differentiable) in a real Hilbert space. According to the difference of sparsity regularization term, the general model can be classified as decomposition prior or synthesis prior types. Further, a peceman-rachford operator splitting method is proposed to solve this general recovery model numerically. With regard to the synthesis type, the variable is the sparse representation coefficients and it is usually separable in the sparsity regularization term. The primal peceman-rachford operator splitting method is adopted to solve it directly and conjugate cradient method is employed to rapidly solve the subproblem in the iteratioa With respect to the decomposition type, the problem variable is image-self and it is usually unseparable in the non-smooth sparisty regularization term, thus it is necessary to employ dual peceman-rachford operator splitting method. Dual method can decouple the original recovery model. At the same time, FFT transform method is used to fast solve the subporlem in the iteration, which can simplify the solving of problem and improve operation efficiency.
     (5) A convex variational model is proposed for multi-frame image super-resolution with sparse representation regularization. The regularization term of the model constrains the underlying image to have a sparse representation in a proper dictionary. The fidelity term of the model restricts the consistency with the measured image in terms of the data degradation model. The existence, uniqueness and character of solution to the model are analyzed. Furthermore, forward and backward operator splitting method and linearized bregman iteration are adopted to numerically solve the above model respectively. Both the algorithms can decompose each iteration into the forward (explicit) gradient sub-step only for the fidelity term and the backward (implicit) sub-step only for regularization term, thus decreasing the computational complexity rapidly. The advantages and disadvantages of the two algorithms are analysed and compared. Numerical results demonstrate that our super-resolution model can efficiently keep the edge and contour structures in the reconstructed image.
     (6) Two incoherent geometry and texture sub-dictionaries are constructed, which can provide sparse representation of cartoon and texture structures respectively, thus constructs an image multi-morphology sparse representation model. Furthermore, a convex variational model is proposed for multi-frame image super-resolution with multi-morphology sparsity regularization. The regularization term of the model constrains the underlying image to have a sparse representation in a multi-component dictionary. The fidelity term of the model restricts the consistency with the measured image in terms of the data degradation model. An alternate minimization iteration algorithm is proposed to solve it numerically and adopts proximal forward-backward operator splitting method for each sub-problem. Our super-resolution model can efficiently keep the edge, contour and texture structures in the reconstructed image synchronously.
引文
[1]Gonzalez R. C., Richard E. W. Digital image processing (3rd Edition) [M]. NJ: Prentice Hall,2007.
    [2]Donoho D. Compressed sensing [J]. IEEE Trans. on Information Theory,2006,52 (4):1289-1306.
    [3]Wright J., Yang A.,. Ganesh A., et al. Robust Face Recognition via Sparse Representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009,31(2):210-227.
    [4]Tipping M. E. Sparse Bayesian learning and the relevance vector machine [J]. Journal of Machine Learning Research,2001,1 (6):211-244.
    [5]Figueiredo M. Adaptive sparseness using Jeffreys prior [J]. Advances in Neural Information Processing Systems,2002,14:697-704.
    [6]Donoho D. L., Elad M.Maximal sparsity representation via 11 minimization [J]. Proc. Nat. Aca. Sci.,2003,100(5):2197-2202.
    [7]Gribonval R., Nielsen M. Sparse decompositions in unions of bases [J]. IEEE Trans. Inform. Theory,2003,49(12):3320-3325.
    [8]Mallat S. G. A theory for multiresolution signal decomposition:the wavelet representation [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1989, 11(7):674-693.
    [9]Mallat S. G. Multifrequency channel decompositions of images and wavelet models [J].IEEE Transaction in Acoustic Speech and Signal Processing,1989,37(12): 2091-2110.
    [10]焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2004,31(B12):1975-1981.
    [11]Aharon M., Elad M., Bruckstein A.M. The K-SVD:an algorithm for designing of overcomplete dictionaries for sparse representation [J]. IEEE Trans. On Signal Processing,2006,54(11):4311-4322.
    [12]Murray J. F., Kreutz-Delgado K. Learning Sparse overcomplete codes for images [J]. Journal of VLSI Signal Processing,2006,45(1):97-110.
    [13]Kreutz-Delgado K., Murray J. F., Rao B.D., et al. Dictionary learning algorithms for sparse representation [J].Neural Computation,2003,15(2):349-396.
    [14]Mairal J., Bach F., Ponce J., Sapiro G. Online learning for matrix factorization and sparse coding [J]. Journal of Machine Learning Research,2010, 11(1):19-60.
    [15]Mairal J., Elad M., Sapiro G. Sparse representation for color image restoration [J]. IEEE Transactions on Image Processing,17(1):53-69.
    [16]Elad M., Aharon M. Image denoising via sparse and redundant representations over learned dictionaries[J].IEEE Trans. Image Process.,2006,15 (12):3736-3745.
    [17]Yaghoobi M., Daudet L., Davies M.Parametric dictionary design for sparse coding[J].IEEE Transactions on Signal Processing,2009,57(12):4800-4810.
    [18]Figueras i Ventura R., Vandergheynst P. Low-rate and flexible image coding with redundant representations [J].IEEE Trans on.Image Processing,2006,15(3):726-739.
    [19]Davis G Adaptive nonlinear approximations [D]. New York:New York University, 1994.
    [20]Natarajan B. K. Sparse approximate solutions to linear systems [J]. SIAM Journal on Computing,1995,24(2):227-234.
    [21]Chen S. S., Donoho D. L., Saunders M. A. Atomic decomposition by basis pursuit [J]. SIAM Journal on Scientific Computing,1998,20(1):33-61.
    [22]Gorodnitski I.F., Rao B.D.Sparse signal reconstruction from limited data using focuss:a re-weighted norm minimization algorithm [J].IEEE Trans. Signal.Proc, 1997,45(3):600-616.
    [23]Mohimani H., Babaie-zadeh M., Jutten C. A fast approach for overcomplete sparse decomposition based on smoothed LO-norm [J].IEEE Trans. Signal. Processing, 2009,57(1):289-301.
    [24]Mohimani H., Babaie-Zadeh M., Jutten C. Complex-valued sparse representation based on smoothed LO norm[C]. Proceedings of ICASSP 2008, Las Vegas,2008, 3881-3884.
    [25]Daubechies I., Defrise M., Mol C.D. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [J]. Commun.Pure Appl. Math.2004, 57(11):1413-1457.
    [26]Beck A., Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems [J]. SIAM Journal on Imaging Sciences,2009,2(1):183-202.
    [27]Elad M.Why simple shrinkage is still relevant for redundant representations? [J]. IEEE Trans. Information Theory,2006,52(12):5559-5569.
    [28]Figueiredo M. A. T., Nowak R. D., S. Wright J. Gradient projection for sparse reconstruction:application to compressed sensing and other inverse problems [J]. IEEE Journal of In Selected Topics in Signal Processing,2007, 1(4):586-597.
    [29]Mancera L., Portilla J. LO-norm-based sparse representation through alternate projections[C].ICIP06,2006,2089-2092.
    [30]Dai Y.H., Fletcher R. Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming [J].Numerische Mathematik,2005,100 (1):21-47.
    [31]Chartrand R. Exact reconstruction of sparse signals via nonconvex minimization [J]. IEEE Signal Processing Letter,2007,14(10):707-710.
    [32]Bergeaud F., Mallat S.G. Matching pursuit:adaptative representations of images and sounds [J]. Computational and Applied Mathematics,1996,15(2):97-109.
    [33]Mallat S. G, S. Zhang. Matching pursuits with time-frequency dictionaries [J]. IEEE Transactions on Signal Processing,1993,41(12):3397-3415.
    [34]Mallat S. G., Davis G, Zhang Z. Adaptive time-frequency decompositions [J]. SPIE Journal of Optical Engineering,1994,33(7):2183-2191.
    [35]Mallat S. G., Jaggi S., Karl W., Willsky A.High resolution pursuit for feature extraction [J]. Applied and Computational Harmonic Analysis,1998,5(4):428-449.
    [36]Pati Y. C., Rezaiifar R., Krishnaprasad P. S. Orthogonal Matching Pursuit:Recursive function approximation with applications to wavelet decomposition[C]. In Proc. of the 27th Annual Asilomar Conference on Signals, Systems and Computers, Pacific, Grove, CA,1993,40-44.
    [37]Davis G, Mallat S., Avellaneda M. Greedy adaptive approximation [J]. Journal of constructive approximations,1997,13(1):57-98.
    [38]Donoho D. L., Tsaig Y., Drori I., Starck J.L. Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit[R].Tech. Rep.2006-2, Department of Statistics, Stanford University,2006.
    [39]Blumensath T., Davis M. Gradient pursuits [J].IEEE Trans. Signal. Proc 2008,56(6): 2370-2382.
    [40]Gilbert A.C., Strauss M. J., et al. Sublinear approximation of compressible signals [C].Proc.SPIE Intelligent Integrated Microsystems (IIM), Orlando,2006,623206. 01-09.
    [41]Tropp J.A. Greed is good:Algorithmic results for sparse approximation [J].IEEE Trans. Info. Theory,2004,50(10):2231-2242.
    [42]Fuchs J.J. On sparse representations in arbitrary redundant bases [J].IEEE Transactions on Information Theory,2004,50(6):1341-1344.
    [43]Gribonval, R. B., Mallat E. Analysis of sound singals with high resolution matchnig Pursuit[C].Proeeednig of the IEEE Itemational SymPposium on Time-Feruqeney and Time-Seale Analysis, Paris,1996:125-128.
    [44]Needell D., Vershynin R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit [J].Foundations of Computational Mathematics,2009,9(3):317-334.
    [45]Needell D., Vershynin R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit [J].IEEE Journal of Selected Topics in Signal Processing,4(2):310-316.
    [46]Needell D., Tropp J. A. CoSaMP:Iterative signal recovery from incomplete and inaccurate samples [J]. Appl. Comp. Harmonic Anal.,2008,26(3):301-321.
    [47]Jost P., Vandergheynst P., Frossard P.Tree-based pursuit:Algorithm and properties [J]. IEEE transactions on signal processing,2006,54(12):4685-4697.
    [48]Gilbert A.C., Iwen M.A., Martin J.S. Group Testing and Sparse Signal Recovery[C].42nd Asilomar Conference on Signals, Systems, and Computers, Monterey, CA,2008.
    [49]Miller A.J. Subset selection in regression (2nd Edition) [M]. London:Chapman and Hall,2002.
    [50]李恒建,尹忠科,王建英.基于量子遗传优化算法的图像稀疏分解[J].西南交通大学学报2007,42(1):19-23.
    [51]范虹,孟庆丰,张优云.用混合编码遗传算法实现匹配追踪算法[J].西安交通大学报,2005 39(3):295-299.
    [52]Vesin J. M. Efficient Implementation of matching pursuit using a genetic algorithm in the continuous space[C]. Proc.10th European Signal Processing Conf. TTKK-Paino, Tampere,2000,589-592.
    [53]Amin A. M, Atiya S. A. A novel approach for image compression using matching pursuit signal approximation and simulated annealing[C].IEEE International Symposium on Signal Processing and Information Technology, Giza, Egypt,2007, 29-34.
    [54]Luis M., Javier P. Non-convex sparse optimization through deterministic annealing and applications[C]. ICIP,2008:917-920.
    [55]Vinje W. E., Gallant J. L. sparse coding and decorrelation in primary visual cortex during natural vision [J]. Science,2000,287(5456):1273-1276.
    [56]Nirenberg S., Carcieri S. M., Jacobs A. L., Latham P. E. Retinal ganglion cell sact largely as independent encoders [J]. Nature,2001,411(6838):698-701.
    [57]Olshausen B. A, Field D. J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images [J].Nature,1996,381(6583):607-609.
    [58]Bell A. J., Sejnowski T. J. The'independent components'of natural scenes are edge filters [J]. Vision Research.1997,37(23):3327-3338.
    [59]Hyvarinen A, Hoyer P. O. A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images [J]. Vision Research,2001,41(18):2413-2423.
    [60]Sylvain F., Rafael R., Laurent P. Sparse approximation of images inspired from the functional architecture of the primary visual areas [J]. EURASIP Journal on Advances in Signal Processing,2007,2007(1):122-137.
    [61]Tychonoff A. N., Arsenin V. Y. Solution of ill-posed problems [M]. New York:Wiley, 1977.
    [62]Geman S., Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images [J].IEEE Trans. Pattern Anal. Machine Intell,1984,6(6):721-741.
    [63]Chellappa, R., Jain A.K. Markov random fields:theory and applications [M]. Academic Press,1993.
    [64]Li S. Z. Markov random field modeling in computer vision [M]. Springer-Verlag, 1995.
    [65]Chellappa R. Two Dimensional Discrete Gaussian Markov Random Field Models for Image Processing and analysis[C]. Proc. SPIE,1989,1075(4):336-369.
    [66]Zhu S. C., Wu Y. N., Mumford D. Filters, random fields and maximum entropy (frame):To a unified theory for texture modeling [J]. International Journal of Computer Vision,27(2):107-126,1998.
    [67]Hassner M., Sklansky J. The use of markov random fields as models of textures [J]. Computer Graphics and Image Processing,1980,12(4):357-370.
    [68]Cross G. R., Jain A. K. Markov random field texture models [J]. IEEE Trans. Pattern Analysis and Machine Intelligence,1983,5(1):25-39.
    [69]Gimel'farb G. L. Texture modeling with multiple pairwise pixel interactions [J]. IEEE Trans. Pattern Anal. Mach. Intell.,1996,18(11):1110-1114.
    [70]Perona P., Malik J.Scale-space and edge detection using anisotropic diffusion [J]. IEEE Trans. Pattern Anal. Mach. Intell.,1990,12(7):629-639.
    [71]Weickert J. Coherence-enhancing shock filters[C].Lecture Notes in Computer Science, Springer, Berlin,2003,2781:1-8.
    [72]M. Kass, A. Witkin, D. Terzopoulos. Snakes:Active contour models. Int. J. Computer Vision,1(4):321-331,1987.
    [73]Mumford D., Shah J. Optimal approximations by piecewise smooth functions and associated variational problems [J]. Comm. Pure Applied. Math,1989,42 (5):577-685.
    [74]L. Rudin, S. Osher, E. Fatemi.Nonlinear total variation based noise removal algorithms [J].Physica D,1992,60(1-4):259-268.
    [75]Starck J.L., Fadili M.J. An Overview of inverse problem regularization using sparsity[C].ICIP 09,2009.
    [76]Figueiredo A. T., Nowak R. D. An EM algorithm for wavelet-based image restoration [J]. IEEE transactions on image processing,2003,12(8):906-916.
    [77]Bioucas-Dias J. Bayesian wavelet-based image deconvolution:a GEM algorithm exploiting a class of heavy-tailed priors [J]. IEEE Trans. on Image processing,2006, 15(4):937-951.
    [78]Figueiredo A.T., Bioucas-Dias J. M., et al. Majorization-Minimization algorithms for wavelet-based image restoration [J].IEEE transactions on image processing,2007, 16(12):2980-2991.
    [79]Elad M. A wide angle view at iterated shrinkage algorithms[C]. Proceedings of the SPIE Wavelets XII Conference, August 2007.
    [80]孙玉宝,吴敏,韦志辉,肖亮.基于稀疏表示的脑电棘波检测算法研究[J].电子学报,2009,37(9):1971-1978.
    [81]孙玉宝,肖亮,韦志辉,胡晰远.基于稀疏表示的低比特率可伸缩光学图像编码算法研究[J].光学学报,2008,28(s2):77-81.
    [82]Bergeau F, Malt S. Match pursuit of images[C].Proceedings of the 1995 International Conference on Image Processing. Washington D.C., USA:IEEE,1995, 330-333.
    [83]Ran X, Farvardin N. A perceptually motivated three-component image model-Part I: description of the model [J].IEEE transactions on image processing,1995, 4(4):401-415.
    [84]Ran X, Farvardin N.A perceptually motivated three-component image model [J]. IEEE Trans. Image Processing,1995,4(4):430-447.
    [85]Daugman J. G. Uncertainty relations for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters [J]. J. Opt Soc Am A, 1985,2(7):1160-1169.
    [86]Jones J.P., L.A. Palmer. An evaluation of the two-dimensional gabor filter model of simple receptive fields in the cat striate cortex [J]. Journal of Neurophysiology,1987, 58(6):1233-1258.
    [87]Kruizinga P., Petkov N. Non-linear operator for oriented texture [J].IEEE Trans. on Image Processing,1999,8(10):1395-1407.
    [88]Petkov N., Kruizinga P.Computational models of visual neurons specialised in the detection of periodic and aperiodic oriented visual stimuli:bar and grating cells [J]. Biological Cybernetics,1997,76 (2):83-96.
    [89]Grigorescu S.E., Petkov N., Kruizinga P. Comparison of texture features based on gabor filters [J]. IEEE Trans. on Image Processing,2002,11(10):1160-1167.
    [90]Grigorescu C., Petkov N., Westenberg M. A.Contour detection based on nonclassical receptive field inhibition [J]. IEEE Trans. on Image Processing,2003,12(7):729-739.
    [91]DeValois R. L., Albrecht D. G., Thorell L.G. Spatial frequency selectivity of cells in macaque visual cortex [J].Vision Research,1982,22(5):545-559.
    [92]DeValois R. L., Yund E. W., Hepler N.The orientation and direction selectivity of cells in macaque visual cortex[J]. Vision Research.1982,22(5):531-544.
    [93]Pollen D, Ronner S. Phase relationships between adjacent simple cells in the visual cortex [J]. Science,1981,212(4501):1409-1411.
    [94]Malik J., Perona P. Preattentive texture discrimination with early vision mechanisms [J]. J.Opt.Soc.Am,1990,7(5):923-932.
    [95]Meyer Y. Osillating patterns in image processing and nonlinear evolution equation [M].Volume 22 of University Lecture Series, AMS, Providence,2001.
    [96]Olshausen B., Field D. Sparse coding of sensory inputs [J].Current Opinion in Neurobiology,2004,14(4):481-487.
    [97]Olshausen B. A., Field D. J. Sparse coding with an overcomplete basis set:a strategy employed by V1? [J]. Visual Research,1997,37(33):11~25.
    [98]尹忠科等.利用FFT实现基于MP的信号稀疏分解[J].电子与信息学报,2006,28(4):614-618.
    [99]Gribonval R. Fast matching pursuit with a multiscale dictionary of gaussian chirps [J]. IEEE Transactions on Signal Processing,2001,49(5):994-1001.
    [100]De V C., Macq B. Subband dictionaries for low-cost matching pursuit of video residues [J]. IEEE Transactions on Circuits and Systems for Video Technology,1999, 9(7):984-993.
    [101]Schmid-Saugeon P, Zakhor A. Dictionary design for matching pursuit and application to motion-compensated video coding [J]. IEEE Transactions on Circuits and Systemsfor Video Technology,2004,14(6):880-886.
    [102]邓承志汪胜前曹汉强.基于多原子快速匹配追踪的图像编码算法[J].电子与信息学报,2009,31(8):1807-1811.
    [103]Tong H.Y., Venetsanopoulos A.N. A perceptual model for JPEG applications based on block classification, texture masking, and luminance masking[C]. Proceedings of IEEE Internatiopnal Conference Image Processing (ICIP'98),1998,3:428-431.
    [104]Starck J.L., Elad M., Donoho D.L. Image decomposition via the combination of sparse representation and a variational approach [J]. IEEE Transaction on Image Processing,2005,14(10):1570-1582.
    [105]Bobin J., Starck J.L., Fadili J., et al. Morphological component analysis:an adaptive thresholding strategy [J]. IEEE Transactions on Image Processing,2007,16(11):2675-2681.
    [106]Zhang X.H., Lin W.S., Xue P. Improved estimation for just-noticeable visual distortion [J]. Signal Processing,2005,85(4):795-808.
    [107]Zhang X., Lin W., Xue P. Just-noticeable difference estimation with pixels in images [J]. Journal of Visual Communication and Image Representation,2008,19(1):30-41.
    [108]Sarder P., Nehorai A. Deconvolution method for 3-d fluorescence microscopy images [J].IEEE Sig. Pro. Mag.,2006,23(3):32-45.
    [109]Jansson P. Image recovery:theory and application [M]. New York:Academic Press, 1987.
    [110]Andrews H.C., Hunt B.R. Digital image restoration [M].NJ:Prentice-Hall,1977.
    [111]Katsaggelos A.K. Digital Image Restoration[M].Heidelberg:Springer-Verlag,1991.
    [112]Anscombe F. J.The transformation of Poisson, binomial and negative-binomial data [J]. Biometrika,1948,35(3):246-254.
    [113]Fryzlewicz P., Nason G. P.A Haar-Fisz algorithm for poisson intensity estimation [J]. Journal of Computational and Graphical Statistics,2004,13(3):621-638.
    [114]Zhang B., Fadili M., Starck J.L. Wavelets, ridgelets and curvelets for Poisson noise removal [J].IEEE Trans. Image Process.,2008,17(7):1093-1108.
    [115]Kolaczyk E. D. Nonparametric estimation of intensity maps using Haar wavelets and Poisson noise characteristics [J].The Astrophysical Journal,2000,534(1):490-505.
    [116]Bijaoui, Jammal G. On the distribution of the wavelet coefficient for a Poisson noise [J].Signal Processing,2001,81(9):1789-1800.
    [117]Nowak R., Kolaczyk E.A statistical multiscale framework for poisson inverse problems [J]. IEEE Transactions on Information Theory,2000,46(5):2794-2802.
    [118]Willett R., Nowak R. Fast multiresolution photon-limited image reconstruction [C].Proc. IEEE Int. Sym. Biomedical Imaging (ISBI'04), Arlington:IEEE Press, 2004,2:1192-1195.
    [119]Willett R. M., Nowak R. D. Fast, near-optimal, multiresolution estimation of Poisson signals and images[C]. Proceedings of the European Signal Processing Conference (EUSIPCO'04), Vienna, Austria,2004.
    [120]Starck J.L., Murtagh F. Astronomical image and data analysis [M]. Springer,2006.
    [121]Dey N., Blanc-F'eraud L., Zimmer C., et al. A deconvolution method for confocal microscopy with total variation regularization[C]. Proc. IEEE International Symposium on Biomedical Imaging:Macro to Nano,2004,1223-1226.
    [122]Dey N., Blanc-F'eraud L., et al. Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution [J].Microscopy Research and Technique,2006,69(4):260-266.
    [123]Triet L., Rick C., Thomas J. Asaki.A variational approach to reconstructing images corrupted by Poisson noise [J]. J. Math. Imaging Vision,2007,27(3):257-263.
    [124]王光新,王正明,谢美华,王卫威,泊松噪声模糊图像的边缘保持变分复原算法[J].光电子·激光,2007,18(3):359-363.
    [125]黄启宏,段昶,刘钊,基于独立分量分析的图像特征提取及泊松噪声去除[J].光电工程,2006,33(11):128-132.
    [126]Chaux C., Combettes P. L., Pesquet J. C., et al. A variational formulation for frame-based inverse problems [J].Inverse Problems,2007,23(4):1495-1518.
    [127]Starck J.L., Nguyen M., Murtagh F.Wavelets and curvelets for image deconvolution: a combined approach [J].Signal Processing,2003,83(10):2279-2283.
    [128]Fadili M. J., Starck J.L.Sparse representation-based image deconvolution by iterative thresholding[C]. Proceedings of the Astronomical Data Analysis Conference. France: Elsevier,2006.
    [129]Dupe F.X., Fadili J.M., Starck J.L. A proximal iteration for deconvolving poisson noisy images using sparse representations [J].IEEE Transactions on Image Processing Publication,2009,18(2):310-321.
    [130]Raymond H. C., Chen Ke. Multilevel algorithm for a Poisson noise removal model with total-variation regularization [J].International Journal of Computer Mathematics, 2007,84 (8):1183-1198.
    [131]Osher S., Burger M., Goldfarb M.,et al. An iterative regularization method for total variation-based image restoration [J]. Multiscale Modeling and Simulation,2005, 4(2):460-489.
    [132]Osher S. Mao Y. Dong B. Yin W. Fast linearized Bregman iterations for compressed sensing and sparse denoising [J]. Communications in Mathematical Sciences,2010, 8(1):93-111.
    [133]Goldstein T., Osher S.The Split Bregman Algorithm for LI Regularized Problems [J]. SIAM Journal on Imaging Sciences,2009,2 (2):323-343
    [134]Setzer S.Split Bregman Algorithm, Douglas-Rachford Splitting and Frame Shrinkage[C].Lecture Notes In Computer Science,2009,5567:464-476.
    [135]Fadili M., Starck J.L., Murtagh F. Inpainting and zooming using sparse representations [J]. The Computer Journal,2009,52(1):64-79.
    [136]Moreau J.J.Fonctions convexes duales et points proximaux dans un espace hilbertien[J]. C. R. Acad. Sci. Paris S'er. A Math.,1962,255:2897-2899.
    [137]Combettes P. L., Pesquet J.C.A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery [J]. IEEE Journal of Selected Topics in Signal Processing,2007, 1(4):564-574.
    [138]Coifman R. R., Donoho D. L.Translation-invariant de-noising[C]. Lecture Notes in Statistics, New York:Springer-Verlag,1995,103:125-150.
    [139]Vonesch C., Unser M.A fast iterative thresholding algorithm for wavelet-regularized deconvolution[C].Proceedings of the SPIE Optics and Photonics,2007,6701(2): 67010D.1-67010D.5.
    [140]Rockafellar R.T. Convex analysis [M]. NJ:Princeton University Press,1979.
    [141]Zalinescu C. Convex analysis in general vector spaces [M].NJ:World Scientific, 2002.
    [142]Combettes P. L., Pesquet J.C. A proximal decomposition method for solving convex variational inverse problems [J]. Inverse Problems,2008,24(6):65014-65040.
    [143]Rockafellar R. T. Monotone operators and the proximal point algorithm [J].Siam Journal on Control and Optimization,14(5):877-898.
    [144]George H. C., Rockafellar R. T.Convergence rates in forward-backward splitting [J].SIAM J. Optim.,1997,7(2):421-444.
    [145]Passty, G. B. Ergodic convergence to a zero of the surp of monotone operators in hilbert space [J].Journal of Mathematical Analysis and Applications,1979, 72:383-390.
    [146]Eckstein J., Bertsekas D. P.On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators [J].Mathematical Programming,1992,55(3):293-318.
    [147]Lions P.L., Mercier B.Splitting algorithms for the sum of two nonlinear operators [J]. SIAM J. Numer. Anal.,1979,16(6):964-979.
    [148]Boyle J. P., Dykstra R. L. A method for finding projections onto the intersection of convex sets in Hilbert spaces[C].Lecture Notes in Statistics, New York: Springer-Verlag,1986,37:28-47.
    [149]Crombez GFinding projections onto the intersection of convex sets in hilbert spaces [J].Numerical Functional Analysis and Optimization,1995,16 (5&6):637-652.
    [150]Combettes P. L.Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections [J]. IEEE Trans. Image Processing,1997,6 (4):493-506.
    [151]Stark H., Yang Y. Vector space projections:a numerical approach to signal and image processing, neural nets, and optics [M]. New York:Wiley,1998.
    [152]Youla D. C, Webb H.Image restoration by the method of convex projections: partl—theory [J].IEEE Trans. Medical Imaging,1982, 1(2):81-94.
    [153]Kotzer T., Cohen N., Shamir.J.Generalized projection algorithms with applications to optics and signal restoration [J]. Optics Communication,1998,156 (1-3):77-91.
    [154]Combettes P. L., Trussell H. J.Method of successive projections for finding a common point of sets in metric spaces [J]. Journal of Optimization Theory and applications,1990,67(3):487-507.
    [155]Moreau J.J. Propri'et'es des applications'prox'[J]. C. R. Acad. Sci. Paris S'er. A Math.,1963,256:1069-1071.
    [156]Moreau J.J. Proximit'e et dualit'e dans un espace hilbertien[J].Bull. Soc. Math. France,1965,93:273-299.
    [157]Combettes P. L. Convexit'e et signal[C]. Proc. Congr'es de Math'ematiques Appliqu'ees et Industrielles SMAI'01, Pompadour, France,2001:6-16.
    [158]Huang Y, Michael K. N., Wen Y.A fast total variation minimization method for image restoration [J].Multiscale Model. Simul.2008,7(2):774-795.
    [159]Combettes P. L., Wajs V. R. Signal recovery by proximal forward-backward splitting [J]. SIAM Journal on Multiscale Modeling and Simulation,2005,4(4):1168-1200.
    [160]Combettes P. L., Pesquet J. C.Proximal thresholding algorithm for minimization over orthonormal bases [J]. SIAM J. Opt.,2007,18(4):1351-1376.
    [161]Nikolova M., Ng M. K., Zhang S., Ching W.Efficient reconstruction of piecewise constant images using nonsmooth nonconvex minimization[J].SIAM J. Imaging Sciences,2008,1(1):2-25.
    [162]Nikolova M. Minimizers of cost-functions involving non-smooth data-fidelity terms application to the processing of outliers [J].SIAM J. on Numerical Analysis,2002, 40(3):965-994.
    [163]Triet L., Rick C., Thomas J. Asaki.A variational approach to reconstructing images corrupted by poisson noise [J].Journal of Mathematical Imaging and Vision,2007, 27(3):257-263.
    [164]Guo X., Li F., Ng M. Fast 11-TV algorithm for image restoration [J].SIAM Journal on Scientific Computing,2009,31(3):2322-2341.
    [165]Chen H.G. Forward-backward splitting techniques:theory and applications [D]. Seattle:University of Washington,1994.
    [166]Roland G, Patrick L. T. Augmented lagrangian and operator-splitting methods in nonlinear mechanics [M]. SIAM, Philadelphia,1989.
    [167]Tseng P. Applications of a splitting algorithm to decomposition in convex programming and variational inequalities [J]. SIAM J. Control and Optimization, 1991,29(1):119-138.
    [168]NG M. K., Chan R. H., Tang W. A fast algorithm for deblurring models with Neumann boundary conditions [J].SIAM J. Sci. Comput.,1999,21(3):851-866.
    [169]Park S.C., Park M.K., Kang M.G. Super-resolution image reconstruction-a technical overview [J]. IEEE Signal Processing Magazine,2003,20(3):21-36.
    [170]Tuan Q. P., Lucas J. V.,Klamer S. Robust fusion of irregularly sampled data using adaptive normalized convolution [J].EURASIP Journal on Applied Signal Processing, 2006,2006(10):236-247.
    [171]Malgouyres F. Minimizing the total variation under a general convex constraint for image restoration [J].IEEE Trans Image Process.2002, 11(12):1450-1456.
    [172]Capel D., Zisserman A. Super-resolution enhancement of text image sequences[C]. In:Proceedings of 15th International Conference on Pattern Recognition. Washington DC:IEEE Computer Society,2000,600-605.
    [173]Tony C., Antonio M., Pep M.High-Order Total Variation-Based Image Restoration [J]. SIAM J. Sci. Comput.,2000,22(2):503-516.
    [174]Farsiu S., Robinson D., Elad M., Milanfar P.Fast and robust multi-frame super- resolution [J]. IEEE Trans. Image Process.2004,13(10):1327-1344.
    [175]Ng M.K., Shen H.F., Lam E.Y., Zhang L.P. A total variation regularization based super-resolution reconstruction algorithm for digital video [J]. EURASIP Journal on Applied Signal Processing,2007,2007(18):124-139.
    [176]Daubechies I., Defrise M., Mol C. D.An iterative thresholding algorithm for linear inverse problems with a sparsity constraints [J]. Communications on Pure and Applied Mathematics,2004,57(11):413-1457.
    [177]Bioucas-Dias J. M., Figueiredo M. A. T.A new TwIST:two-step iterative shrinkage /thresholding algorithms for image restoration [J].IEEE Trans, on Image Proc.,2007, 16(12):2992-3004.
    [178]Yin W., Osher S., Goldfarb D., Darbon J.Bregman iterative algorithms for 11-minimization with applications to compressed sensing [J]. SIAM Journal on Imaging Sciences,2008,1(1):143-168.
    [179]Combettes P. L. Solving monotone inclusions via compositions of nonexpansive averaged operators [J].Optimization,2004,53(5-6):475-504.
    [180]Elad M., Yacov H. A fast super-resolution algorithm for pure translational motion and common space-invariant blur [J]. IEEE Transactions on Image Processing,2001, 10(8):1187-1193.
    [181]Combettes P. L., Pesquet J. C. Sparse signal recovery by iterative proximal thresholding[C]. Proceedings of the 15th European Signal Processing Conference, Poznan, Poland,2007,1726-1730.
    [182]Cai J. F., Osher S., Shen Z. Linearized bregman iterations for compressed sensing [J]. Mathematics of computation,2009,78(267):1515-1536.
    [183]Cai J.-F., Osher S., Shen Z. Convergence of the linearized bregman iteration for 11-norm minimization[J].Mathematics of computation,2009,78 (268):2127-2136.
    [184]Cai J. F., Osher S., Shen Z. Linearized bregman iterations for frame-based image deblurring[J].SIAM Journal on Imaging Sciences,2009,2(1):226-252.
    [185]Donoho D. L.De-noising by soft-thresholding [J].IEEE Trans. Inform. Theory,1995, 41(3):613-627.
    [186]Rank K., Lendl M., Unbehauen R.Estimation of image noise variance[C].Proc. IEE Vision Image Signal Process.,1999,146(2):80-84.
    [187]Immwekaer J. Fast noise variance estimation [J].Computer Vision and Image Understanding,1996,64(2):300-302.
    [188]Medhi D., Ha C. D.Generalized proximal point algorithm for convex optimization [J]. Journal of Optimization Theory and Applications,1996,88(2):475-488.
    [189]Vandergheynst P., Gobbers J. F.Directional dyadic wavelet transforms:Design and algorithms [J]. IEEE Trans. Im. Proc.,200211(4):363-372.
    [190]Demanet L., Ying L.Wave atoms and sparsity of oscillatory patterns [J].Appl. Comput. Harmon. Anal.,2007,23(3):368-387.
    [191]Demanet L., Ying L.Curvelets and Wave Atoms for Mirror-Extended Images[C]. Proc. SPIE Wavelets XII conf, San Diego,2007,6701:67010J.
    [192]Demanet L.Curvelets, wave atoms and wave equations [D].California:California Institute of Technology,2006.
    [193]Peyre G.Texture synthesis with grouplets [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(4):733-746.
    [194]Mallat S.Geometrical grouplets [J].Applied and Computational Harmonic Analysis, 2009,26(2):161-180.
    [195]Lee T. S. Image representation using 2D gabor wavelets [J].IEEE Transactions On Pattern Analysis And Machine Intelligence,1996,18(10):1-13.
    [196]Peyre G., Mallat S. Orthogonal bandlet bases for geometric images approximation [J].Communications on Pure and Applied Mathematics,2008,61(9):1173-1212.
    [197]Mallat S., Peyre GA Review of Bandlet Methods for Geometrical Image representation [J].Numerical Algorithms,2007,44(3):205-234.
    [198]Candes E. J., Donoho D. L.New Tight Frames of Curvelets and Optimal Representations of Objects with piecewise C2 Singularities [J]. Communications on Pure and Applied Mathematics,2003,57(2):219-266.
    [199]Candes E. J., Demanet L., Donoho D. L. Fast Discrete Curvelet Transforms [J]. Multiscale Model. Simul.,2006,5(3):861-899.
    [200]Ng M. K., Bose N. K. Mathematical analysis of super-resolution methodology [J]. IEEE Signal Processing Magazine,2003,20(3):62-74.
    [201]Tsaig Y., Donoho D. Extensions of compressed sensing [J].Signal processing,2006, 86(3):533-548.
    [202]Cand'es E., Romberg J., Tao T.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information [J]. IEEE Trans. Inform. Theory,2006,52(2):489-509.
    [203]Baraniuk R.Compressive sensing[J]. IEEE Signal Processing Magazine,2007,24(4): 118-121.
    [204]Candes E., Romberg J., Tao T. Stable signal recovery from incomplete and inaccurate measurements [J]. Communications on Pure and Applied Mathematics, 2006,59(8):1207-1223.
    [205]Rauhut H., Karin S., Vandergheynst P.Compressed sensing and redundant dictionaries [J]. IEEE Trans. on Information Theory,2008,54(5):2210-2219.
    [206]Bregman L. The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex optimization [J]. Computational Mathematics and Mathematical Physics,1967,7:200-217.
    [207]Chang T.C., He L., Fang T. MR image reconstruction from sparse radial samples using Bregman iteration[C]. Proceedings of the 13th Annual Meeting of Int Soc Mag Reson Med,2006,14:696.
    [208]Yin W., Osher S., et al. Bregman iterative algorithms for 11-minimization with applications to compressed sensing [J].Siam J. Imaging Science,2008,1(1):142-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700