用户名: 密码: 验证码:
无线传感器网络负载均衡数据汇集算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络作为普适计算的一种支撑技术,是控制工程和人工智能领域的研究前沿,应用前景十分广泛。
     数据汇集应用作为无线传感器网络的一种广泛应用形式,具有网络数据流连续、流量大、“多对一”的特点。数据汇集过程中,当各个数据流分支的流量分配不均衡时,容易导致部分上游节点负载过重,造成其提前“死亡”,严重影响网络寿命。负载均衡对缓解网络拥塞、提高网络服务质量和资源利用率非常有效,被广泛地应用到Internet网络,而针对无线传感器网络的负载均衡研究还处于起步阶段。
     本文以提高网络服务质量、延长网络寿命为目标,针对以下三种应用场景,研究无线传感器网络负载均衡数据汇集算法。
     ①同构网络场景:Sink节点静止,传感器节点产生数据速率一致;
     ②异构网络场景:Sink节点静止,传感器节点产生数据速率不一致;
     ③移动用户场景:Sink节点移动。
     本文在研究内容上力求有所突破与创新,主要研究成果包括以下四个方面:
     1)提出一种动态交叉退避窗口算法。针对上述①和②两种场景,需要采用洪泛方式建立数据汇集树或者层次发现。而洪泛过程中,传统的MAC层碰撞退避机制容易造成消息剧烈碰撞和路径绕行。本文针对该问题分析了其产生原因,并提出了动态交叉退避窗口算法(DOBW)。DOBW算法在洪泛过程中,根据邻居节点的当前状态,自动调整退避窗口大小,以减少消息碰撞,优化数据汇集树的结构。仿真实验表明,相比802.11和802.15.4,本文提出的DOBW算法可显著地减少洪泛时消息碰撞,优化了数据汇集树的拓扑结构。
     2)提出一种负载均衡数据汇集树生成算法。DOBW算法虽然可以优化数据汇集树的结构,但不能够达到负载均衡的要求,因此DOBW算法通常用于避免层次发现过程中的消息剧烈碰撞。本文针对上述第①种场景,提出了一种负载均衡数据汇集树生成算法(LDGT-SPT)。在最短路径树拓扑结构保证数据实时性的情况下,LDGT-SPT算法通过邻居发现、基于DOBW的层次发现、度小优先原则和流量均衡策略构造一棵最短路径负载均衡数据汇集树。仿真实验表明,本文提出的LDGT-SPT算法虽然在网络寿命上与SLBT算法相当,但是在网络性能方面有显著的提高。
     3)提出一种基于ACO的动态负载均衡数据汇集算法。在上述第②种场景中,由于传感器节点数据产生速率不一致,因此不能使用构造负载均衡数据汇集树的方法,这时需要采用动态负载均衡的方法。本文针对该场景提出了一种基于蚁群优化的动态负载均衡数据汇集算法(LDG-ACO)。为了实现动态负载均衡,LDG-ACO算法将蚂蚁进行分类,使其具有不同的功能,采用节点的负载信息作为启发因子,使得蚂蚁具有负载感知功能,并规定蚂蚁的转移概率按照信息素少概率大的原则进行。仿真实验表明,与ACO,SLBT以及DLBT算法相比,本文提出的LDG-ACO算法在网络性能和网络寿命方面都有显著的提高。
     4)提出一种支持移动Sink的动态负载均衡数据汇集算法。针对上述第③种场景中,移动Sink导致路由频繁改变和链路中断问题,本文提出了一种支持移动Sink的动态负载均衡数据汇集算法(LDG-MS)。LDG-MS算法借鉴群体智能的思想,通过定义两个简单的规则,对节点的数据转发行为进行描述,将下一跳节点的决策问题抽象成一个多目标规划问题,并采用距离加权评价法进行求解。为了解决由于Sink节点移动造成的链路中断问题,提出对移动Sink信标消息进行功率控制的策略,并给出了详细的计算方法。仿真实验表明,与SINK_CLAIM、SLM算法相比,本文提出的LDG-MS算法在网络性能和网络寿命方面都有显著的提高。
As a cutting edge research area in the automatic control and artificial intelligence, Wireless Sensor Networks (WSN) is a fundamental of the network infrastructure for Pervasive Computing environments, with very wide application prospects.
     The data gathering application is one of the widespread application forms of WSN, characterized with the large continuous data flow ability and "many-to-one" feature. In data gathering process, the load imbalance of each data stream branch would cause the fast energy exhaustion in overburdened nodes which would leads to the death prematurely. The load balancing technology to alleviate network congestion, which improves network service quality and resource utilization, is very effective and widely applied to the Internet network. However the study of load balancing for the wireless sensor networks is still in its early stages.
     To improve network service quality and extend the network lifetime, the wireless sensor network load balancing algorithm for data gathering is studied with the following scenarios, respectively:
     ①The stationary Sink node and sensor nodes with the same data generating rate(Homogeneous Network);
     ②The stationary Sink node and sensor nodes with the different data generating rate(Homogeneous Network);
     ③The moving Sink node (mobile user network).
     The main research achievements are listed in the following:
     1)A dynamic overlapping backoff window method is proposed.
     In response to the scenarios①and②, the flooding mechanism is approached to build the data gathering tree or layer discovery. Considering the traditional back-off mechanisms in MAC layer would result in severe collisions and route circumambulating in flooding, the Dynamic Overlapping Back-off Window (DOBW) algorithm was presented. According to current rate of neighbors, sensor nodes adjust their back-off windows automatically to reduce message collision and optimize the topology. Comparing with 802.11 and 802.15.4, the simulations shown that DOBW algorithm proposed in this thesis can significantly reduce the impact of flooding and optimize the topology of the data gathering tree.
     2)A load-balanced data gathering tree generation algorithm is proposed.
     Though, the DOBW algorithm could construct a certain degree of load-balanced tree, the requirements of load balance is still un-achieved. Therefore, the DOBW algorithm is commonly used in the layer discovery process to avoid the message collision. The Load-balanced Data Gathering Tree based on SPT (LDGT-SPT) to establish a shortest load-balanced path tree was presented for scenario①. The LDGT-SPT is consisted of the neighbor discovery, the layer discovery, the priority principle of minimal degree and the traffic balance strategy. Simulation results show that LDGT-SPT algorithm can significantly improve the performance of the network compared with SLBT with the same network lifetime.
     3) An ACO-based dynamic load balancing algorithm for data collection is proposed.
     In the scenario②, due to different generating rate of sensor node data, the load-balancing data gathering tree construction methods is un-available, thus the dynamic load balancing approach is adapted. In this thesis, the Load-balanced Data Gathering algorithm based on Ant Colony Optimization (LDG-ACO) was presented. In order to achieve dynamic load balancing, LDG-ACO algorithm classifies ants to have different functions, taking the node load information as inspiration factor, making ants with the load-sensing function and working according to the principle of lower pheromone higher probability. Simulation results show that compared with the ACO, SLBT and DLBT algorithm, LDG-ACO algorithm presented in this thesis has increased markedly in network performance and network service life.
     4)A dynamic load balancing algorithm supporting mobile Sink for data collection is proposed.
     In response to the scenario③, the Mobile Sink led to frequent route changes and link interrupt problem, a mobile Sink dynamic load-balancing algorithm for data collection (LDG-MS) is presented to solve these problems. Referring from the swarm intelligence algorithm, LDG-MS defines two simple rules to describe the data forwarding. The problem how to choose next hop is described as a multi-objective programming. Furtherly, the evaluation method of weighting distance is used in the multi-objective programming. To solve link-break problem, a method of the power control for the Sink beacon messages was proposed. Simulation results show that, compared with SINK_CLAIM, SLM algorithm, LDG-MS algorithm presented in this thesis in network performance and network lifetime has increased profoundly.
引文
[1] Akkaya K, Younis M. A survey on routing protocols for wireless sensor networks[J]. Ad Hoc Networks. 2005, 3(3): 325-349.
    [2] Akyildiz I F, Weilian S, Sankarasubramaniam Y, et al. A survey on sensor networks[J]. Ad Hoc Networks. 2002, 40(8): 102-114.
    [3] Zhao F, Guibas L J. Wireless sensor networks: an information processing approach[M]. Morgan Kaufmann Pub, 2004.
    [4] Akyildiz I F, Su W, Sankarasubramaniam Y, et al. Wireless sensor networks: a survey[J]. Computer networks. 2002, 38(4): 393-422.
    [5]任丰原,黄海宁,林闯.无线传感器网络[J].软件学报. 2003(07): 1282-1291.
    [6]崔莉,鞠海玲,苗勇等.无线传感器网络研究进展[J].计算机研究与发展. 2005(01): 163-174.
    [7] Saha D, Mukherjee A. Pervasive computing: A paradigm for the 21st century[J]. Computer. 2003: 25-31.
    [8] Weiser M. The Computer for the 21 st Century[J]. ACM SIGMOBILE Mobile Computing and Communications Review. 1999, 3(3): 3-11.
    [9]徐光祐,史元春,谢伟凯.普适计算[J].计算机学报. 2003(09): 1042-1050.
    [10]石为人,周彬,许磊.普适计算:人本计算[J].计算机应用. 2005(07): 1479-1484.
    [11] Xu N. A survey of sensor network applications[J]. IEEE Communications Magazine. 2002, 40(8): 102-114.
    [12] "My view of sensor networks"[EB/OL]. http://robotics.eecs.berkeley.edu/ ~pister/ SmartDust/ in2010.
    [13] Estrin D. Tutorial "Wireless Sensor Networks" PartⅥ: Sensor Network Protocols[C]. MobiCom. 2002
    [14] ZigBee Alliance[EB/OL].http://www.zigbee.org.
    [15] Kinney P. Zigbee technology: Wireless control that simply works[C]. Communications Design Conference. 2003
    [16] Alliance Z B. Zigbee specification[J]. ZigBee Document 053474r06, Version. 2005, 1.
    [17] Society L S C O. IEEE standard for part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low rate wireless personal area networks [S]. 2003.
    [18]梁韡,于海斌.无线传感器网络物理层协议的研究现状[J].仪器仪表学报. 2004(S2): 594-597.
    [19] Ye W, Heidemann J, Estrin D. An energy-efficient MAC protocol for wireless sensor networks[C]. IEEE INFOCOM. 2002: 1567-1576.
    [20] van Dam T, Langendoen K. An adaptive energy-efficient MAC protocol for wireless sensor networks[C]. Proceedings of the 1st international conference on Embedded networked sensor systems. ACM New York, NY, USA: 2003: 171-180.
    [21] Lu G, Krishnamachari B, Raghavendra C S. An adaptive energy-efficient and low-latency MAC for tree-based data gathering in sensor networks[J]. Wireless Communications and Mobile Computing. 2007, 7(7): 863-876.
    [22]蹇强,龚正虎,朱培栋等.无线传感器网络MAC协议研究进展[J].软件学报. 2008(02).
    [23] Tan H O, K O Rpeo?lu I. Power efficient data gathering and aggregation in wireless sensor networks[J]. ACM SIGMOD Record. 2003, 32(4): 66-71.
    [24] Boulis A, Ganeriwal S, Srivastava M B. Aggregation in sensor networks: an energy--accuracy trade-off[J]. Ad Hoc Networks. 2003, 1(2-3): 317-331.
    [25] Mhatre V, Rosenberg C. Design guidelines for wireless sensor networks: communication, clustering and aggregation[J]. Ad Hoc Networks. 2004, 2(1): 45-63.
    [26] Wu Q, Rao N S V, Barhen J, et al. On computing mobile agent routes for data fusion in distributed sensor networks[J]. IEEE Transactions on Knowledge and Data Engineering. 2004: 740-753.
    [27]张书奎,崔志明,龚声蓉等.基于Bayes序贯估计的无线传感器网络数据融合算法[J].电子与信息学报. 2009(03): 716-721.
    [28]唐晨,王汝传,黄海平等.基于信息熵的无线传感器网络数据融合方案[J].东南大学学报(自然科学版). 2008(S1): 276-279.
    [29] Chen D, Varshney P K. QoS support in wireless sensor networks: A survey[C]. International Conference on Wireless Networks. 2004: 227-233.
    [30] Akkaya K, Younis M. An energy-aware QoS routing protocol for wireless sensor networks[C]. the Proceedings of the IEEE Workshop on Mobile and Wireless Networks. 2003: 710-715.
    [31] Felemban E, Lee C G, Ekici E. MMSPEED: multipath Multi-SPEED protocol for QoS guarantee of reliability and. Timeliness in wireless sensor networks[J]. IEEE Transactions on Mobile Computing. 2006, 5(6): 738-754.
    [32]无线传感器网络在军事的应用[EB/OL].http://www.21eic.com/autocontrol/pdf/sensor 091024m.pdf.
    [33] Szewczyk R, Osterweil E, Polastre J, et al. Habitat monitoring with sensor networks[J]. 2004.
    [34] Polastre J R. Design and implementation of wireless sensor networks for habitat monitoring[D]. Department of Electrical Engineering and Computer Sciences, University ofCalifornia,
    [35] Mainwaring A, Polastre J, Szewczyk R, et al. Wireless Sensor Networks for Habitat Monitoring[C]. Proceedings of the 1st ACM international workshop on Wireless sensor networks and applications. 2002: 88-97.
    [36] Cerpa A, Elson J, Estrin D, et al. Habitat monitoring: Application driver for wireless communications technology[J]. ACM SIGCOMM Computer Communication Review. 2001, 31: 20-41.
    [37] Fidelity and yield in a volcano monitoring sensor network[EB/OL]. https://www.usenix.org/ events/osdi06/tech/full_papers/werner-allen/werner-allen.pdf.
    [38] [41] Hart J K, Martinez K. Environmental Sensor Networks: A revolution in the earth system science?[J]. Earth Science Reviews. 2006, 78(3-4): 177-191.
    [39] Hu W, Bulusu N, Chou C T, et al. Design and evaluation of a hybrid sensor network for cane toad monitoring[J]. 2009.
    [40] Milenkovi C A, Otto C, Jovanov E. Wireless sensor networks for personal health monitoring: Issues and an implementation[J]. Computer Communications. 2006, 29(13-14): 2521-2533.
    [41] Bhargava A, Zoltowski M. Sensors and wireless communication for medical care[C]. Proceedings of the 14th International Workshop on Database and Expert Systems Applications. 2003: 956.
    [42] Kim S, Pakzad S, Culler D, et al. Health monitoring of civil infrastructures using wireless sensor networks[C]. Proceedings of the 6th international conference on Information processing in sensor networks. 2007: 254-263.
    [43] Stankovic J A, Cao Q, Doan T, et al. Wireless sensor networks for in-home healthcare: potential and challenges[C]. High Confidence Medical Device Software and Systems (HCMDSS) Workshop. 2005
    [44] Otto C, Milenkovic A, Sanders C, et al. System architecture of a wireless body area sensor network for ubiquitous health monitoring[J]. Journal of Mobile Multimedia. 2006, 1(4): 307-326.
    [45] Milenkovi C A, Otto C, Jovanov E. Wireless sensor networks for personal health monitoring: Issues and an implementation[J]. Computer Communications. 2006, 29(13-14): 2521-2533.
    [46] Shnayder V, Chen B, Lorincz K, et al. Sensor networks for medical care[C]. SenSys’05: Proceedings of the 3rd international conference on Embedded networked sensor systems. 2005: 314.
    [47] Tabar A M, Keshavarz A, Aghajan H. Smart home care network using sensor fusion and distributed vision-based reasoning[C]. Proceedings of the 4th ACM international workshopon Video surveillance and sensor networks. 2006: 145-154.
    [48] Chung W Y, Oh S J. Remote monitoring system with wireless sensors module for room environment[J]. Sensors \& Actuators: B. Chemical. 2006, 113(1): 64-70.
    [49] Ivanov B, Zhelondz O, Borodulkin L, et al. Distributed smart sensor system for indoor climate monitoring[C]. KONNEX Scientific Conference. 2002: 10-11.
    [50] Ferrari G, Medagliani P, di Piazza S, et al. Wireless sensor networks: Performance analysis in indoor scenarios[J]. EURASIP Journal on Wireless Communications and Networking. 2007, 2007(1): 41.
    [51] Pan M S, Tsai C H, Tseng Y C. Emergency guiding and monitoring applications in indoor 3D environments by wireless sensor networks[J]. International Journal of Sensor Networks. 2006, 1(1): 2-10.
    [52] Mahlknecht S. Energy-self-sufficient wireless sensor networks for the home and building environment[M]. Institute of Computer Technology, Technical University of Vienna. Vienna, Austria. Dissertation thesis, 2004.
    [53] Ulmer C, Yalamanchili S, Alkalai L. Wireless distributed sensor networks for in-situ exploration of mars[J]. NASA Jet Propulsion Laboratory’s Technical Report. 2001.
    [54] Bhasin K, Hayden J L, Center N G R, et al. Space Internet architectures and technologies for NASA enterprises[J]. International Journal of Satellite Communications. 2002, 20(5): 311-332.
    [55] Sharp C, Schaffert S, Woo A, et al. Design and implementation of a sensor network system for vehicle tracking and autonomous interception[J]. IEEE EWSN. 2005: 93-107.
    [56] Schmid T, Dubois-Ferriere H, Vetterli M. Sensorscope: Experiences with a wireless building monitoring sensor network[C]. Workshop on Real-World Wireless Sensor Networks. 2005
    [57] Holman R, Stanley J, Ozkan-Haller T. Applying video sensor networks to nearshore environment monitoring[J]. IEEE Pervasive Computing. 2003, 2(4): 14-21.
    [58]唐云建,梁山,冯会伟等.低功耗射频唤醒无线传感器网络设计[J].传感技术学报. 2007(10): 2328-2332.
    [59] Shan L, Yunjian T, Qin Z. Passive wake-up scheme for wireless sensor networks[C]. Second International Conference on Innovative Computing, Information and Control, ICICIC 2007. Kumamoto, Japan: 2007
    [60]于海斌,曾鹏,梁韦华.智能无线传感器网络系统[M].科学出版社, 2006.
    [61] IEEE Std P1451.5/D10.7[J]. IEEE Std P1451.5/D10.7. 2006.
    [62]中国短程无线网络通讯接轨国际标准[EB/OL]. http://www.vipcn.com/wangluojishu /wuxianjishu/ 321409.html.
    [63] Werner-Allen G, Swieskowski P, Welsh M. Motelab: A wireless sensor network testbed[C]. Information Processing in Sensor Networks, 2005. IPSN 2005. Fourth International Symposium on. 2005: 483-488.
    [64] Ertin E, Arora A, Ramnath R, et al. Kansei: A testbed for sensing at scale[C]. Information Processing in Sensor Networks, 2006. IPSN 2006. The Fifth International Conference on. 2006: 399-406.
    [65] Simulator-NS-2, The Network [EB/OL].http://www.isi.edu/nsnam/ns/.
    [66]陈敏. OPNET网络仿真[M].北京.:清华大学出版社, 2004.
    [67] Park S, Savvides A, Srivastava M B. SensorSim: a simulation framework for sensor networks[C]. Proceedings of the 3rd ACM international workshop on Modeling, analysis and simulation of wireless and mobile systems. 2000: 104-111.
    [68] Girod L, Ramanathan N, Elson J, et al. Emstar: A software environment for developing and deploying heterogeneous sensor-actuator networks[J]. ACM Transactions on Sensor Networks. 2007.
    [69] OMNET++Community Site[EB/OL].http://www.omnetpp.org/external/whatis.php.
    [70] Zeng X, Bagrodia R, Gerla M. GloMoSim: a library for parallel simulation of large-scale wireless networks[J]. ACM SIGSIM Simulation Digest. 1998, 28(1): 154-161.
    [71] Levis P, Lee N, Welsh M, et al. TOSSIM: Accurate and scalable simulation of entire TinyOS applications[C]. Proceedings of the 1st international conference on Embedded networked sensor systems. 2003: 126-137.
    [72] Perillo M, Zhao C, Heinzelman W. On the problem of unbalanced load distribution in wireless sensor networks[C]. Global Telecommunications Conference Workshops, 2004. GlobeCom Workshops 2004. IEEE. 2004: 74-79.
    [73]张重庆,李明禄,伍民友.数据收集传感器网络的负载平衡网络构建方法[J].软件学报. 2007(05): 1110-1121.
    [74] Karlof C, Wagner D. Secure routing in wireless sensor networks: Attacks and countermeasures[J]. Ad Hoc Networks. 2003, 1(2-3): 293-315.
    [75] Undercoffer J, Avancha S, Joshi A, et al. Security for sensor networks[J]. Wireless networks. 2002, 8(5): 521-534.
    [76] Perrig A, Stankovic J, Wagner D. Security in wireless sensor networks[J]. 2004.
    [77] Intanagonwiwat C, Govindan R, Estrin D. Directed diffusion: a scalable and robust communication paradigm for sensor networks[C]. Proceedings of the 6th annual international conference on Mobile computing and networking. 2000: 56-67.
    [78] Sadagopan N, Krishnamachari B, Helmy A. The ACQUIRE mechanism for efficient queryingin sensor networks[C]. Sensor Network Protocols and Applications, 2003. Proceedings of the First IEEE. 2003 IEEE International Workshop on. 2003: 149-155.
    [79] Chu M, Haussecker H, Zhao F. Scalable information-driven sensor querying and routing for ad hoc heterogeneous sensor networks[J]. International Journal of High Performance Computing Applications. 2002, 16(3): 293.
    [80] Braginsky D, Estrin D. Rumor routing algorthim for sensor networks[C]. Proceedings of the 1st ACM international workshop on Wireless sensor networks and applications. Atlanta, Georgia, USA: 2002: 22-31.
    [81] Yu Y, Govindan R, Estrin D. Geographical and energy aware routing: A recursive data dissemination protocol for wireless sensor networks[J]. UCLA Computer Science Department Technical Report, UCLA-CSD TR-01-0023. 2001.
    [82] Heinzelman W R, Chandrakasan A, Balakrishnan H. Energy-efficient communication protocol for wireless microsensor networks[C]. System Sciences, 2000. Proceedings of the 33rd Annual Hawaii International Conference on. 2000: 10-12.
    [83] Heinzelman W B, Chandrakasan A P, Balakrishnan H, et al. An application-specific protocol architecture for wireless microsensor networks[J]. IEEE transactions on wireless communications. 2002, 1(4): 660-670.
    [84] Lindsey S, Raghavendra C S. PEGASIS: Power-efficient gathering in sensor information systems[C]. Aerospace Conference Proceedings, 2002. IEEE. 2002: 3-1125.
    [85] Lindsey S, Raghavendra C, Sivalingam K. Data gathering in sensor networks using the energy*delay metric[C]. Parallel and Distributed Processing Symposium., Proceedings 15th International. 2001: 2001-2008.
    [86] Manjeshwar A, Agrawal D P. TEEN: a routing protocol for enhanced efficiency in wireless sensor networks[C]. Parallel and Distributed Processing Symposium., Proceedings 15th International. 2001: 2009-2015.
    [87] Manjeshwar A, Agrawal D P. APTEEN: A hybrid protocol for efficient routing and comprehensive information retrieval in wireless sensor networks[C]. Parallel and Distributed Processing Symposium., Proceedings International, IPDPS. 2002: 195-202.
    [88] Luo H, Ye F, Cheng J, et al. TTDD: Two-Tier Data Dissemination in Large-Scale Wireless Sensor Networks[J]. Wireless Networks. 2005, 11(1): 161-175.
    [89] Zehua Z, Xiaojing X, Xin W, et al. An energy-efficient data-dissemination protocol in wireless sensor networks[C]. World of Wireless, Mobile and Multimedia Networks, 2006. WoWMoM 2006. International Symposium on a. 2006: 10-22.
    [90] Wan C Y, Eisenman S B, Campbell A T. CODA: congestion detection and avoidance insensor networks[C]. Proceedings of the 1st international conference on Embedded networked sensor systems. 2003: 266-279.
    [91] Akan O B, Akyildiz I F. Event-to-sink reliable transport in wireless sensor networks[J]. 2005, 13(5): 1003-1016.
    [92] Ee C T, Bajcsy R. Congestion control and fairness for many-to-one routing in sensor networks[C]. Proceedings of the 2nd international conference on Embedded networked sensor systems. Baltimore, Maryland, USA: 2004: 148-161.
    [93] Rangwala S, Gummadi R, Govindan R, et al. Interference-aware fair rate control in wireless sensor networks[C]. Proceedings of the 2006 conference on Applications, technologies, architectures, and protocols for computer communications. 2006: 63-74.
    [94]鞠海玲,崔莉,黄长城. EasiCC:一种保证带宽公平性的传感器网络拥塞控制机制[J].计算机研究与发展. 2008(01): 16-25.
    [95]孙利民,李波,周新运.无线传感器网络的拥塞控制技术[J].计算机研究与发展. 2008(01): 63-72.
    [96] Pai-Hsiang H, Hwang A, Kung H T, et al. Load-balancing routing for wireless access networks[C]. INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE. 2001: 986-995.
    [97] Hui D, Han R. A node-centric load balancing algorithm for wireless sensor networks[C]. Global Telecommunications Conference, 2003. GLOBECOM '03. IEEE. 2003: 548-552.
    [98] Ruihua Z, Lin W, Shichao G, et al. A Balanced Cluster Routing Protocol of Wireless Sensor Network[C]. Embedded Software and Systems Symposia, 2008. ICESS Symposia '08. International Conference on. 2008: 221-225.
    [99] Liansheng T, Yanlin G, Gong C. A Balanced Parallel Clustering Protocol for Wireless Sensor Networks Using K-Means Techniques[C]. Sensor Technologies and Applications, 2008. SENSORCOMM '08. Second International Conference on. 2008: 300-305.
    [100] Yanlin G, Gong C, Liansheng T. A Balanced Serial K-Means Based Clustering Protocol for Wireless Sensor Networks[C]. Wireless Communications, Networking and Mobile Computing, 2008. WiCOM '08. 4th International Conference on. 2008: 1-6.
    [101] Salehpour A A, Mirmobin B, Afzali-Kusha A, et al. An energy efficient routing protocol for cluster-based wireless sensor networks using ant colony optimization[C]. Innovations in Information Technology, 2008. IIT 2008. International Conference on. 2008: 455-459.
    [102] Israr N, Awan I. Coverage Based Intercluster Communication for Load Balancing in Wireless Sensor Networks[C]. Advanced Information Networking and Applications Workshops, 2007, AINAW '07. 21st International Conference on. 2007: 923-928.
    [103] Jayashree L S, Arumugam S, Rajathi N. E/sup 2/LBC: an energy efficient load balanced clustering technique for heterogeneous wireless sensor networks[C]. Wireless and Optical Communications Networks, 2006 IFIP International Conference on. 2006: 7.
    [104] Gupta G, Younis M. Performance evaluation of load-balanced clustering of wireless sensor networks[C]. Telecommunications, 2003. ICT 2003. 10th International Conference on. 2003: 1577-1583.
    [105] He H, Yun X, Yu-E S, et al. Cluster-based load balancing multi-path routing protocol in wireless sensor networks[C]. Intelligent Control and Automation, 2008. WCICA 2008. 7th World Congress on. 2008: 6692-6696.
    [106] I-Shyan H, Cheng-Ching Y, Chiung-Ying W. Link stability, loading balance and power control based multi-path routing (SBPMR) algorithm in ad hoc wireless networks[C]. Telecommunications, 2003. ICT 2003. 10th International Conference on. 2003: 406-413.
    [107] Ganjali Y, Keshavarzian A. Load balancing in ad hoc networks: single-path routing vs. multi-path routing[C]. INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer and Communications Societies. 2004: 1120-1125.
    [108] Pham P, Perreau S. Multi-path routing protocol with load balancing policy in mobile ad hoc network[C]. Mobile and Wireless Communications Network, 2002. 4th International Workshop on. 2002: 48-52.
    [109] Hu Y C, Johnson D B, Perrig A. SEAD: secure efficient distance vector routing for mobile wireless ad hoc networks[J]. Ad Hoc Networks. 2003, 1(1): 175-192.
    [110] Hung L X, Hung L X, Sungyoung L. A coordination-based data dissemination protocol for wireless sensor networks[C]. Intelligent Sensors, Sensor Networks and Information Processing Conference, 2004. Proceedings of the 2004. 2004: 13-18.
    [111] Qing H, Qing H, Yong B, et al. An Efficient Route Maintenance Scheme for Wireless Sensor Network with Mobile Sink[C]. Vehicular Technology Conference, 2007. VTC2007-Spring. IEEE 65th. 2007: 155-159.
    [112] Donghun L, Donghun L, Soochang P, et al. Continuous data dissemination protocol supporting mobile sinks with a sink location manager[C]. Communications, 2007. APCC 2007. Asia-Pacific Conference on. 2007: 299-302.
    [113] Seung-Joon C, Ki-Hyuk K, Sang-Jo Y. An Efficient Cross-Layer Based Flooding Algorithm with Retransmission Node Selection for Wireless Sensor Networks[C]. Advanced Information Networking and Applications - Workshops, 2008. AINAW 2008. 22nd International Conference on. 2008: 941-948.
    [114] Yu-Pin H, Kai-Ten F. Cross-layer routing for congestion control in wireless sensornetworks[C]. Radio and Wireless Symposium, 2008 IEEE. 2008: 783-786.
    [115] Wang C, Li B, Sohraby K, et al. Upstream congestion control in wireless sensor networks through cross-layer optimization[J]. 2007, 25(4): 786-795.
    [116] Committee I C S L. IEEE Std 802.11 Wireless LAN Medium Access Control (MAC) and Physical (PHY) specifications[S]. 1999.
    [117] Cali F, Conti M, Gregori E, et al. IEEE 802.11 protocol: design and performance evaluation of anadaptive backoff mechanism[J]. IEEE journal on selected areas in communications. 2000, 18(9): 1774-1786.
    [118] Zheng J, Lee M J. A comprehensive performance study of IEEE 802.15. 4[J]. Sensor network operations. 2006: 218-237.
    [119] Lu G, Krishnamachari B, Raghavendra C S. Performance evaluation of the IEEE 802.15. 4 MAC for low-rate low-power wireless networks[J]. Proc. EWCN. 2004, 4.
    [120]彭刚,曹元大,钟伟军等.无线传感器网络的数据汇聚机制[J].计算机工程. 2006(06): 115-117.
    [121] TI CC2430 data sheet[EB/OL].http://focus.ti.com.cn/cn/docs/prod/folders/print/cc2430.html.
    [122]刘湘雯,侯惠峰,胡捍英.无线传感器网络基于树的能量有效路由协议[J].计算机应用研究. 2007(01): 294-296.
    [123] Tilak S, Abu-Ghazaleh N B, Heinzelman W. A Taxonomy of Wireless Micro-Sensor Network Models[J].
    [124] Qiu W, Skafidas E, Hao P. Enhanced tree routing for wireless sensor networks[J]. Ad Hoc Networks. 2008, 7(3): 638-650.
    [125] Perkins C, Royer E M, Das S R. Ad hoc On-Demand Distance Vector (AODV) Routing[J]. Internet RFCs. 2003.
    [126] Dorigo M, Stutzle T. Ant colony optimization[M]. MA : MIT Press, 2004.
    [127] Chandrasekar R, Misra S. Introducing an ACO Based Paradigm for Detecting Wildfires using Wireless Sensor Networks[C]. Ad Hoc and Ubiquitous Computing, 2006. ISAUHC '06. International Symposium on. 2006: 112-117.
    [128] Yixiong C. Load Balancing in Non-dedicated Grids Using Ant Colony Optimization[C]. Semantics, Knowledge and Grid, 2008. SKG '08. Fourth International Conference on. 2008: 279-286.
    [129]廖新飞,陶利民.基于多态蚁群系统的无线传感器网络数据聚集算法[J].计算机应用. 2007(08): 1849-1851.
    [130]耶刚强,梁彦,孙世宇等.基于蚁群的无线传感器网络路由算法[J].计算机应用研究. 2008(03): 715-717.
    [131]高利,李仁发,罗娟.基于蚁群算法的传感器网络分布式广播算法[J].计算机工程. 2007(13): 135-137.
    [132]王结太,许家栋,徐建城.基于蚁群优化算法的无线传感器网络路由协议[J].系统仿真学报. 2008(18): 4898-4901.
    [133]张曦煌,夏佳,沈玉方.一种蚁群竞争WSN能量均衡路由算法[J].计算机应用. 2007(08): 1825-1827.
    [134] Yang H, Ye F, Sikdar B. A dynamic query-tree energy balancing protocol for sensor networks[C]. Wireless Communications and Networking Conference, 2004. WCNC. 2004 IEEE. 2004: 1715-1720.
    [135]张铃,程军盛.松散的脑袋—群体智能的数学模型[J].模式识别与人工智能. 2003(1): 1-5.
    [136] Ding J, Sivalingam K, Kashyapa R, et al. A multi-layered architecture and protocols for large-scale wireless sensor networks[C]. Vehicular Technology Conference, 2003. VTC 2003-Fall. 2003 IEEE 58th. 2003
    [137]范玉妹,许尔,周汉良.数学规划及其应用[M].冶金工业出版社, 2004.
    [138]崔逊学,方红雨,朱徐来.传感器网络定位问题的概率特征[J].计算机研究与发展. 2007(04): 630-635.
    [139] Rappaport T S. Wireless Communications: Principles and Practice[M]. IEEE Press Piscataway, NJ, USA, 1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700