用户名: 密码: 验证码:
霉酚酸对骨髓干细胞作用及霉酚酸作用靶点的基因多态性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
霉酚酸(MPA)是霉酚酸酯(MMF)在体内代谢后的活性成分,其作用靶点是次黄嘌呤核苷酸脱氢酶(IMPDH),通过特异性抑制IMPDH,可以耗竭细胞内鸟嘌呤核苷酸和脱氧鸟嘌呤核苷酸,进而阻断DNA和RNA的合成。淋巴细胞高度依赖嘌呤从头合成途径,所以对MPA作用非常敏感。MMF做为一种强效安全的免疫抑制剂,目前广泛应用于实体脏器移植和异基因造血干细胞移植。在异基因造血干细胞移植中,MMF广泛用于预防排斥反应和急性移植物抗宿主病,也用于治疗移植物抗宿主病。而在异基因造血干细胞移植中,骨髓中的两种干细胞-造血干细胞和间充质干细胞起着极其重要的作用。造血干细胞是异基因造血干细胞移植中重建造血和免疫的种子细胞,而间充质干细胞不仅是造血微环境的重要组成细胞,而且是近年来异基因造血干细胞移植领域的研究热点之一。研究表明间充质干细胞共移植可以促进造血植入、降低移植物抗宿主病的发生,而且间充质干细胞还用于治疗激素耐药重度急性GVHD,Ⅱ期临床研究显示了良好的应用前景。MMF对这两种骨髓干细胞有什么作用?MMF应用的一个明显的不良反应是血液系统毒性,是不是与MMF对造血干细胞的作用有关?目前的相关研究还不能解释该问题。本研究旨在研究MPA对间充质干细胞和造血干细胞的作用,并探索其作用的机制,为临床更好应用MMF提供实验依据。MPA的作用靶点是IMPDH酶,IMPDH酶有两种亚型:IMPDH I和IMPDH II, IMPDH I组成性表达于所有细胞,而IMPDH II表达于部分细胞,与细胞的增殖和恶性转化有关。IMPDH I在胞内嘌呤合成中起主要作用,也是MPA作用的主要靶点。IMPDH I单核苷酸多态性(SNP)近来引起研究的关注,Wang等报道在肾脏移植中患者IMPDH I基因单核苷酸多态性与肾脏排斥反应相关。IMPDH I单核苷酸多态性会不会影响MPA在异基因造血干细胞移植中的作用?我们选择了IMPDH I基因在肾脏移植中与急性移植物失功相关的单核苷酸突变位点和在中国人群中突变发生率在20%以上的共4个单核苷酸突变位点,收集本骨髓移植中心自2001年至2009年移植供受者的基因组DNA,检测供受者IMPDH I基因单核苷酸多态性的分布频率,并分析其与异基因造血干细胞移植急性移植物抗宿主病的发生风险的关系。第一章霉酚酸对人骨髓来源的间充质干细胞作用研究
     本部分研究首先采用CCK-8方法分析霉酚酸对人骨髓来源的MSCs增殖的影响。结果显示:浓度1μmol/L的MPA对间充质干细胞具有生长抑制作用,且其抑制作用呈现时间浓度依赖效应。为研究MPA抑制MSCs增殖的机制,我们在培养体系内添加鸟嘌呤核苷(Guo, 100μmol/L),结果显示鸟嘌呤核苷逆转了MPA的抑制增殖作用,加Guo组与相应浓度的MPA组相比差别有统计学意义(P<0.05)。同时我们用Annexin V流式细胞分析技术检测MPA各浓度组的凋亡情况,在作用的48小时和7天时间,10μmol/L和100μmol/L MPA浓度组的凋亡情况与相应对照组相仿(P>0.05),表明MPA不诱导MSCs细胞凋亡。接下来我们用CCK-8方法检测T-淋巴细胞、成纤维细胞和MSCs对MPA作用的敏感性,结果显示在作用的第6天上述各组细胞的IC50分别为0.20μmol/L、1.54μmol/L和2.47μmol/L。为了揭示MSCs、成纤维细胞对MPA作用敏感的原因,我们用RT-PCR方法分析这两种细胞IMPDH I和IMPDH II的表达情况,结果显示这两种细胞均表达IMPDH I和IMPDHⅡ.
     接下来我们研究MPA对MSCs成骨分化、成脂分化和成软骨分化的影响。Von kossa染色和钙定量显示MPA抑制MSCs的成骨分化real-time PCR方法定量分析Osteopontin和BMP-2的表达,二者表达也呈剂量依赖性降低。添加鸟嘌呤核苷(100μmol/L)则逆转了MPA对MSCs成骨分化的抑制。为进一步研究MPA抑制MSCs成骨分化的具体机制,我们用real-time PCR方法定量检测Runx2、Osterix和ATF4,结果显示Runx2、Osterix在诱导7天和14天表达均降低,western-blot证实二者蛋白表达降低,添加Guo后表达得到恢复。MPA对MSCs成脂分化没有影响,油红O染色显示MPA各浓度组成脂出现,脂滴定量显示MPA各浓度组与对照组差别无统计意义(P>0.05), real-time PCR检测adipophilin和leptin显示,MPA作用下二者表达与对照组没有差别(P>0.05)。蕃红O染色和real-time PCR方法定量检测aggrecan和collagenⅡ显示MPA对MSCs成软骨分化没有影响。
     第二章霉酚酸对人造血干祖细胞作用研究
     集落形成细胞(colony-forming cell, CFC)是评估造血细胞功能的实验室金标准,是用来检测造血干祖细胞增殖分化的功能指标。本部分研究首先探讨MPA对造血干祖细胞集落形成的影响。在MPA浓度0.1-5μmol/L浓度范围内,MPA对集落细胞总数、红细胞集落形成单位数目(CFU-E)、爆式红细胞集落形成单位数目(BFU-E)、粒细胞-巨噬细胞形成单位数目(CFU-GM)均无影响,在10μmol/L时上述细胞集落总数和各系集落数目开始降低(P<0.05),50和100μmol/L时几乎消失;粒细胞-红细胞-巨噬细胞-巨核细胞集落形成单位数目(CFU-GEMM)则从5μmol/L时开始减少(P<0.05),50和5μmol/L时消失。在MPA各浓度组添加鸟嘌呤核苷(200μmol/L),集落细胞总数、CFU-E、BFU-E和CFU-GM数目均得到恢复(P<0.05);对CFU-GEMM来说,10μmol/L组添加Guo组得到恢复,而50和100μmol/L组添加Guo未得到恢复,这可能与CFU-GEMM在诱导体系中数目较少有关。这说明Guo可以逆转MPA对造血干细胞集落形成的抑制。为进一步检测MPA对造血干祖细胞的作用,采用7-AAD/Annexin V、CD34染色,流式细胞术检测CD34+细胞细胞的凋亡情况。培养48小时后,10μmol/L组和100μmol/L组CD34+细胞中凋亡细胞的百分数分别为5.26±0.95和3.58±0.93,与对照祖4.78±1.46%相仿(P>0.05);培养96小时后,10μmol/L组和1O0μmol/L组CD34+细胞中凋亡细胞分别为15.44±1.81和16.01±2.73,与对照祖13.77±3相仿(P>0.05)。说明MPA不能引起CD34+细胞发生凋亡。第三章Ⅰ型次黄嘌呤核苷酸脱氢酶的基因多态性在异基因造血干细胞移植急性移植物抗宿主病中的作用研究
     目前MMF在异基因造血干细胞移植中广泛应用于预防和治疗aGVHD,而研究已证实个体间IMPDH的活性存在存在较大差异,因此我们设想IMPDH I基因的单核苷酸多态性(single nucleotide polymorphism, SNP)可能影响IMPDH的活性,导致个体间MMF作用的差异,可能与GVHD的发生风险相关。我们选择本移植中心自2001年1月至2009年3月连续接受异基因造血干细胞移植的患者及其供者,共240对。其中包括接受无关供者移植(URD)的患者及其供者138对,接受HLA全相合同胞供者移植(Sib)的患者及其供者102对。留取供者和患者移植前外周血样,提取基因组DNA,我们选择检测文献报道IMPDH I基因在肾脏移植中与急性移植物失功相关的SNP位点和在中国人群中突变发生率在20%以上的共4个SNP位点:内含子7(IVS7)+125 G>A(rs2278293);内含子8(IVS8)-106 G>A(rs2278294);外显子15(Exon15) 1572 G>A (rs2228075)和5'侧翼序列C>T(rs714510),分析其与异基因造血干细胞移植急性移植物抗宿主病的关系。我们的结果证实患者在IMPDH I基因IVS8-106位点为G/G基因型的aGVHD的发生率明显高于基因型为A/A和G/A的患者,多因素分析亦证实患者在IMPDH I基因IVS8-106位点为G/G基因型是aGVHD发生的危险因素((RR=2.018,95%CI:1.354-3.009,P=0.001)。本研究未发现其他3个位点的基因多态性与aGVHD的发生风险相关,可能与本中心的GVHD的预防方案中,MMF使用的剂量远远低于器官移植中的剂量有关。
Mycophenolic acid (MPA) is the active metabolite of Mycophenolate mofetil (MMF), which depletes guanosine and deoxyguanosine nucleotides by inhibiting inosine monophosphate dehydrogenase (IMPDH), thus blocks DNA and RNA synthesis. Lymphocytes are highly dependent on de novo purine synthesis, therefore are very sensitive to MPA. MMF is currently widely used in solid organ transplantation as well as allogeneic hematopoietic stem cell transplantation (allo-HSCT), as a potent, safe immunosuppressive agent. In allo-HSCT, MMF is applied in the prophylaxis of rejection and acute graft-versus-host disease (acute GVHD), as well as the treatment of graft-versus-host disease after transplantation. Hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) are two kinds of stem cell in bone marrow, which are vital to allo-HSCT. HSCs are responsible for hematopoietic and immune reconstitution after allo-HSCT, where as MSCs are not only the important components of hematopoietic microenvironment, but also one of the research hotspots in allo-HSCT recent years. Research shows that co-transplantation of MSCs can promote engraftment, decrease the incidence of graft-versus-host disease. Further more, MSCs have a promising prospect in treatment of steroid-refractory severe acute GVHD in phase II clinical trails. What effect dose MMF have on these two kinds of bone marrow derived stem cells? One of the main side-effects of MMF is hematologic toxicity, is that relevant to the effect of MMF on these stem cells?There is no research to explain this at present.In this study, we will examine the effect of MMF on HSCs and MSCs, and explore the mechanism. There are two isoforms of IMPDH, IMPDH I is constructively expressed in all cell types, whereas IMPDH II is only expressed in particular cell types and is related to cell proliferation and malignant transformation. IMPDH I plays a major role in cellular purine synthesis, and is also the main target of MPA. The single nucleotide polymorphism (SNP) of IMPDH I has attracted attention recently. Wang et al. reported that rs2278293 and rs2278294 are relevant to the rejection of renal transplantation. Searching through NCBI, we found that there are 5 SNPs of IMPDH I whose mutation rate are more than 20%. To determine whether IMPDH I SNP influence the effect of MPA on allo-HSCT, we collected the bone marrow and clinical data of donors and recipients in our bone marrow transplantation center.
     PART ONE Effect of MPA on human bone marrow derived MSCs
     First, we examined the effect of MPA on the proliferation of human bone marrow derived MSCs by CCK-8 assay. We found that In the range of 1μM to 100μM, MPA caused a significant subdued proliferation rate of MSCs in a concentration-and time-dependent manner. To study the mechanism of the inhibitory effect of MPA on the proliferation of MSCs, we added guanosine (100μmol/L) to the culture, and found that the proliferation rate was restored (P<0.05). Meanwhile, we examined the apoptosis of MPA treated MSCs by Annexin V apoptosis assay.48h and 7d of incubation with MPA at the concentration of 10μM and 100μM showed no significant difference in apoptosis compare to control group (P>0.05), indicating that MPA did not induce apoptosis of MSCs. Then we compared the sensitivity of T-lymphocytes, fibroflasts, and MSCs to MPA by CCK-8 assay. After 6 days of incubation with MPA, the IC50 ofthese cells are 0.20μmol/L,1.54μmol/L, and 2.47μmol/L, respectively. To study why MSCs and fibroblasts are sensitive to MPA, we analyzed the mRNA expression of IMPDH I and IMPDH II by RT-PCR. The results showed that they both expressed IMPDH I and IMPDH II, and the expression is independent of cell cycle.
     Next, we studied the impact of MPA on the osteogenic, adipogenic as well as cartilage differentiation. Von Kossa stainnging and Ca2+ quantification showed that MPA inhibited the osteogenic differentiation of MSCs, and real-time PCR detected a dose dependent decrease in expression of Osteopontin and BMP-2. The addition of guanosine(100μmol/L) reversed the inhibition of MPA on the osteogenic differentiation of MSCs.To further reveal the exact mechanism of the inhibitory effect of MPA on the osteogenic differentiation of MSCs, we detected the expression of Runx2, Osterix and ATF4 by real-time PCR. Results showed that the expression of Runx2 and Osterix reduced on 7d and 14d after the induction, which could be restored by adding guanosine. The results were confirmed by western-blot. Oil Red O staining and Quantification of lipid contents showed that MPA had no effect on lipid production during adipogenic differentiation(P>0.05), and the expression of adipophilin and leiptin detected by real-time PCR showed no change between MPA group and control group(P>0.05), indicating that MPA did not affect the adipogenic differentiation of MSCs. Safranine O staining and real-time detection of aggrecan and aggrecan expression showed that MPA did not affect the cartilage differentiation of MSCs.
     PART TWO Effect of MPA on hematopoietic stem (progenitor) cells
     Colony-forming cell (CFC) is an indicator used to determine the proliferation and differentiation of hematopoietic stem (progenitor) cells, thus performs as the golden criterion for the evaluation of the function of hematopoietic cells in laboratory. In this part, we first investigated the effect of MPA on the colony-forming of hematopoietic stem (progenitor) cells. At the concentration of 0.1-5μmol/L, MPA did not affect the total number of colony cells, and the number of colony forming unit-erythroid (CFU-E), burst forming unit-erythrocyte (BFU-E), and colony forming unit-granulocyte and macrophage (CFU-GM), which started to drop at the concentration of 1Oμmol/L (P<0.05), and almost disappeared at the concentration of 50 and 100μmol/L. The number of colony forming unit-granulocyte, erythroid, macrophage and megakaryocyte(CFU-GEMM) began to decrease at the concentration of 5μmol/L (P<0.05), disappeared at the concentration of 50 and 100μmol/L. Adding guanosine (200μmol/L) to MPA treated cells restored the number of total colony-forming cells as well as CFU-E, BFU-E, CFU-GM (P<0.05).Regard to the number of CFU-GEMM, it could be restored by adding guanosine to 10μmol/L MPA group, but not to 50 and 100μmol/L group, which may due to the small number of CFU-GEMM in inducing system. These results indicated that guanosine was able to reverse the inhibitory effect of MPA on colony forming of hematopoeitic stem cells. To further examine the effect of MPA on hematopoietic stem (progenitor) cells, we used 7-ADD/Annexin V, CD34 staining flow cytometry method to detect the apoptosis of CD34+ cells treated by MPA. After incubation with 10μmol/L and 100μmol/L MPA for 48h, the percentage of apoptosis cells in CD34+ cells were 5.26±0.95% and 3.58±0.93%, respectively, similar to control group 4.78±1.46%(P>0.05). After incubation with 10μmol/L and 100μmol/L MPA for 96h, the percentage of apoptosis cells in CD34+ cells were 15.44±1.81% and 16.01±2.73%, respectively, similar to control group 13.77±3%(P>0.05), indicating that MPA did not induce apoptosis in CD34+ cells.
     Part three The association of the polymorphisms of IMPDH I gene and acute graft-versus-host disease after related and unrelated hematopoietic stem cell transplantation
     MMF has been widely used in the prophylaxis and treatment of aGVHD in allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, there is no regular monitoring drug concentration of MMF. Considerable variablity in MPA pharmacokinetics has been observed in transplant patients. The considerable variability in baseline IMPDH I activity and MPA response may logically be under the control of genetic variation within the IMPDH I gene or in gene expression. Analysis of genetic variants could provide the explantation for the variability of IMPDH I activity and MMF response in transplant patients. The entire study population consisted of 240 pairs of transplant recipients and their donors who were transplanted from 2001 to 2009 in our Bone Marrow Transplantation Unit, which consisted of 138 pairs of recipients and their unrelated donors and 102 pairs of recipients and their HLA-identical sibling donors. DNA was extracted from peripheral blood using DNA Isolation Kit following the recommendation of the manufacturer. Four Single-nucleotide polymorphisms (SNPs) of IVS7+125 G>A (rs2278293), IVS8-106
     G>A (rs2278294), Exon15 1572 G>A(rs2228075)和5' flanking region C>T (rs714510) in IMPDH I gene were analyzed by Multiplex SnaPshot; Our results showed that in both the unrelated transplantation cohort and the sibling transplantation cohort, the IMPDHⅠIVS8-106 G/G genotypes in recipients were significantly associated with a higher incidence of aGVHD. In the combined cohort, multivariate analysis confirmed that recipients with the IVS8-106 G/G genotype also had a higher risk of aGVHD(RR=2.018,95%CI:1.354-3.009, P=0.001). There was no significant association between IVS7+125, Exon15 1572 and 5'flanking region and the risk of aGVHD, which may because the relatively small dosage of MMF in HSCT in comparision to the dosage in solid organ transplantation,
引文
1. Allison, A.C. and E.M. Eugui, Mechanisms of action of mycophenolate mofetil inpreventing acute and chronic allograft rejection. Transplantation,2005.80(2 Suppl):p. S181-90.
    2. Lagaraine C, Hoarau C, Chabot V, Velge-Roussel F, Lebranchu Y. Mycophenolic acid-treated human dendritic cells have a mature migratory phenotype and inhibit allogeneic responses via direct and indirect pathways. International immunology. 2005;17(4):351.
    3. Mehling A, Grabbe S, Voskort M, Schwarz T, Luger T, Beissert S. Mycophenolate mofetil impairs the maturation and function of murine dendritic cells. The Journal of Immunology.2000;165(5):2374.
    4. Waters RV, Webster D, Allison AC. Mycophenolic acid and some antioxidants induce differentiation of monocytic lineage cells and augment production of the IL-1 receptor antagonist. Ann N Y Acad Sci.1993 Nov 30;696:185-96.
    5. Cohn R, Mirkovich A, Dunlap B, Burton P, Chiu S, Eugui E, et al. Mycophenolic acid increases apoptosis, lysosomes and lipid droplets in human lymphoid and monocytic cell lines. Transplantation.1999;68(3):411.
    6. Raab M, Daxecker H, Karimi A, Markovic S, Cichna M, Markl P, et al. In vitro effects of mycophenolic acid on the nucleotide pool and on the expression of adhesion molecules of human umbilical vein endothelial cells. Clinica Chimica Acta.2001;310(1):89-98.
    7. Glomsda BA, Blaheta RA, Hailer NP. Inhibition of monocyte/endothelial cell interactions and monocyte adhesion molecule expression by the immunosuppressant mycophenolate mofetil. Spinal Cord.2003 Nov;41(11):610-9.
    8. Nadeau KC, Azuma H, Tilney NL. Sequential cytokine expression in renal allografts in rats immunosuppressed with maintenance cyclosporine or mycophenolate mofetil. Transplantation.1996 Nov 15;62(9):1363-6.
    9. Heemann U, Azuma H, Hamar P, Schmid C, Tilney N, Philipp T. Mycophenolate mofetil inhibits lymphocyte binding and the upregulation of adhesion molecules in acute rejection of rat kidney allografts. Transpl Immunol.1996 Mar;4(1):64-7.
    10. Villarroel, M.C., M. Hidalgo, and A. Jimeno, Mycophenolate mofetil:An update. Drugs Today (Barc),2009.45(7):p.521-32.
    11.黄河,林茂芳,孟海涛,钱文斌,金洁,黄健,罗依.霉酚酸酯联合CsA和短程MTX预防非亲缘异基因骨髓移植的急性GVHD.中华血液学杂志,2001;22(2):76-8.
    12. Luo Y, Lai XY, Tan YM, et al. Reduced-intensity allogeneic transplantation combined with imatinib mesylate for chronic myeloid leukemia in first chronic phase. Leukemia.2009 Jun; 23(6):1171-4.
    13. Le Blanc, K., et al., Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease:a phase Ⅱ study. Lancet,2008.371(9624):p. 1579-86.
    14. Nagai, M., Y. Natsumeda, and G. Weber, Proliferation-linked regulation of Ⅱ IMP dehydrogenase gene in human normal lymphocytes and HL-60 leukemic cells. Cancer research,1992.52(2):p.258
    15. Nagai, M., et al., Selective up-regulation of type Ⅱ inosine 5'-monophosphate dehydrogenase messenger RNA expression in human leukemias. Cancer Research, 1991.51(15):p.3886-3890.
    16. Konno Y, Natsumeda Y, Nagai M, Yamaji Y, Ohno S, Suzuki K, Weber G. Expression of human IMP dehydrogenase types I and II in Escherichia coli and distribution in human normal lymphocytes andleukemic cell lines. J Biol Chem 1991;266(1):506-509.
    17. Shu, Q. and V. Nair, Inosine monophosphate dehydrogenase (IMPDH) as a target in drug discovery. Med Res Rev,2008.28(2):p.219-32.
    18. Wang J, Yang JW, Zeevi A, Webber SA, Girnita DM, Selby R, Fu J, Shah T, Pravica V, Hutchinson IV et al:IMPDH1 gene polymorphisms and association with acute rejection in renal transplant patients. Clin Pharmacol Ther 2008, 83(5):711-717.
    19. Morath C, Reuter H, Simon V, Krautkramer E, Muranyi W, Schwenger V, Goulimari P, Grosse R, Hahn M, Lichter P et al:Effects of mycophenolic acid on human fibroblast proliferation, migration and adhesion in vitro and in vivo. Am J Transplant 2008,8(9):1786-1797.
    20. Morath C, Schwenger V, Beimler J, Mehrabi A, Schmidt J, Zeier M, Muranyi W: Antifibrotic actions of mycophenolic acid. Clin Transplant 2006,20 Suppl 17:25-29.
    21. Huang Y, Liu Z, Huang H, Liu H, Li L:Effects of mycophenolic acid on endothelial cells. Int Immunopharmacol 2005,5(6):1029-1039.
    22. kebe N, Cheng X, Wu S, Bauer K, Goloubeva OG, Fenton RG, Heyman M, Rapoport AP, Badros A, Shaughnessy J et al:Phase I clinical trial of the inosine monophosphate dehydrogenase inhibitor mycophenolate mofetil (cellcept) in advanced multiple myeloma patients. Clin Cancer Res 2004,10(24):8301-8308
    23. Vegso G, Sebestyen A, Paku S, Barna G, Hajdu M, Toth M, Jaray J, Kopper L: Antiproliferative and apoptotic effects of mycophenolic acid in human B-cell non-Hodgkin lymphomas. Leukemia research 2007,31 (7):1003-1008.
    24. Jenke A, Renner U, Richte M, Freiberg-Richter J, Platzbecker U, Helwig A, et al. Pharmacokinetics of intravenous mycophenolate mofetil after allogeneic blood stem cell transplantation. Clin Transplant.2001 Jun; 15(3):176-84
    25. Nash RA, Johnston L, Parker P, McCune JS, Storer B, Slattery JT, et al. A phase Ⅰ/Ⅱ study of mycophenolate mofetil in combination with cyclosporine for prophylaxis of acute graft-versus-host disease after myeloablative conditioning and allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant.2005 Jul;11(7):495-505.
    26. Huang W, Yang S, Shao J, Li YP:Signaling and transcriptional regulation in osteoblast commitment and differentiation. Front Biosci 2007,12:3068-3092.
    27. Allison AC, Eugui EM:Mycophenolate mofetil and its mechanisms of action. Immunopharmacology 2000,47(2-3):85-118.Jacobson P, Rogosheske J, Barker JN, Green K, Ng J, Weisdorf D, Tan Y, Long J, Remmel R, Sawchuk R:Relationship of mycophenolic acid exposure to clinical outcome after hematopoietic cell transplantation&ast. Clinical Pharmacology & Therapeutics 2005,78(5):486-500.
    28. Mycophenolate:MD CONSULT.
    29. Buhler L, Kurilla-Mahon B, Chang Q, Abraham S, Alwayn IPJ, Appel Iii JZ, Newman D, Awwad M, White-Scharf ME, Sackstein R:Cryopreservation and mycophenolate therapy are detrimental to hematopoietic progenitor cells. Transplantation 2002,74(8):1159.
    30. Behrend M, Grinyo J, Vanrenterghem Y, et al. Mycophenolate mofetil in renal transplantation:3-year results from the placebo-controlled trial. European Mycophenolate Mofetil Cooperative Study Group. Transplantation 1999;68:391-6.
    31. Daniel Weisdorf. Introduction:20th Anniversary of the NMDP
    32. Wu T, Lu DP:Blood and marrow transplantation in the People's Republic of China. Bone marrow transplantation 2008,42:S73-S75.
    33. Gratwohl A, Brand R, Frassoni F, Rocha V, Niederwieser D, Reusser P, Einsele H, Cordonnier C:Cause of death after allogeneic haematopoietic stem cell transplantation (HSCT) in early leukaemias:an EBMT analysis of lethal infectious complications and changes over calendar time. Bone marrow transplantation 2005, 36(9):757-769.
    34. Ferrara JLM, Reddy P:Pathophysiology of graft-versus-host disease. In:2006: Elsevier; 2006:3-10.
    35. Ball LM, Egeler RM:Acute GvHD:pathogenesis and classification. Bone marrow transplantation 2008,41:S58-S64.
    36. Dickinson AM, Holler E:Polymorphisms of cytokine and innate immunity genes and GVHD. Best Practice & Research Clinical Haematology 2008.
    37. Glander P, Braun KP, Hambach P, Bauer S, Mai I, Roots I:Non-radioactive determination of inosine 50-monophosphate dehydrogenase (IMPDH) in peripheral mononuclear cells. Clin Biochem 2001,34:543-549.
    38. Glander P, Hambach P, Braun KP, Fritsche L, Giessing M, Mai I, Einecke G, Waiser J, Neumayer HH, Budde K:Pre-transplant inosine monophosphate dehydrogenase activity is associated with clinical outcome after renal transplantation. American Journal of Transplantation 2004,4(12):2045-2051.
    39. Futer O, Sintchak MD, Caron PR, Nimmesgern E, DeCenzo MT, Livingston DJ, Raybuck SA:A mutational analysis of the active site of human type II inosine 5'-monophosphate dehydrogenase. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 2002,1594(1):27-39.
    40. McPhillips CC, Hyle JW, Reines D:Detection of the mycophenolate-inhibited form of IMP dehydrogenase in vivo. Proceedings of the National Academy of Sciences of the United States of America 2004,101(33):12171.
    41. Bowne SJ, Sullivan LS, Blanton SH, Cepko CL, Blackshaw S, Birch DG, Hughbanks-Wheaton D, Heckenlively JR, Daiger SP:Mutations in the inosine monophosphate dehydrogenase 1 gene (IMPDH1) cause the RP10 form of autosomal dominant retinitis pigmentosa. Human molecular genetics 2002, 11(5):559.
    42. Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J, Thomas ED:1994 Consensus Conference on Acute GVHD Grading. Bone marrow transplantation 1995,15(6):825.
    43. Lin MT, Storer B, Martin PJ, Tseng LH, Gooley T, Chen PJ, Hansen JA:Relation of an interleukin-10 promoter polymorphism to graft-versus-host disease and survival after hematopoietic-cell transplantation. The New England journal of medicine 2003,349(23):2201.
    44. Tseng LH, Storer B, Petersdorf E, Lin MT, Chien JW, Grogan BM, Malkki M, Chen PJ, Zhao LP, Martin PJ:IL10 and IL10 receptor gene variation and outcomes after unrelated and related hematopoietic cell transplantation. Transplantation 2009, 87(5):704.
    45. Mlynarczewska A, Wysoczanska B, Karabon L, Bogunia-Kubik K, Lange A:Lack of IFN-gamma 2/2 homozygous genotype independently of recipient age and intensity of conditioning regimen influences the risk of aGVHD manifestation after HLA-matched sibling haematopoietic stem cell transplantation. Bone marrow transplantation 2004,34(4):339-344.
    46. Murphy N, Diviney M, Szer J, Bardy P, Grigg A, Hoyt R, King B, MacGregor L, Holdsworth R, McCluskey J:Donor methylenetetrahydrofolate reductase genotype is associated with graft-versus-host disease in hematopoietic stem cell transplant patients treated with methotrexate. Bone marrow transplantation 2006, 37(8):773-779.
    47. Robien K, Bigler J, Yasui Y, Potter JD, Martin P, Storb R, Ulrich CM: Methylenetetrahydrofolate reductase and thymidylate synthase genotypes and risk of acute graft-versus-host disease following hematopoietic cell transplantation for chronic myelogenous leukemia. Biology of Blood and Marrow Transplantation 2006,12(9):973-980.
    48. Mullighan CG, Bardy PG:New directions in the genomics of allogeneic hematopoietic stem cell transplantation. Biology of Blood and Marrow Transplantation 2007,13(2):127-144.
    49. Bornh user M, Schuller U, P rksen G, Naumann R, Geissler G, Thiede C, Schwerdtfeger R, Ehninger G, Thiede HM:Mycophenolate mofetil and cyclosporine as graft-versus-host disease prophylaxis after allogeneic blood stem cell transplantation. Transplantation 1999,67(4):499.
    50. Clin Transplant.2009;23:33-38.
    51. Socie G, Blazar BR:Acute graft-versus-host disease:from the bench to the bedside. Blood 2009,114(20):4327-4336.
    1. Allison AC, Eugui EM (1996) Purine metabolism and immunosuppressive effects of mycophenolate mofetil (MMF). ClinTransplant 10:77-84
    2. Allison, A.C. Mechanisms of action of mycophenolate mofetil. (2005) Lupus 14 (Suppl.1):s2-s8.
    3. Allison, AC. Mechanisms of action of mycophenolate mofetil in preventing chronic rejection. Transpl Proc 2002; 34:2863-2866.
    4. Allison AC, Eugui EM. Immunosuppressive and other effects of mycophenolic acid and an ester prodrug, mycophenolate mofetil. Immunol Rev 1993:136:5-28.
    5. Cohn RG, Mirkovich A, Dunlap B, et al. Mycophenolic acid increases apoptosis, lysosomes and lipid droplets in humanlymphoid and monocytic cell lines.
    6. Allison AC, Eugui EM. Mycophenolate mofetil and its mechansims of action. Immunopharmacology 2000; 47:85-118.
    7. Carr SF, Papp E, Wu JC, Natsumeda Y. Characterization of human type I and type II IMP dehydrogenases. J Biol Chem1993:268:27286-27290. Transplantation 1999:68:411-418.
    8. Natsumeda Y, Ohno S, Kawasaki H, Konno Y, Weber G,Suzuki K. Two distinct cDNAs for human IMP dehydrogenase.J Biol Chem 1990:265:5292-5295.
    9. Carr SF, Papp E, Wu JC, Natsumeda Y. Characterization ofhuman type I and type II IMP dehydrogenases. J Biol Chem 1993:268:27286-27290.
    10. Grailer A, Nichols J, Hullett D, Sollinger HW, Burlingham WJ.Inhibition of human B cell responses in vitro by RS-61443, cyclosporine A and FK506. Transplant Proc 1991;23:314-315.
    11. Colic M, Stojic-Vukanic Z, Pavlovic B, Jandric D, Stefanoska I. Mycophenolate mofetil inhibits differentiation, maturation and allostimulatory function of human monocyte-derived dendritic cells. Clin Exp Immunol 2003:134:63-69.
    12. Lagaraine C, Lebranchu Y. Effects of immunosuppressive drugs on dendritic cells and tolerance induction. Transplantation2003:75:37S-42S.
    13 Daniels MA, Hogquist KA, Jameson SC. Sweet'n'sour:the impact ofdifferential glycosylation on T-cell responses. Nature Immunol 2002:3:903-910.
    14. Chan OT, Hannum LG, Haberman AM et al. A novel mouse with B-cells but lacking serum antibody reveals an antibody-independentrole for B-cells in murine lupus. J Exp Med 1999:189:1639-1648.
    15. Arbuckle MR, McClain MT, Rubestone MV et al. Development of autoantibodies before the onset of systemic lupus erythematosus. N Eng J Med 2003; 349: 1526-1533.
    16. Looney RJ, Anolik J, Sanz I. B-cells as therapeutic targets for rheumatic diseases. Clin Opin Rheumatol 2004; 16:180-185.
    17. Villadsen LS, Schurman J, Blierskens F et al. Resolution of psoriasis upon blockade of IL-15 biological activity in a xenograft mouse model. J Clin Invest 2003; 112: 1571-1580.
    18. Theruvath TP, Saidman SL, Mauiyyedi S et al. Control of anti donor antibody production with tacrolimus and mycophenolate mofetil in renal allograft recipients with chronic rejection. Transplantation 2001;72:77-83.
    19. Blaheta RA, Leckel K, Wittig B, et al. Mycophenolate mofetil impairs
    transendothelial migration of allogeneic CD4 and CD8 T cells. Transplant Proc 1999:31: 1250-1252.
    20. Blaheta RA, Leckel K, Wittig B et al. Mycophenolate mofetil impairs transendothelial migration of allogenic CD4 and CD8 T-cells.Transplant Proc 1999; 31:1250-1252.
    21. Allison AC, Kowalski WJ, Muller CJ et al. Mycophenolic acid and brequinar, inhibitors of purine and pyrimidine synthesis, block the glycosylation of adhesion molecules. Transplant Proc 1993; 25(Suppl.2):67-70.
    22. Laurent AF, Dumont S, Poindron P, Muller CD. Mycophenolic acidsuppresses protein N-linked glycosylation in human monocytes and theiradhesion to endothelial cells and some substrates. Exp Hematol 1996;24:59-67.
    23. Nagy SE, Andersson JP, Andersson UG.Effect of mycophenolate mofetil (RS-61443) on cytokine production:inhibition of superantigen-induced cytokines.
    Immunopharmacology.1993;26(1):11-20.
    24. Lee J, Kim MS, Kim EY, Park HJ, Chang CY, Park KS, Jung DY, Kwon CH, Joh JW, Kim SJ.Mycophenolate mofetil promotes down-regulation of expanded B cells and production of TNF-alpha in an experimental murine model of colitis. Cytokine. 2008;44(1):49-56.
    25. Daniel V, Naujokat C, Sadeghi M, Wiesel M, Hergesell O, Opelz G.Association of circulating interleukin (IL)-12-and IL-10-producing dendritic cells with time posttransplant, dose of immunosuppression, and plasma cytokines in renal-transplant recipients.Transplantation.2005 Jun 15;79(11):1498-506
    26. Paczesny S, Choi SW, Ferrara JL.Acute graft-versus-host disease:new treatment strategies.Curr Opin Hematol.2009 16(6):427-36.
    27.Ringden O, Karlsson H, Olsson R, Omazic B, Uhlin M.The allogeneic graft-versus-cancer effect. Br J Haematol.2009 Dec;147(5):614-33. Epub 2009 Sep
    28.Socie G, Blazar BR.Acute graft-versus-host disease:from the bench to the bedside.Blood.2009 Nov 12;114(20):4327-36.
    29. Pathophysiology and management of graft-versus-host disease in the era of reduced-intensity conditioning.Curr Opin Oncol.2009 Jun;21 Suppl 1:S39-41.
    30. Pidala J, Anasetti C, Jim H.Quality of life after allogeneic hematopoietic cell transplantation. Blood.2009 Jul 2;114(1):7-19.
    31. Lazarus HM, Vogelsang GB, Rowe JM (1997) Prevention and treatment of acute graft-versus-host disease:the old and the new. A report from the Eastern Cooperative Oncology Group(ECOG). Bone Marrow Transplant 19:577-600
    32. Deeg HJ (1994) Prophylaxis and treatment of acute graftversus-host disease:current state, implications of new immunopharmacologic compounds and future strategies to prevent and treat acute GVHD in high-risk patients. Bone Marrow Transplant 14(Suppl 4):S56-S60
    33. Byrne JL, Stainer C, Hyde H et al. Low incidence of acute graft-versus-host disease and recurrent leukaemia in patients undergoing allogeneic haemopoietic stem cell transplantation from sibling donors with methotrexate and dose-monitored cyclosporin A prophylaxis. Bone Marrow Transplant 1998;22:541-545.
    34. Storb R,Yu C,Wagner JL, et al. Stable mixed hematopoietic chimerism in DLA-identical littermate dogs given sublethal total body irradiation before and pharmacological immunosuppression after marrow transplantation.BLOOD 1997; 89:3048-3054.
    35. Yu C, Seidel K, Nash RA, et al.Synergism between mycophenolate mofetil and cyclosporine in preventing graft-versus-host disease among lethally irradiated dogs given DLA-nonidentical unrelated marrow grafts. BLOOD 1998; 91:2581-2587.
    36.黄河,郑伟燕,林茂芳,傅剑云,章荣华.霉酚酸酯对小鼠异基因骨髓移植后急性移植物抗宿主病的预防作用 中华血液学杂志 2002 23:191
    37. McSweeney PA, Niederwieser D, Shizuru JA, Sandmaier BM, Molina AJ, Maloney DG et al. Hematopoietic cell transplantation in older patients with hematologic malignancies:replacing high-dose cytotoxic therapy with graft-versus-tumor effects. Blood 2001; 97:3390-3400.
    38.Mielcarek M, Martin PJ, Leisenring W, Flowers M, Maloney D, Sandmaier B et al. Graft-versus-host disease after nonmyeloablative versus conventional hematopoietic stem cell transplantation. Blood 2003; 102:756-762.
    39. Cutler C, Li S, Kim HT, Laglenne P, Szeto K, Hoffmeister Let al. Mucositis after allogeneic hematopoietic stem cell transplantation:a cohort study of methotrexate-and nonmethotrexate-containing graft-versus-host disease prophylaxis regimens. Biol Blood Marrow Transplant 2005; 11:383-388.
    40. Ho VT, Weller E, Lee SJ, Edwin P, Alyea E, Antin JH, Soiffer R et al. Prognostic factors for early severe pulmonary complications after hematopoietic stem cell transplantation.Biol Blood and Marrow Transplant 2001; 7:223-229.
    41. Pinana JL, Valca rcel D, Martino R, Barba P, Moreno E,Sureda A et al. Study of kidney function impairment after reduced intensity conditioning allogeneic hematopoietic stem cell transplantation A single centre experience. Biol Blood Marrow Transplant 2009; 15:21-29.
    42. Bornhauser M, Schuller U, Po" rksen G, Geissler G, Thiede C, Schwerdtfeger R et al. Mycophenolate mofetil and cyclosporine as graft-versus-host disease prophylaxis after allogeneic blood stem cell transplantation. Transplantation 1999; 67:499.
    43.Pinanal JL, Valcarcel D, Fernandez-Aviles F, et al. MTX or mycophenolate mofetil with CsA as GVHD prophylaxis after reduced-intensity conditioning PBSCT from HLA-identical siblings. (2010),1-8
    44. Neumann F, Graef T, Tapprich C, Vaupel M, Steidl U,Germing U et al. Cyclosporine A and mycophenolate mofetilvs cyclosporine A and methotrexate for graft-versus-hostdisease prophylaxis after stem cell transplantation from HLA-identical siblings. Bone Marrow Transplant 2005; 35:1089-1093.
    45. Bolwell B, Sobecks R, Pohlman B, Andresen S, Rybicki L, Kuczkowski E et al. A prospective randomized trial comparing cyclosporine and short course methotrexate with cyclosporine and mycophenolate mofetil for GVHD prophylaxis in myeloablative allogeneic bone marrow transplantation. BoneMarrow Transplant 2004; 34:621-625.
    46. Kasper C, Sayer HG, Mugge LO, Schilling K, Scholl S, et al. Combined standard graft-versus-host disease (GvHD) prophylaxis with mycophenolate mofetil (MMF) in allogeneic peripheral blood stem cell transplantation from unrelated donors. Bone Marrow Transplantation (2004) 33,65-69
    47.黄河,林茂芳,孟海涛,钱文斌,金洁,黄健,罗依.霉酚酸酯联合CsA和短程MTX预防非亲缘异基因骨髓移植的急性GVHD.中华血液学杂志(2002)22,76-78.
    48. Lai Y, Ma J, Schwarzenberger P, Li W, Cai Z,et al. Combination of CsA, MTX and low-dose, short-course mycophenolate mofetil for GVHD prophylaxis. Bone Marrow Transplantation (2009) 43,61-67
    49.章卫平,王健民,居小萍,等.异基因外周血干细胞移植治疗白血病中移植物抗宿主病的研究.中华血液学杂志,(2003)24(3):129-130.
    50. Ferrara JL, Levine JE, Reddy P, Holler E. Graft-versus-host disease. Lancet.2009 May 2;373(9674):1550-61. Epub 2009 Mar 11.
    51.Landfried K, Wolff D, Holler E. Pharmaceutical and cellular strategies in prophylaxis and treatment of graft-versus-host disease.2009; 15(17):1974-97.
    52. Basara N, Kiehl MG, Blau W et al. Mycophenolate mofetil in the treatment of acute and chronic GVHD in hematopoietic stem cell transplant patients:four years of experience. Transplantation Proceedings 2001; 33(3):2121-2123.
    53. Basara N, Blau WI, Kiehl E et al. Efficacy and safety of mycophenolate mofetil for the treatment of acute and chronic GVHD in bone marrow transplant recipients. Transplant Proc 1998; 30:4087-4089.
    54.Baudard M, Vincent A, Moreau P et al. Mycophenolate mofetil for the treatment of acute and chronic GVHD is effective and well tolerated but induces a high risk of infectious complications:a series of 21BM or PBSC transplant patients. Bone Marrow Transplantation 2002; 30:287-295.
    55. Takami A, Mochizuki K, Okumura H et al. Mycophenolate mofetil is effective and well tolerated in the treatment of refractory acute and chronic graft-versus-host disease. International Journal of Hematology 2006; 83(1):80-85.
    56. Lopez F, Parker P, Nademanee A et al. Efficacy of mycophenolate mofetil in the treatment of chronicgraft-versus-host disease. Biology of Blood and Marrow Transplantation 2005; 11:307-313.
    57. Busca A, Saroglia EM, Lanino E et al. Mycophenolate mofetil (MMF) as therapy for refractory chronicGVHD (cGVHD) in children receiving bone marrow transplantation. Bone Marrow Transplantation 2000; 25:1067-1071.
    58. Krejci M, Doubek M, Buchler T et al. Mycophenolate mofetil for the treatment of acute and chronicsteroid-refractory graft-versus-host disease. Annals of Hematology 2005;84:681-685.
    59. Kim JG, Sohn SK, Kim DH et al. Different efficacy of mycophenolate mofetil as salvage treatment foracute and chronic GVHD after allogeneic stem cell transplant. European Journal of Haematology 2004; 73:56-61.
    60. Mookerjee B, Altomonte V, Vogelsang G. Salvage therapy for refractory chronic graft-versus-hostdisease with mycophenolate mofetil and tacrolimus. Bone Marrow Transplantation 1999; 24:517-520.
    61. Lin MT, Storer B, Martin PJ, et al. Relation of an interleukin-10 promoter polymorphism to graft-versus-host disease and survival after hematopoietic-cell transplantation. N Engl J Med 2003; 349:2201-2210.
    62. Tseng LH, Storer B, Petersdorf E, Lin MT, Chien JW, Grogan BM, et al. IL10 and IL10 receptor gene variation and outcomes after unrelated and related hematopoietic cell transplantation. Transplantation 2009; 87:704-710.
    63. Mlynarczewska A, Wysoczanska B, Karabon L, Bogunia-Kubik K, Lange A. Lack of IFN-gamma 2/2 homozygous genotype independently of recipient age and intensity of conditioning regimen influences the risk of aGVHD manifestation after HLA-matched sibling haematopoietic stem cell transplantation. Bone Marrow Transplant 2004; 34:339-344.
    64. Murphy N, Diviney M, Szer J, et al. Donor methylenetetra-hydrofolate reductase genotype is associated with graft-versus-host disease in hematopoietic stem cell transplant patients treated with methotrexate. Bone Marrow Transplant 2006;37:773-779.
    65. Robien K, Bigler J, Yasui Y, et al. Methylenetetrahydrofolate reductase and thymidylate synthase genotypes and risk of acute graft-versus-host disease following hematopoietic cell transplantation for chronic myelogenous leukemia. Biol Blood Marrow Transplant 2006; 12:973-980.
    66. Glander, P. et al. Non-radioactive determination of inosine 50-monophosphate dehydro-genase (IMPDH) in peripheral mononuclear cells. Clin. Biochem 2001;34:543-549.
    67. Glander, P. et al. Pre-transplant inosine monophosphate dehydrogenase activity is associated with clinical outcome after renal transplantation. Am. J. Transplant 2004;4:2045-2051.
    68. Futer, O. et al. A mutational analysis of the active site of human type II inosine 50-monophosphate dehydrogenase. Biochim. Biophys. Acta 2002; 1594:27-39.
    69. McPhillips C.C., Hyle J.W., Reines D. Detection of the mycophenolate-inhibited form of IMP dehydrogenase in vivo. Proc. Natl. Acad. Sci. USA 2004;101:12171-12176.
    70. Bowne, S.J. et al. Mutations in the inosine monophosphate dehydrogenase 1 gene (IMPDH 1) cause the RP10 form of autosomal dominant retinitis pigmentosa. Hum. Mol. Genet 2002; 11:559-568.
    71. Bowne, S.J. et al. Why do mutations in the ubiquitously expressed housekeeping gene IMPDH 1 cause retina-specific photoreceptor degeneration? Invest. Ophthalmol. Vis. Sci.2006;47:3754-3765.
    72. Wang J, Yang JW, Zeevi A, et al. IMPDH1 gene polymorphisms and association with acute rejection in renal transplant patients. Clinical Pharmacology and Therapeutics 2008;83:711-717.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700