用户名: 密码: 验证码:
无线传感器网络Anchor-Independent定位算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络涉及现代传感器、微电子、无线通信、嵌入式计算、分布式信息处理等多个学科领域,以数据为中心,具有自组织、自调节特点,是构建普适计算新环境、实现普适控制的新兴交叉研究领域,可广泛用于军事、工农业、医疗保健、空间探索及其他各种商业应用。节点位置信息对于无线传感器网络至关重要,不仅是监测应用进一步采取措施和做出决策的基础,而且还是目标跟踪、辅助路由、网络管理等其他关键技术研究/实现的基础。
     本文面向控制学科的前沿研究方向——无线传感器网络所涉及的理论与技术,针对传统典型的Anchor-Dependent定位技术定位精度受锚节点密度影响、在危险/恶劣环境中存在应用局限性等特点,基于几何方法、重复优化技术、图论、粒子群优化等计算方法,从相对定位与基于移动锚节点定位两方面开展Anchor-Independent定位算法与应用技术研究。作为一项具有创新性意义的工作,论文在研究方法与思路上力求有所突破,主要研究成果包括如下四个方面:
     ①基于OK分簇算法,提出了面向相对定位的K跳分簇算法(EOK)。在相对定位算法中,对网络分簇是降低测距累积误差、提高定位收敛速度、增强定位扩展性的有效方法。EOK通过设计综合节点连通度和剩余能量制定加权随机选择簇头选择策略、基于功率控制设计邻居簇头合并机制、节点簇优化措施,满足相对定位应用对簇头数量、节点簇重叠度、节点簇坐标转换等方面的独有要求。相比OK算法,EOK算法提高了簇头选择的针对性,降低了簇头数量,可有效控制簇重叠度,确保节点簇坐标转换率100%。
     ②基于EOK算法,提出了基于分簇的分步求精相对定位算法(SRRLC)。相对定位算法无需锚节点参与,定位精度不受锚节点密度影响,是典型的Anchor-Independent定位算法。SRRLC分为初定位、定位优化、局部坐标系转换三个阶段:在初定位阶段,提出基于RSSI测距的加权质心定位算法(WCL-RSSI)进行节点初定位,基于点着色理论的频点分配算法,消除隐藏终端对簇边界节点测距的影响,并通过参考节点精选机制、参考节点组合精选策略等策略,降低了测距误差对算法的影响,提高定位初值精度。迭代优化阶段中,基于SMACOF技术对节点位置迭代优化,综合测距距离与定位误差等因素构建优化权值函数,加快迭代收敛速度,提高算法定位精度。相比典型的相对定位算法,SRRLC对测距误差具有较高的适应性,具有较高的定位精度,在算法收敛速度、通信开销、定位覆盖率等指标上具有优势,更适合节点大规模布设的无线传感器网络。
     ③提出了基于移动锚节点的粒子群优化定位算法(PLBMA)。在很多危险/恶劣环境中,无线信道损耗模型参数未知,无法直接基于RSSI测距定位。因此,PLBMA将无线信道损耗模型未知环境中的节点定位问题抽象为非线性约束优化问题,构建加权定位目标函数,并采用粒子群优化策略进行节点优化定位。为减小网络定位成本,降低定位精度对锚节点数量的依赖,利用移动锚节点代替传统典型算法中的静态锚节点,将网络覆盖区域网格划分,采用移动锚节点采用扫描线最短完全遍历路径,确保虚拟锚节点完全覆盖网络区域。PLBMA算法简单易实现,可调参数少,通过多次迭代寻优,可有效提高算法定位精度、增强对环境噪声干扰的适应能力,拓展了Anchor-Independent定位技术应用适应性。
     ④面向典型危险/恶劣环境监测应用的共性特点,构建Anchor-Independent定位应用原型系统——基于无线传感器网络的多模态监测原型系统。针对多移动Sink网络拓扑结构,设计了面向混合网络拓扑结构的路由协议;集成PLBMA算法与Pioneer3智能移动平台,设计了基于PLBMA算法的事件定位策略;实现了便携式指挥、事件定位、环境信息感知、移动用户生理信息监护、多模式交互(语音、图像、文字等方式)等5大功能。该系统通过集成802.11g与802.15.4通信协议、构建多移动Sink网络拓扑结构、结合智能移动平台,丰富和拓展了传统的静态无线传感器网络概念,为无线传感器网络技术的进一步实用化做出了探索性尝试。
     本文深入的开展了无线传感器网络Anchor-Independent定位理论与技术研究,研究提出了三个相关算法,并构建Anchor-Independent定位应用原型系统,仿真、实验结果充分证明了各算法、系统的有效性。进一步研究将从提升性能与增强实用性两方面优化提出的算法;并面向实际应用需求,完善原型系统功能,提升系统性能。
Integrated modern sensor, micro-electronics, wireless communication, embedded computing, distributed information processing and other technologies, wireless sensor network (WSN) is an emerging research direction. Compared with the traditional networks, WSN is a data-centric wireless network with self-organizing and self-regulating characteristics, and can be widely used in military, health care, space exploration and many other kinds of commercial applications. Location information of each sensor node is essential to WSN. It is not only the basic of taking further measures and making decision-making, but also the research foundation of other key technologies (for example target tracking, routing supporting and network management) in WSN.
     Most of typical localization algorithms belong to Anchor-Dependent localization, whose localization accuracy decrease quickly once the density of anchor nodes declined significantly, and is not suitable for some harsh or dangerous application environments. Facing on the limitations of Anchor-Dependent localization, based on geometry, probability theory, iterative memorization, graph theory, particle swarm optimization (PSO) and other calculating methods, Anchor-Independent localization research is carried out from two aspects in this thesis: the relative localization and the mobile anchor node based localization. The important research results are as follows:
     ①Based on OK clustering algorithm, a K-hop clustering algorithm for relative localization- Enhanced Overlapped K-hop (EOK) is proposed. In relative localization, accumulating ranging error is one of the main factors affecting localization performance, and can be reduced effectively through clustering. In EOK, some strategy (cluster header selection based on both connectivity and remaining energy of each node, neighbor cluster header mergence based on power control, cluster optimization) are help to satisfy the demands of relative localization on the number of cluster header, overlapping degree of cluster and coordinate transformation rate between neighbor clusters. Compared with OK, EOK not only reduces the number of clusters header and make better uniformity of distribution of clusters, but also can control overlapping degree of cluster and maintain coordinate transformation rate between neighbor clusters at 100%.
     ②A stepwise refinement relative localization algorithm based on clustering (SRRLC) is put forward. Relative localization algorithm is a typical type of Anchor-Independent algorithms. It needs none anchor nodes, and localization accuracy is not affected by the density of anchor nodes. SRRLC is divided into three stages: initial local localization, localization optimization and local coordinate system transformation. In initial local localization stage, a weighted centroid localization algorithm based on RSSI (WCL-RSSI) is put forwarded. In WCL-RSSI, a frequency allocation based on vertex coloring algorithm is proposed to eliminate the influence of hidden terminal phenomenon on ranging error of cluster border nodes. Besides, reference nodes refining strategy and reference node sets refining strategy are used to reduce the influence of ranging error on WCL-RSSI, and enhance the localization accuracy. In localization optimization stage, a SMACOF based strategy is used to optimize location, and a weight function used in this strategy, general considering both distance and localization errors factors, is put forward. This weight function can speed up the convergence rate of this strategy and better the localization accuracy. Compared with typical relative localization algorithm, SRRLC is not only robust to ranging error and achieve higher localization accuracy, but also enjoys advantages on convergence rate, communication overhead and localization coverage.
     ③A PSO localization algorithm based on mobile anchor is put forward. In many harsh or dangerous application environments, parameters in path loss model of wireless channel are unknown, and neighbor nodes are unable to range using RSSI. So localization in this environment which path loss model of wireless channel is unknown, is abstracted into non-linear constraint optimization in PLBMA.A weighted localization target function is designed and the location of each node can be estimate based on PSO. In order to reduce localization cost and the dependence of localization accuracy on the density of anchor nodes, a mobile anchor node is used in PLBMA instead of static anchor nodes in Anchor-Dependent localization algorithm. Network interest area is divided into grids, and the mobile anchor node traversals network interest area based on shortest path traversal strategy, which insure network interest area can be complete covered with virtual anchor nodes. The principle of PLBMA is simple and easy to implement, and there is only a few adjustable parameters. After a few times of iteration, localization accuracy can be improved obviously and is robust to the environment noise interference. PLBMA expands the application adjustability of Anchor-Independent localization technology.
     ④Considering military defense, disaster monitoring and rescue and other harsh or dangerous application environments, an Anchor-Independent localization application prototype system - multi-modal monitoring prototype system based on WSN is built. Facing on mixed network topology with multiple mobile Sinks, a new routing protocol is designed and implemented in this system. Besides that, integrated Pioneer3 intelligent mobile platform and PLBMA, a event localization strategy is put forward and implemented. The conception of conventional static WSN has been enriched and expended because of some new elements integrated in this system: 1) both 802.11g and 802.15.4 wireless communication protocol are coexisted, 2) mixed network topology with multiple mobile Sinks, 3) intelligent mobile platform is used.
     An in-depth study of Anchor-Independent localization theory and application technology is carried out in this thesis. Three relative algorithms have been studied and put forward, and an Anchor-Independent localization application prototype system is built. The simulation and experiment results full proof the validity of each algorithm and system. In near future, some research about each algorithm proposed will be carried out from two aspects: improve the performance and enhance the practicability; besides some application research on this prototype system will also be carried out.
引文
[1] K.J.Astrom. Control–The Hidden Technology[R]. Beijing. 2004.
    [2]徐光祐,史元春,谢伟凯.普适计算[J].计算机学报, 2004, 26 (9): 9.
    [3] M.Weiser. The Computer for the 21st Century[J]. Scientific America, 1991, 265 (3): 66-75.
    [4]石为人,周彬,许磊.普适计算:人本计算[J].计算机应用, 2005, 25 (7): 1479-1484.
    [5] W.R.Shi, L. Xu, S. X. Yang. A hierarchical coordination model based on task priority in pervasive computing environment[J]. Dynamics of Continuous Discrete and Impulsive Systems-Series B-Applications & Algorithms, 2006, 13 (2): 3663-3667.
    [6] D.Estrin, R.Govindan, J.Heidemann, et al. Next century challenges: scalable coordination in sensor networks[C]. In Proc 5th ACM/IEEE Int'L Conf on Mobile Computing and Networking, 1999:263~270.
    [7] J.A.Byrne. 21 ideas for 21's century[J]. Business Week, 1999, 8: 78-167.
    [8] I.F.Akyildiz, Weilian.Su, Y.Sankarasubramaniam, et al. A survey on sensor networks[J]. IEEE Communications Magazine, 2002, 40 (8): 102~114.
    [9]孙利民,李建中,陈渝等.无线传感器网络[M].清华大学出版社, 2005.
    [10] D.Estrin. Tutorial“Wireless Sensor Networks”Part IV: Sensor Network Protocols[C]. In MobiCom, 2002.
    [11]于海斌,曾鹏.智能无线传感器网络系统[M].科学出版社, 2006.
    [12] B.Hofmann-Wellenhof, H. Lichtenegger, J.Collins. Global Positioning Systems: Theory and Practice[M]. Springer Verlag, 2001.
    [13] M.G.Rabbat, R.D.Nowak. Decentralized Source localization and Tracking[C]. In IEEE International Conference on Acoustics, Speech And Signal Processing Montreal, 2004:921-924.
    [14] T.He, C.D.Huang, B.M.Blum, et al. Range-Free Localization Schemes in Large Scale Sensor Networks[C]. In Proceedings of the 9th annual international conference on Mobile computing and networking, 2003: 81-95.
    [15] Nirupanma.Bulusu, John.Heidemann, Deborah.Estrin. Adaptive beacon placement[C]. In Proceedings of the 21st international Conference on Distributed Computing Systems, 2001:489-498.
    [16] W.P.Chen, J.C.Hou, S.Lui. Dynamic Clustering for Acoustic Target Tracking in Wireless Sensor Networks[J]. IEEE Transactions on Mobile Computing, 2004: 284-293.
    [17] I.A.Getting. The Global Positioning System[J]. IEEE Spectrum, 1993, 30 (12): 36-47.
    [18] S.S.Wang, M.Green, M.Malkawa. E-911 location standards and location commercial services[C]. In 2000 IEEE Wireless Internet Access Emerging Technologies Symposium: Broadband, 2000: 5-12.
    [19] R.Vijay, A.Kansal, J.Hsu, et al. Design considerations for solar energy harvesting wireless embedded systems[C]. In Proceedings of 2005 Fourth International Symposium onInformation Processing in Sensor Networks, 2005:457-562.
    [20] T.Voigt, H.Ritter, J.Schiller. Utilizing solar power in wireless sensor networks[C]. In Proceedings of 28th Annual IEEE International Conference on Local Computer Networks, 2003: 416-424.
    [21] J.A.Paradiso, T.Starner. Energy scavenging for mobile and wireless electronics[J]. Pervasive Computing, 2005, 4 (1): 18-27.
    [22] C.Green, K.M.Mossi, R.G.Bryant. Scavenging energy from piezoelectric materials for wireless sensor applications[C]. In Proceedings of 2005 ASME International Mechanical Engineering Congress and Exposition, 2005:23-39.
    [23] C.C.Federspiel, J.Chen. Air-powered sensor[C]. In Proceedings of IEEE Sensors, 2003, 22-25.
    [24] L.Mateu. Energy Harvesting from Passive Human Power[D]. Polytechnical University of Catalonia 2004.
    [25] T.Starner, J.A.Paradiso. Human Generated Power for Mobile Electronics[M]. CRC Press, 2004.
    [26] S.J.Roundy. Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion[D]. UC Berkeley 2003.
    [27] S.Park, J.W. Kim, K.Lee, et al. Embedded sensor networked operating system[C]. In Ninth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing, 2006:117-121.
    [28] H.Kim, H.Cha. Multithreading optimization techniques for sensor network operating systems[C]. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Delft, Netherlands, 2007:293-308.
    [29] S.Yi, H. Min, J. Heo, et al. Performance analysis of task schedulers in operating systems for wireless sensor networks[C]. In Lecture Notes in Computer Science, 2006: 499-508.
    [30] P.A. Levis. TinyOS: An open operating system for wireless sensor networks (invited seminar)[C]. In Nara, Japan, 2006.
    [31] C.C.HAN, R.KUMAR, R.SHEA, et al. A Dynamic Operating System for Sensor Nodes[C]. In Proceedings of the 3rd International Conference on Mobile Systems,Applications and Services,2005:163-176.
    [32] S.BHATTI, J.CARLSON, H.DAI, et al. MANTIS OS:An embedded multithreaded operating system for wireless micro sensor platforms[C]. In ACM kluwer Mobile Networks & Applications Journal,special Issue on Wireless Sensor Networks, 2005:231-245.
    [33] C.HARTUNG, R.HAN. Firewxnet:A Muti-Tiered Portable Wireless System for Monitoring Weather Conditions in Wildland Fire Enviromnnets[C]. In Proceedings of the 4th international conference on Mobile 2006:32-41.
    [34] C.Duffy, U.Roedig, J.Herbert, et al. Improving the energy efficiency of the mantis kernel[C]. In In European Conference on Wireless Sensor Networks, 2007: 261-276.
    [35] A. Dunkels, B. Gronvall, T. Voigt. Contiki - a lightweight and flexible operating system for tiny networked sensors[C]. In Local Computer Networks, 2004. 29th Annual IEEE International Conference on, 2004: 455-462.
    [36]王漫,何宁,裴俊等.面向无线传感器网络应用的嵌入式操作系统综述[J].计算机应用与软件, 2007, 24 (6): 44-48.
    [37] SenSpire :针对无线传感网络节点设计的综合软件开发平台. In http://eagle.zju.edu.cn/home/eos/senspire/.
    [38]王万里,郑扣根,姚翔等.无线网络传感器及其微型操作系统的研究[J].计算机应用研究, 2005, 26(09):32-38.
    [39] T.He, B.M.Blum, J.A.Stankovic, et al. AIDA: Adaptive Application Independent Data Aggregation in Wireless Sensor Networks[R]. United States. 2005.
    [40] S.Nath, P. B. Gibbons, S. Seshan, et al. Synopsis diffusion for robust aggregation in sensor networks[C]. In ACM Transactions on Sensor Networks, 1515 Broadway, 17th Floor, New York, NY 10036-5701, United States, 2008: 8-17.
    [41] S.Jungmin, K.Jintae, G.Indranil. Cushion: Autonomically adaptive data fusion in wireless sensor networks[C]. In Washington, United states, 2005:170-172.
    [42] H.Luo, J.Luo, Y.Liu, et al. Energy efficient routing with adaptive data fusion in sensor networks[J]. IEEE Transactions on Mobile Computing, 2005, 5 (8): 1620-1621.
    [43] S.R.Madden, M.J. Franklin, J.M.Hellerstein, et al. TinyDB: An acquisitional query processing system for sensor networks[J]. ACM Transactions on Database Systems, 2005, 30 (1): 122-173.
    [44] P.Bonnet, J.E.Gehrke, P.Seshadri. Towards sensor database systems[J]. Lecture Notes in Computer Science, 2001, 2001 (0302-9743): 3-14.
    [45] S.Ping. Delay measurement time synchronization for wireless sensor networks[R]. IRB-TR-03-013, Berkeley Lab, 2003.
    [46] M.Mock, R.Frings, E.Nett, et al. Continuous clock synchronization in wireless real-time applications[C]. In Proceedings The 19th IEEE Symposium on Reliable Distributed Systems, 2000: 125-132.
    [47] S.Ganeriwal, R.Kumar, M.B.Ivastava. Timing-sync Protocol for Sensor Networks[R]. United States. 2003.
    [48] S.Narayanaswamy, V.Kawadia, R.S.Sreenivas, et al. Power control in ad-hoc networks: Theory, architecture, algorithm and implementation of the COMPOW protocol[C]. In Proc European Wireless Conference, 2002: 156-162.
    [49] N.Li, J.C.Hou, L.Sha. Design and analysis of an MST-based topology control algorithm[C]. In Proceedings - IEEE INFOCOM, 2003:1702-1712.
    [50] R.Ramanathan, R.Rosales-Hain. Topology control of multihop wireless networks using transmit power adjustment[C]. In Proceedings - IEEE INFOCOM, 2000: 404-413.
    [51] W.B.Heinzelman, A.P.Chandrakasan, H.Balakrishnan. An application-specific protocol architecture for wireless microsensor networks[J]. IEEE Transactions on Wireless Communications, 2002, 1 (4): 660-670.
    [52] O.Younis, S.Fahmy. Distributed clustering in ad-hoc sensor networks: A hybrid, energy-efficient approach[C]. In Proceedings - IEEE INFOCOM, Hongkong, China, 2004, 629-640.
    [53] A.Perrig, R.Szewczyk, J.D.Tygar, et al. SPINS: Security protocols for sensor networks[J]. Wireless Networks, 2002, 8 (5): 521-534.
    [54] C.Karlof, N.Sastry, D.Wagner. TinySec: A link layer security architecture for wireless sensor networks[C]. In Proceedings of the Second International Conference on Embedded Networked Sensor Systems, 2004:162-175.
    [55] T.Park, K.G.Shin. LiSP: A lightweight security protocol for wireless sensor networks[C]. In ACM Transactions on Embedded Computing Systems, 2004: 634-660.
    [56] C.Haowen, A.Perrig, D.Song. Random key predistribution schemes for sensor networks[C]. In Proceedings. 2003 Symposium on Security and Privacy, 2003: 197-213.
    [57] C.Karlof, Y.Li, J.Polastre. ARRIVE:Algorithm for Robust Routing in Volatile Environments[R]. No. UCB//CSD-03-1233, University of California Berkeley, 2003.
    [58] I.Chalermek, G.Ramesh, E.Deborah, et al. Directed diffusion for wireless sensor networking[J]. IEEE/ACM Transactions on Networking, 2003, 11 (1): 2-16.
    [59] J.Kulik, W.Heinzelman, H.Balakrishnan. Negotiation-based protocols for disseminating information in wireless sensor networks[J]. Wireless Networks, 2002, 8 (2-3): 169-185.
    [60] A.Manjeshwar, D.P.Agrawal. TEEN: a routing protocol for enhanced efficiency in wirelesssensor networks[C]. In Proceedings 15th International Parallel and Distributed Processing Symposium, 2001:2009-2015.
    [61] Y.Xu, J.Heidemann, D.Estrin. Geography-informed energy conservation for ad hoc routing[C]. In Proceedings of the Annual International Conference on Mobile Computing and Networking, Rome, Italy, 2001:70-84.
    [62] H.S.Aghdasi, M.Abbaspour, M.E.Moghadam. An energy-efficient and high-quality MAC protocol for image transmission in wireless sensor networks[C]. In 2008 4th IEEE International Conference on Circuits and Systems for Communications, Shanghai, China, 2008: 838-842.
    [63] T.V.Dam, K.Langendoen. An adaptive energy-efficient MAC protocol for wireless sensor networks[C]. In SenSys'03: Proceedings of the First International Conference on Embedded Networked Sensor Systems, Los Angeles, CA, United states, 2003: 171-180.
    [64] X.H.Lin,Y.K.Kwok, H.Wang. On channel adaptive energy management with available bandwidth estimation in wireless sensor networks[J]. Wireless Communications and Mobile Computing, 2007, 7 (7): 877-892.
    [65] G.Werner-Allen, P.Swieskowski, M.Welsh. MoteLab: a wireless sensor network testbed[C]. In Fourth International Symposium on Information Processing in Sensor Networks, 2005:483-488.
    [66] E.Ertin, A.Arora, R.Ramnath, et al. Kansei: a testbed for sensing at scale[C]. In The Fifth International Conference on Information Processing in Sensor Networks, 2006: 399-406.
    [67] The network simulator-NS-2[EB/OL]. In http://www.isi.edu/nsnam/ns.
    [68]陈敏. OPNET网络仿真[M].北京.清华大学出版社, 2004.
    [69] S.Park, A.Savvides, M.B.Srivastava. SensorSim: A simulation framework for sensor networks[C]. In Proceedings of the 3rd ACM International Workshop on Modeling, Analysis and Simulation of Wireless and Mobile Systems, Boston, MA, United states, 2000: 104-111.
    [70] L.Girod, N.Ramanathan, J.Elson, et al. Emstar: A software environment for developing and deploying heterogeneous sensor-actuator networks[J]. ACM Transactions on Sensor Networks, 2007, 3 (3).
    [71] OMNET++Community Site[EB/OL]. In http://www.omnetpp.org/external/whatis.php.
    [72]石为人,黄河,鲜晓东等. Omnet++与ns2在无线传感器网络仿真中的比较研究[J].计算机科学, 2008, 35 (10): 53-57.
    [73] X.Zeng, R.Bagrodia, M.Gerla. GloMoSim: A library for parallel simulation of large-scale wireless networks[C]. In Proceedings of the Workshop on Parallel and Distributed Simulation, Banff, Canada, 1998: 154-161.
    [74] P.Levis, N.Lee, M.Welsh, et al. TOSSIM: Accurate and scalable simulation of entire TinyOS applications[C]. In SenSys'03: Proceedings of the First International Conference on Embedded Networked Sensor Systems, Los Angeles, CA, United states, 2003:126-137.
    [75] A.Mainwaring, J.Polastre, R.Szewczyk, et al. Wireless sensor networks for habitat monitoring[C]. In Proceedings of the ACM International Workshop on Wireless Sensor Networks and Applications, Atlanta, GA, United states, 2002:88-97.
    [76] A.Bhargava, M.Zoltowski. Sensors and wireless communication for medical care[C]. In Proceedings. 14th International Workshop on Database and Expert Systems Applications, 2003: 956-960.
    [77] D.D.L. Mascarenas, E.Flynn, K.Lin, et al. Demonstration of a roving-host wireless sensor network for rapid assessment monitoring of structural health[C]. In The International Society for Optical Engineering (SPIE), San Diego, CA, United states, 2008: 265-276.
    [78] P.Katsikogiannis, E.Zervas, G.Kaltsas. A wireless sensor network for building structural health monitoring and seismic detection[C]. In Physica Status Solidi (C) Current Topics in Solid State Physics, Athens, Greece, 2008:3834-3838.
    [79] T.Kijewski-Correa, M.Haenggi, P.Antsaklis. Wireless sensor networks for structural health monitoring: A multi-scale approach[C]. In 17th Analysis and Computation Specialty Conference, St. Louis, M0, United states, 2006: 40-50.
    [80] R.Want, V.Falcao, J.Gibbons. The Active Badge Location System[J]. ACM Transactions on Information Systems, 1992, 10 (1): 91-102.
    [81] J.Pakkanen, D.T.H.Lai. A study of transmission overheads for sensor network localization schemes[C]. In 3rd International Conference on Intelligent Sensors, Sensor Networks and Information, 2007: 91-94.
    [82] J.Desai, U.Tureli. Evaluating Performance of Various Localization Algorithms in Wireless and Sensor Networks[C]. In IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, 2007: 1-5.
    [83] C.Savarese, J.M.Rabaey, J.Beutel. Locationing in distributed ad-hoc wireless sensor networks[C]. In IEEE International Conference on Acoustics, Speech and Signal Processing Salt Lake, UT, United states, 2001:2037-2040.
    [84] P.Bahl, V.N.Padmanabhan. RADAR: An in-building RF-based user location and tracking system[C]. In IEEE INFOCOM, Tel Aviv, Isr, 2000: 775-784.
    [85] A.Savvides, C.C.Han,M.B.Srivastava. Dynamic finge-grained localization in ad-hoc networks of sensors[C]. In Proceedings of 7th Annual International Conference on Mobile Computing and Networking, 2001: 166-179.
    [86] N.B.Priyantha, A.Chakraborty,H.Balakrishnan. The cricket location-support system[C]. In Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, 2000:32-43.
    [87] XF.Shen, Z.Wang, P.Jiang, et al. Connectivity and RSSI based localization scheme for wireless sensor networks[C]. In Lecture Notes in Computer Science, Hefei, China, 2005: 578-587.
    [88] D.Niculescu, B.Nath. Ad hoc positioning system (APS)[C]. In EEE Global Telecommunications Conference, San Antonio, TX, United states, 2001: 2926-2931.
    [89] T.He, C.Huang, B.Blum, et al. Range-Free Localization Schemes for Large Scale Sensor Networks[C]. In Proceedings of the 9th Annual International Conference on Mobile Computing and Networking, 2003:81-95.
    [90] Y.Shang, W.Ruml, Y.Zhang, et al. Localization from mere connectivity[C]. In Proceedings of the International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), Annapolis, MD, United states, 2003: 201-212.
    [91] S.Capkun, M.Hamdi, J.Hubaux. GPS-free positioning in mobile ad-hoc networks[C]. In Proceedings of the Hawaii International Conference on System Sciences, Maui, HI, United states, 2001: 255.
    [92] D.Niculescu, B.Nath. Localized positioning in ad hoc networks[J]. Ad Hoc Networks, 2003, 1 (2-3): 247-259.
    [93] Z.YJ, K.Gao. Analysis and simulation of positioning algorithms in ad-hoc wireless local area networks[C]. In Proceedings of the 7th International Conference on Machine Learning and Cybernetics, Kunming, China, 2008: 2264-2268.
    [94] K.Oh-Heum, S.Ha-Joo. Localization through Map Stitching in Wireless Sensor Networks[J]. Parallel and Distributed Systems, IEEE Transactions on, 2008, 19 (1): 93-105.
    [95] Q.Hui, B.W.Stephen. Anchor-Free Localization in Rapidly-Deployed Wireless Sensor Networks[C]. In Mobile Adhoc and Sensor Systems (MASS), 2006 IEEE International Conference on, 2006: 627-632.
    [96] L.Doherty, K.S.J.pister, L.El Ghaoui. Convex position estimation in wireless sensor networks[C]. In INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, 2001: 1655-1663.
    [97] Y.Shang, W.Ruml, Y.Zhang, et al. Localization from mere connectivity[C]. In Annapolis, MD, United states, 2003:201-212.
    [98] C.Savarese, J.Rabaey, K.Langendoen. Robust positioning algorithms for distributed ad-hoc wireless sensor networks[C]. In Proceedings of the USEN IX Technical Annual Conference,2002: 317-327.
    [99] A.Savvides, H.Park, M.B.Srivastava. The bits and flops of the n-hop multilateration primitive for node localization problems[C]. In Proceedings of the ACM International Workshop on Wireless Sensor Networks and Applications, Atlanta, GA, United states, 2002:112-121.
    [100]许磊,石为人.一种无线传感器网络分步求精节点定位算法[J].仪器仪表学报, 2008, 29 (2): 314-319.
    [101] S.Misra, G.Xue. CluRoL: Clustering based Robust Localization in Wireless Sensor Networks[C]. In IEEE Military Communications Conference, 2007: 1-7.
    [102] S.Misra, X.Guoliang, A.Shrivastava. Robust Localization in Wireless Sensor Networks through the Revocation of Malicious Anchors[C]. In IEEE International Conference on Communications, 2007:3057-3062.
    [103] L.Xinrong. Collaborative Localization With Received-Signal Strength in Wireless Sensor Networks[J]. IEEE Transactions on Vehicular Technology, 2007, 56 (6): 3807-3817.
    [104] X.Kaihua, C. Mi, L. Yuhua. A Novel Localization Algorithm Based on Received Signal Strength Indicator for Wireless Sensor Networks[C]. In Computer Science and Information Technology, 2008. ICCSIT '08. International Conference on, 2008: 249-253.
    [105] F.Rongfei, J.Hai, W. Shaohua, et al. Robust Localization in Wireless Sensor Networks[C]. In Communications, 2008. ICC '08. IEEE International Conference on, 2008: 4209-4213.
    [106] V.Ramadurai, M.L.Sichitiu. Localization in Wireless Sensor Networks: A Probabilistic Approach[C]. In In Proceedings of 2003 International Conference on Wireless Networks, 2003: 300-305.
    [107] S.Capkun, M.Hamdi, J.Hubaux. GPS-free positioning in mobile ad-hoc networks[C]. In Maui, HI, United states, 2001:255-268.
    [108] X.Li, H.Shi, Y.Shang. A map-growing localization algorithm for ad-hoc wireless sensor networks[C]. In Proceedings of the International Conference on Parallel and Distributed Systems, Newport Beach, CA, United states, 2004: 395-402.
    [109] R.Iyengar, B.Sikdar. Scalable and distributed GPS free positioning for sensor networks[C]. In IEEE International Conference on Communications( ICC '03), Anchorage, AK, USA, 2003:338-342
    [110] A.Youssef, A.Ashok, M.Younis. Accurate anchor-free node localization in wireless sensor networks[C]. In 24th IEEE International Performance, Computing, and Communications Conference, 2005:465-470.
    [111] X.Ji, H.Zha. Sensor positioning in wireless ad-hoc sensor networks using multidimensional scaling[C]. In Proceedings - IEEE INFOCOM, Hongkong, China, 2004: 2652-2661.
    [112] Y.Shang, W.Ruml, Y.Zhang, et al. Localization from connectivity in sensor networks[J]. IEEE Transactions on Parallel and Distributed Systems, 2004, 15 (11): 961-974.
    [113] J.Costa, N.Patwari, A.H.III. Distributed weighted-multidimensional scaling for node localization in sensor networks[J]. ACM Transactions on Sensor Networks, 2004, 2 (1): 39-64.
    [114] N.B.Priyantha, H.Balakrishnan, E.Demaine, et al. Poster abstract: Anchor-free distributed localization in sensor networks[C]. In Proceedings of the First International Conference on Embedded Networked Sensor Systems, Los Angeles, CA, United states, 2003: 340-341.
    [115] K.Kyunghwi, L.Wonjun. MBAL: A Mobile Beacon-Assisted Localization Scheme for Wireless Sensor Networks[C]. In Computer Communications and Networks, 2007. ICCCN 2007. Proceedings of 16th International Conference on, 2007:57-62.
    [116] T.V.Srinath. Localization in resource constrained sensor networks using a mobile beacon with in-ranging[C]. In 2006 IFIP International Conference on Wireless and Optical Communications Networks, 2006: 5 -13.
    [117] S.Kuo-Feng, O.Chia-Ho, H.C.Jiau. Localization with mobile anchor points in wireless sensor networks[J]. IEEE Transactions on Vehicular Technology, 2005, 54 (3): 1187-1197.
    [118] N.Patwari, J.N.Ash, S.Kyperountas, et al. Locating the nodes: cooperative localization in wireless sensor networks[J]. IEEE Signal Processing Magazine, 2005, 22 (4): 54-69.
    [119]石为人,许磊.一种面向无线传感器网络相对定位的分簇算法[J].计算机工程与应用, 2008, 44 (24): 15-18.
    [120] S.Lindsey, C.S.Raghavendra. PEGASIS: Power-efficient gathering in sensor information systems[C]. In IEEE Aerospace Conference Proceedings, 2002: 3-1125-3-1130 .
    [121] S.Lindsey, C.Raghavendra, K.Sivalingam. Data gathering in sensor networks using the energy delay metric[C]. In Proceedings 15th International Parallel and Distributed Processing Symposium, 2001: 2001-2008.
    [122] O.Younis, S.Fahmy. HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks[J]. IEEE Transactions on Mobile Computing, 2004, 3 (4): 366-379.
    [123] L.Subramanian, R.H.Katz. An architecture for building self-configurable systems[C]. In First Annual Workshop on Mobile and Ad Hoc Networking and Computing, 2000: 63-73.
    [124] P.Ding, J.Holliday, A.Celik. Distributed energy-efficient hierarchical clustering for wireless sensor networks[C]. In Lecture Notes in Computer Science, Marina del Rey, CA, United states, 2005:322-339.
    [125] W.Ke, S.A.Ayyash, T.D.C.Little, et al. Attribute-based clustering for information dissemination in wireless sensor networks[C]. In Second Annual IEEE CommunicationsSociety Conference on Sensor and AdHoc Communications and Networks, Santa Clara, CA, United states, 2005: 498-509.
    [126] B.Seema, E.J.Coyle. An energy efficient hierarchical clustering algorithm for wireless sensor networks[C]. In IEEE Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies, 2003: 1713-1723
    [127] S.Banerjee, S.Khuller. A clustering scheme for hierarchical control in multi-hop wireless networks[C]. In Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies. , 2001:1028-1037.
    [128] M.N.Halgamuge, S.M.Guru, A.Jennings. Energy efficient cluster formation in wireless sensor networks[C]. In 10th International Conference on Telecommunications, 2003: 1571-1576 .
    [129] A.Safwat, H.Hassanein, H.Mouftah. Power-aware fair infrastructure formation for wireless mobile ad hoc communications[C]. In IEEE Global Telecommunications Conference, San Antonio, TX, United states, 2001:2832-2836.
    [130] G.Gupta, M.Younis. Load-balanced clustering of wireless sensor networks[C]. In IEEE International Conference on Communications, 2003: 1848-1852.
    [131] G.Gupta, M.Younis. Fault-tolerant clustering of wireless sensor networks[C]. In 2003 IEEE Wireless Communications and Networking, 2003:1579-1584.
    [132] A.D.Amis, R.Prakash, T.H.P.Vuong, et al. Max-Min D-Cluster Formation in Wireless Ad Hoc Networks. In Proceedings of INFOCOM[C], New York. NY. March 1999.
    [133] H.Chan, A.Perrig. ACE: An Emergent Algorithm for Highly Uniform Cluster Formation[C]. In Proceedings of 1st European Workshop on Wireless Sensor Networks(EWSN), 2004:154-171.
    [134] S.Zainalie, M.H.Yaghmaee. CFL: A clustering algorithm for localization in Wireless Sensor Networks[C]. In International Symposium on Telecommunications, 2008:435-439.
    [135] A.Youssef, M.Younis, M.Youssef, et al. Distributed Formation of Overlapping Multi-hop Clusters in Wireless Sensor Networks[C]. In IEEE Global Telecommunications Conference, 2006: 1-6.
    [136]崔逊学,方红雨,朱徐来.传感器网络定位问题的概率特征[J].计算机研究与发展, 2007, 44 (4): 630-635.
    [137]李方敏,徐文君,高超.一种适用于无线传感器网络的功率控制mac协议[J].软件学报, 2007, 18 (5): 1080-1091.
    [138] F.Sottile, M.A.Spirito. Robust Localization for Wireless Sensor Networks[C]. In 5th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, 2008: 46-54.
    [139]石为人,易军,许磊等.基于点着色的无线传感器网络频点分配算法[J].传感技术学报, 2009, 22 (1): 111-115.
    [140] A.Woo, D.Culler. Evaluation of Efficient Link Reliability Estimators For Low-Power Wireless Networks[R]. UCB/CSD 03-1270, University of California, Berkeley, 2002.
    [141] G. L.Stuber.移动通信原理(第2版)[M].电子工业出版社, 2004.
    [142] L.Kleinrock, F.Tobagi. Packet Switching in Radio Channels: Part I--Carrier Sense Multiple-Access Modes and Their Throughput-Delay Characteristics[J]. IEEE Transacions on Communications, 1998, 23 (12): 1400-1416.
    [143] N.Abramson. Multiple Access Communications: Foundations for Emerging Technologies[M]. New York. 1995.
    [144] T.S.Rappaport. Wireless conmmunications: Principles and practice[M]. Upper Saddle River,NJ. Prentice Hall, 2002.
    [145] D. B. West.图论导引[M].机械工业出版社, 2004.
    [146] A.Papoulis, S.U.Pillai.概率随机变量与随机过程(第4版)[M].西安交通大学出版社, 2004.
    [147] X.Shen, Z.Wang, P.Jiang, et al. Connectivity and RSSI Based Localization Scheme for Wireless Sensor Networks[C]. In 2005 International Conference on Intelligent Computing, 2005, 578-587.
    [148]陈维克,李文锋,首珩等.基于rssi的无线传感器网络加权质心定位算法[J].武汉理工大学学报:交通科学与工程版, 2006, 30 (2): 265-268.
    [149] Z.Wei, S.Guangming, T.Jindong, et al. Localization for hybrid sensor networks in unknown environments using received signal strength indicator[C]. In International Conference on Information and Automation, 2008: 567-572.
    [150] Y.Yibin, W.Gui, L.Zuoquan, et al. Alternating Combination Trilateration for Unknown Nodes of Sensor Networks[C]. In IEEE International Conference on Control and Automation, 2007:1747-1751.
    [151] I.Borg, P.Groenen. modern multidimensional scaling theory and applications[M]. New York. Springer Press, 2005.
    [152] B.K.P.Horn, H.M.Hilden, S.Negahdaripour. Closed-form solution of absolute orientation using orthonormal matrices[J]. Journal of the Optical Society of America A (Optics and Image Science), 1988, 5 (7): 1127-1135.
    [153]龚辉,姜挺,江刚武.一种利用正交矩阵反问题进行绝对定向的快速算法[J].测绘科学, 2008, 33 (4): 32-34.
    [154] A.Savvides, C.C.Han, M.Srivastava. Dynamic fine-grained localization in ad-hoc networks ofsensors[C]. In Proc. of the 7th Annual Int’l Conf. on Mobile Computing and Networking, 2001: 166-179.
    [155]石为人,许磊,徐扬生.一种基于移动锚节点的静态无线传感器网络定位算法[J].仪器仪表学报, 2007, 28 (3): 385-393.
    [156] V.Chandrasekhar, E.Zhi Ang, W.K.G.Seah, et al. Experimental Analysis of Area Localization Scheme for Sensor Networks[C]. In IEEE Wireless Communications and Networking Conference, 2007:4013-4018.
    [157] K.W.K.Lui, W.K.Ma, H.C.So, et al. Semi-Definite Programming Algorithms for Sensor Network Node Localization With Uncertainties in Anchor Positions and/or Propagation Speed[J]. IEEE Transactions on Signal Processing, 2009, 57 (2): 752-763.
    [158] D.Al-Abri, J.McNair. Improving Localization Accuracy in Wireless Sensor Networks using Location Verification Feedback[C]. In IEEE Military Communications Conference, 2007, 1-7.
    [159] F.Ellinger, R.Eickhoff, R.Gierlich, et al. Local Positioning for Wireless Sensor Networks[C]. In IEEE Globecom Workshops, 2007:1-6.
    [160] M.Battelli, S.Basagni. Localization for Wireless Sensor Networks: Protocols and Perspectives[C]. In Canadian Conference on Electrical and Computer Engineering, 2007:1074-1077.
    [161] Z.Chaczko, R.Klempous, J.Nikodem, et al. Methods of Sensors Localization in Wireless Sensor Networks[C]. In 14th Annual IEEE International Conference and Workshops on the Engineering of Computer-Based Systems, 2007: 145-152.
    [162] J.N.Ash, R.L.Moses. Relative and Absolute Errors in Sensor Network Localization[C]. In IEEE International Conference on Acoustics, Speech and Signal Processing, 2007: 1033-1036.
    [163] C.Jung Jin, D.Yu, C.Yong, et al. Robust Calibration for Localization in Clustered Wireless Sensor Networks[C]. In IEEE International Conference on Automation Science and Engineering, 2007:919-924.
    [164] Simic S N, Sastry S. A distributed algorithm for localization in random wireless networks [EB/OL]. http://robotics.eecs.berkeley.edu/simic/PDF/localization.pdf, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700