用户名: 密码: 验证码:
秸秆裂解炉开发与炉管内的温度场模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质热解技术是缓解能源危机的重要途径之一,也是一种有效可行的经济路线。在生物质快速热裂解的各种工艺中,反应器的类型和加热方式在很大程度上决定了产物的最终分布和生物油的质量、产率等,并且对于生产过程中条件的控制和热能的利用有重要影响。本文所做的主要内容如下:
     以改善生物油的质量和提高生物油的产率为目的,在对现有生物质快速裂解装置类型和加热方式系统分析的基础上,提出了一种新型生物质裂解反应器——下吸式移动床裂解反应器。该裂解器的整个炉膛分为预热室和燃烧室,并在两区域连接处设置导流片。采用导流整流技术控制燃气的燃烧和热气流的流动,以保证裂解炉膛内温度均一。经过传热模型计算得到裂解器的基本结构为,炉体内径1.1m,燃烧室高度3.0m,预热室高度3.0m,炉膛内设有6根相同的裂解炉管。此裂解装置用燃气、煤或生物质热裂解产生的不凝气作为热源对裂解炉炉管内的生物质进行加热,可避免采用熔盐和砂子做中间加热介质。
     在充分分析Fluent软件计算模型和算法的基础上,选取了适用于炉管内气固两相流的数学模型和具体求解方法。基于颗粒动力学理论,考虑气体与颗粒、颗粒组分以及颗粒之间的相互作用,建立了下吸式移动床裂解炉炉管内的气固两相流动模型。假设颗粒为独立的连续相,颗粒用相应的粒径、密度和弹性恢复系数、体积分数等参数表示,重点从颗粒相的能量传递、耗散以及气固相间作用考虑模型的封闭。
     采用先进的CFD模拟软件FLUENT,运用欧拉——欧拉气固两相流模型和PC—SIMPLE算法,模拟了下吸式移动床裂解反应器。在不同进口气相速度下,模拟了颗粒在变径圆管(裂解炉炉管中间设有锥形段)和单纯的直行圆管内的流动特性及管内温度分布,并对两者的模拟结果进行了比较。在相同进料量的条件下,考察了粒径大小对管内固相分布的影响。结果显示,与普通直行圆管相比,变径圆管的锥形段对流场的影响更显著。在变径圆管内,颗粒经过锥形段后其运动轨迹呈“之”型,颗粒与颗粒之间发生明显的交叉现象,返混程度较强,更利于固相颗粒之间的热传递。当气相速度为0.01m/s、平均颗粒粒径为2mm时,炉管内的温度分布满足生物质快速裂解所需温度并且颗粒的停留时间是1.4s(小于2s)可有效抑制裂解气的二次裂解。
Biomass pyrolysis is not only one of the most important way for the alleviation of energy crisis , but also an effective and feasible economic routes. Among all kinds of the technological process of biomass fast pyrolysis, the final distribution of products, the quality and yield of bio-oil, depends to a great extent on the type of the cracker and the heating method, which have a great influence on the controlling of condition in the production process and utilization of heat energy. The main research of this paper was as follows:
     To improve quality and increase yield of bio-oil, a new type reactor of biomass pyrolysis, downdraft moving bed pyrolysis reactor was proposed, based on systemic analysis of the type and heating method of biomass fast pyrolysis reactor. The pyrolysis reactor contained preheating chamber and combustion chamber and a flow deflector was set in the junction of the two chambers. The technology of stream guidance and rectification were employed to control the combustion of flue gas and the flow of thermal current in order to ensure uniform temperature in the furnace. The basic structure of the pyrolysis reactor were as followed, the inner diameter of furnace 1.1metre, the height of combustion chamber 3.0 metre, the height of preheating chamber 3.0 metre, there were six same cracking furnace tubes in the furnace. This cracker device used fuel gas, coal or non-condensable gas produced by biomass pyrolysis as the heat resource to heat the biomass in the furnace tube cracking furnace , so it could avoid the salt and sand being the heating medium.
     On the base of sufficient analysis of computational model and algorithm in Fluent software , mathematical model and specific solution were selected that applied to gas-solid flow in the furnace. Based on the kinetic theory of granular flow, in the furnace tube of downdraft moving bed cracking furnace, a mathematical model of gas-solid flow was established taking consideration of the interaction between gases and particles as well as the interaction of granular component and particles. Assuming that particle group was separate continuous phase, and the particle was expressed by corresponding parameters such as a particle diameter , density and coefficient of restitution, volume fraction, etc. Model was closed mainly from energy transfer and dissipation in particles and the interaction of gas-solid phase.
     A commercial CFD software FLUENT was used in the numerical simulation of the gas-solid flow hydrodynamic characteristics in the furnace tube by Eulerian-Eulerian multiphase models and PC-SIMPLE algorithm. The flow characteristics and temperature distribution of particles in round tube with diferent diameters and common straight-type round tube were studied when the inlet gas velocities were different, and compared these simulation results. The effect of different particle size on the distribution of the solid phase in the furnace was investigated at the same input quantity. The results showed that conical section in round tube with different diameters had a pronounced effect on its flow field comparaed with common straight-type round tube. The trajetory distribution map of these particles was like“Z”after they passed through conical section in the former, and there were obvious cross phenomena between particles and the degree of back-mixing was stronger, all these phenomena were more helpful for thermal transfer in solid particles. It was found that the temperature distribution inside the furnace would meet the temperature requirements of biomass fast pyrolysis when the gas velocity was 0.01m/s and the average particle size was 2mm. Secondary cracking of cracking gas would effectively inhibit provided the residence time of particle was less than 2s (like 1.4s).
引文
[1]程备久,卢向阳,蒋立科等.生物质能学[M].北京:化学工业出版社, 2008.
    [2] Mullen C A, Boateng A A, Hicks K B, et al. Analysis and Comparison of Bio-Oil Produced by Fast Pyrolysis from Three Barley Biomass / Byproduct Streams[J]. Energy Fuels, 2010, 24: 699-706.
    [3] Catoire L, Yahyaoui M, Osmont A, et al. Thermochemistry of Compounds Formed during Fast Py rolysis of Lignocellulosic Biomass[J]. Energy&Fuels, 2008, 22: 4265–4273.
    [4] Babu B V.Biomass pyrolysis: a state-of-the-art review[J]. Biofuels, Bioprod. Bioref., 2008, 2: 393–414.
    [5] Hertwich E G, Zhang X P. Concentrating-Solar Biomass Gasification Process for a 3rd Genera -tion Biofuel[J]. Environ.Sci.Technol., 2009, 43: 4207–4212.
    [6] FAAI J A P C.Bio-energy in Europe: changing technology choices [J]. Energy Policy, 2006, 34(3): 322-342.
    [7]吴创之,马隆龙.生物质能现代化利用技术[M].北京:化学工业出版社, 2003.
    [8]张磊.可再生资源的开发利用与我国能源的可持续发展[C].中国环境科学学会学术年会优秀论文集,中国环境科学出版社, 2007: 2039-2043.
    [9]周勇.清洁生物质秸秆能源研究进展[J].应用化工, 2005, 34(10): 595-606.
    [0]张建安,刘德华.生物质能源利用技术[M].北京:化学工业出版社, 2009.
    [1]袁振宏,吴创之.生物质能利用原理与技术[M].北京:化学工业出版社, 2005.
    [12]王琦.生物质快速热裂解制取生物油及其后续应用研究[D].浙江:浙江大学, 2008.
    [13]王娜,杨涛,韩静等.厌氧发酵生物制氢的研究进展及应用前景[J].中国农学通报, 2008, 24(7): 454-456.
    [14]宋丽,刘晓风,袁月祥等.厌氧发酵产氢微生物的研究进展[J].生物工程学报, 2008, 24(6): 933 -939.
    [15] Nandi R, Sengupta S. Microbial production of hydrogenan overview[J]. Critical Reviews in Microbiology, 1998, 24 (1): 61-84.
    [16]陈明.利用玉米秸秆制取燃料乙醇的关键技术研究[D].浙江,浙江大学, 2007.
    [17] Galbe M. Production of ethanol from biomass[J]. Journal of Scientific&Industrial Research, 2005, 64(11): 905—919
    [18]葳力斯.甜高粱固体发酵生产燃料乙醇工艺的研究[D].内蒙古,内蒙古农业大学, 2009.
    [19]姚向军,田宜水.生物质能源清洁转化利用技术[M].北京:化学工业出版社, 2005.
    [20]刘荣厚,牛卫生,张大雷.生物质热化学转化技术[M].北京:化学工业出版社, 2005.
    [21]盛梅,邬国英,徐鸽等.生物柴油的制备[J].高效化学工程学报, 2 004, 18(2): 231-236.
    [22]邬国英,林西平,巫淼鑫等.棉籽油间歇式酯交换反应动力学的研究[J].高效化学工程学报, 2003, 17(3): 314-318.
    [23] Ptasinski K J. Thermodynamic efficiency of biomass gasification and biofuels conversion[J]. Biofuels, Bio- prod.Bioref., 2008,2: 239–253.
    [24] Fushimi C, Araki K, Yamaguchi Y, et al. Effect of Heating Rate on Steam Gasification of Biomass. 1.Reactivity of Char[J]. Ind. Eng. Chem. Res.,2003, 42:3922-3928.
    [25] Ergudenler E, Ghaly A E. Quality of gas produced from wheat straw in a dual distributor type fluidized bed gasifier[J]. Biomass and Bioenergy, 1992, 3(2): 419-430.
    [26] Kuramoto K, Matsuoka K, Murakami T, et al. Cracking and Coking Behaviors of Nascent Volatiles Derived from Flash Pyrolysis of Woody Biomass over Mesoporous Fluidized-Bed Material[J]. Ind.Eng.Chem. Res., 2009, 48: 2851–2860.
    [27] Butterman H C,Castaldi M J. CO2 as a Carbon Neutral Fuel Source via Enhanced Biomass Gasification[J]. Environ.Sci.Technol. 2009, 43: 9030–9037.
    [28]王革华,艾德生.新能源概论[M].北京:化学工业出版社, 2006.
    [29] Bridgewater A V. Principles and practice of biomass fast pyrolysis processes for liquids[J]. Journal of Analytical and Applied Pyrolysis, 1999, (51): 3-22.
    [30] Al-Haddad M, Rendek E, Mauviel G, et al. Biomass Fast Pyrolysis: Experimental Analysis and Modeling Approach [J]. Energy & Fuels, 2010, 24(9): 4689-4692.
    [31] Cetin E, Moghtaderi B, Gupta R, et al. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars[J]. Fuel, 2004, 83 (16): 2139-2150.
    [32] Sensoz S, Can M. Pyrolysis of pine chips: Effect of pyrolysis temperature and heating rate on the product yields[J]. Energy Sources, 2002, 24(4): 347-355.
    [33] Garcia-Perez M, Wang X S, Shen J, et al. Fast pyrolysis of oil mallee woody biomass: Effect of temperature on the yield and quality of pyrolysis products[J].Ind. Eng. Chem. Res.,2008,47 (6): 1846-1854.
    [34] Bridgwater A V. Renewable fuels and chemicals by thermal processing of biomass[J].Chem. Eng. J., 2003, 91: 87-102.
    [35] Westerhof R J M, Kuipers N J M, Kersten S R A, et al. Controlling the water content of bio- mass fast pyrolysis oil[J]. Ind. Eng. Chem. Res., 2007,46: 9238-9247.
    [36] Bridgwater A V, Peacocke G V C. Fast pyrolysis processes for biomass[J]. Renewable Sustainable Energy ReV, 2000, 4(1): 1-73.
    [37] Demirbas A. Biomass resource facilities and biomass conversion processing for fuels and chemicals[J]. Energy Conversion &Management, 2001, (42): 1357-1378.
    [38] Rowell R M. The Chemistry of Solid Wood[M].Washington, DC: American Chemical Society, 1984.
    [39] McCarthy J, Islam A. Lignin chemistry, technology, and utilization: a brief history[C]. In Lignin: Historical, Biological and Materials Perspectives; Glasser W G., Northey R A, Schultz T P Eds.; ACSSymposium Series 742; American Chemical Society: Washington, DC, 2000: 2-100.
    [40] Demirbas A. An overview of biomass pyrolysis[J]. Energy Sources, 2002, (24): 471-482.
    [41] Bridgwater A V, Meier D, Radlein D. An overview of fast pyrolysis of biomass[J]. Organic Geochemisity, 1999, (30): 1479-1493.
    [42] Kilzer R J, Broido A. Speculations on the nature of cellulose pyrolysis [J]. Pyrodynamics, 1965, 2: 152-157.
    [43]栾敬德,刘荣厚,武丽娟等.生物质快速热裂解制取生物油的研究[J].农机化研究, 2006, 12: 206 -210.
    [44] Park H J, Park Y K, Kim J S. In?uence of reaction conditions and the char separation system on the production of bio-oil from radiate pine sawdust by fast pyrolysis[J]. Fuel Process Technol, 2008, 89(8): 797-802.
    [45] Beaumont O, Schwob Y. Influence of physical and chemical parameters on wood pyrolysis[J]. Ind. Eng. Chem. Process Des., 1984, 23: 637-641.
    [46] Maggi R, Delmon B. Comparison between slow and flash pyrolysis oils from biomass[J]. Fuel, 1994, 73(5): 671-677.
    [47] Semino D, Tognotti L. Modelling and sensitivity anlysis of Pyrolysis of biomass Partieles in a fluidized bed.Computers Chem.Engng. 1998, 22(supplementl): 5699-5702.
    [48] Di Blasi C. Kinetic and heat transfer control in the slow and flash Pyrolysis of solids. Ind.Eng. Chem.Res. 1996, 35(l): 37-46.
    [49]李水清,李爱民,严建华等,生物质废弃物在回转窑内热解研究—Ⅰ.热解条件对热解产物分布的影响[J].太阳能学报, 2000, 21(4): 333-340.
    [50] Agblevor F A, Besler S. Inorganic Compounds in Biomass Feedstocks. 1. Effect on the Quality of Fast Pyrolysis Oils[J]. Energy & Fuels 1996, 10: 293-298.
    [51] Jacco V H, Elinor L S, Johan S. Bulk chemicals from biomass[J]. Biofuels, Bioprod. Bioref., 2008, 2: 41–57.
    [52] Ebru M, Mustafa T, Nilgun C K, et al. Thermolysis Product Distribution of Solid Waste Obtain -ed FromOlive Oil Production[J]. Clean 2008, 36 (3):315–319.
    [53] Himmel M E, Ding S Y,Johnson D K, et al. Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 2007, 315(5813): 804-807.
    [54]王树荣,骆仲泱,谭洪等.生物质热裂解生物油特性的分析研究[ J ].工程热物理学报, 2004, 25 (6) : 1049- 1052.
    [55]王凤旵,王君,陈明功等.生物油的特性及其应用研究进展[J].生物质化学工程, 2008, 42(1): 34-40.
    [56] Zou S P, Wu Y L, Yang M D, et al.Thermochemical Catalytic Liquefaction of the Marine Microalgae Dunaliella tertiolecta and Characteriza- tion of Bio-oils[J]. Energy & Fuels, 2009, 23: 3753-3758.
    [57] Bramer E A, Brem G. A novel technology for fast pyrolysis of biomass: PyRos reactor [C]. Twelfth European Biomass Conference: Biomass for Energy Industry and Climate Protection; Amsterdam, The Netherlands; ETA-Florence and WIP-Munich, 2002.
    [58] Wagenaar B M, Prins W, van Swaaij W P M. Pyrolysis of biomass in the rotating cone reactor: modeling and experimental justification[J].Chem. Eng. Sci., 1995, 49: 5109-5126.
    [59] Olazar M, Aguado R, Bilbao R, et al. Thermal Processing of Straw Black Liquor in Fluidized and Spouted Bed[J]. Energy & Fuels, 2002, 16: 1417-1424.
    [60] Jablonski W, Gaston R K, Nimlos M R, et al. Pilot-Scale Gasification of Corn Stover, Switchgrass, Wheat Straw, and Wood: 2.Identification of Global Chemistry Using Multivariate Curve Resolution Techniques[J]. Ind. Eng. Chem. Res., 2009, 48: 10691-10701.
    [61]吴钦柱,周绪元,杨明中等.生物质炭化炉[P]. CN2153552Y, 1994.
    [62]王金梅,陈革新,赵培庆等.生物质连续炭化工艺研究[J].现代化工, 2009, 29(1): 300- 302.
    [63] Xie Y R, Shen L H, Xiao J, et al. Influences of Additives on Steam Gasification of Biomass. 1. Pyrolysis Procedure[J]. Energy Fuels , 2009, 23: 5199-5205.
    [64] Chaiwat W, Hasegawa I, Mae K. Examination of the Low-Temperature Region in a Downdraft Gasifier for the Pyrolysis Product Analysis of Biomass Air Gasification[J]. Ind. Eng. Chem. Res. 2009, 48: 8934–8943.
    [65]乔国朝,王述洋.生物质热解液化技术研究现状及展望[J].林业机械与木工设备, 2005, 33(5): 4-7.
    [66] Hoekstra E, Hogendoorn K J A, Wang X Q, et al. Fast Pyrolysis of Biomass in a Fluidized Bed Reactor: In Situ Filtering of the Vapors[J]. Ind. Eng. Chem. Res. 2009, 48(10): 4744-4756.
    [67] DeSisto W J, Hill II N, Beis S H, et al. Fast Pyrolysis of Pine Sawdust in a Fluidized-Bed Reactor[J]. Energy Fuels, 2010, 24: 2642-2651.
    [68] Westerhof R J M, Brilman Derk W F, van Swaaij W P M, et al. Effect of Temperature in Fluidized Bed Fast Pyrolysis of Biomass:Oil Quality Assessment in Test Units[J]. Ind. Eng. Chem.Res., 2010, 49: 1160-1168.
    [69] Bridgwater A V, Czernik S, Piskorz J. An overview of fast pyrolysis[C]. In Progress in Thermochemical Biomass Conversion, Volume2; Bridgwater A V, Ed. Blackwell Science: London, 2001: 977-997.
    [70]姜年勇,王述洋.生物质快速裂解液化工艺流程及输送系统选用[J].林业机械与木工设备, 2007, 35(1): 42-45.
    [71] Wagenaar B M, Vanderbosh R H, Carrasco J, et al. Scalling up of the rotating cone technology for biomass fast pyrolysis[C]. In 1st World Conference and Exhibition on Biomass for Energyand Industry, Seville, Spain, 2000.
    [72] Graham R G, Freel B A, Bergougnou M A. The production of pyrolysis Liquids, Gas and char from wood and cellulose by fast pyrolysis[C]. In Research in Thermodynamical Bio -mass Conversion; Bridgwater A V, Kuester J L, Eds.; Elsevier Applied Science: London, 1988: 629-641.
    [73] Peacocke G V C, Bridgwater A V. Ablative fast pyrolysis of biomass for liquids: results and analyses[C]. In Bio-oil Production and Utilization; Bridgwater A V, Hogan E H, Eds.; CPL Press: Newbury, U. K., 1996: 35-48.
    [74] Zhang H Y, Xiao R, Wang D H, et al. Catalytic Fast Pyrolysis of Biomass in a Fluidized Bed with Fresh and Spent Fluidized Catalytic Cracking (FCC) Catalysts [J]. Energy & Fuels, 2009, 23: 6199-6206.
    [75] Ingram L, Mohan D, Bricka M, et al. Pyrolysis of wood and bark in an auger reactor: Physical properties and chemical analysis of the produced bio-oils [J]. Energy & Fuels, 2008, 22(1): 614-625.
    [76] Kang B S, Lee K H, Park H J, et al. Fast pyrolysis of radiata pine in a bench scale plant with a fluidized bed: Influence of a char separation system and reaction conditions on the production of bio-oil[J]. J. Anal. Appl. Pyrolysis, 2006, 76(1-2): 32-37.
    [77] Lappas A A, Dimitropoulos V S, Antonakou E V, et al. Design construction, and operation of a transported fluid bed process development unit for biomass fast pyrolysis: Effect of pyrolysis temperature[J]. Ind. Eng. Chem. Res., 2008, 47(3): 742-747.
    [78] Diebold J P, Scahill J W. Improvements in the vortex reactor design[C]. In Developments in thermochemical biomass conversion; Bridgwater A V, Boocock D G B, Eds.; Blackie Academic & Professional: London, UK, 1997: 242-252.
    [79]杨昌炎,鲁长波.生物质热解制燃料油及化学品的工艺技术研究进展[J].现代化工, 2006, 26(4): 11-16.
    [80] Peacocke G V C. Ablative pyrolysis of biomass[D]. Birmingham, UK: Aston University, 1994.
    [81] Diebold J, Seahill J. Production of Primary Pyrolysis Oils in a Vortex Reactor[C].In: ACSSymposium, Production Analysis and Upgrading of Oils from Biomass, Denver, Co.,1987:21.
    [82] Prins W, Wagenaar B M. Review of the rotating cone technology for flash pyrolysis of biomass[C]. In Biomass gasification and pyrolysis: state of the art and future prospects; Kaltschmitt M, Bridgwater A V, Eds.; CPL Press: Newbury, UK, 1997: 316-326.
    [83] Amen-Chen C. Softwood bark vacuum pyrolysis oils phenol formal dehyde resols for bonding oriented strandboard(OSB)[D]. Quebec, Canada: Laval University, 2001.
    [84] Freel B A, Graham R G. Apparatus for a circulating bed transport fast pyrolysis reactor system [P]. U.S. Patent 5, 1999: 961-786.
    [85] Wagenaar B M. The rotating cone reactor: for rapid thermal solids processing[D]. Enschede, The Netherlands: University of Twente, 1994.
    [86] Kersten S R A. Biomass gasification in circulating fluidized beds[D]. Enschede, The Nether -lands: University of Twente, 2002.
    [87] Roy C B, lanchette D, Caumi B, et a1. Conceptual Design and Evaluation of a Biomass Vacuu -m Pyrolysis Plant[C]. In: Bridgwater A V (Eds.), Advances in Thermochemical Biomass Conversion, Blackie, 1994.
    [88]蔡晓君,王建军.管式加热炉的节能改造[J].化工设备与管道, 2002, 2: 19-20.
    [89]朱清时,阎立峰,郭庆祥.生物质洁净能源[M].北京:化学工业出版社, 2002.
    [90]蒋挺大.木质素[M].北京:化学工业出版社, 2009.
    [91]杨成源,张加研,李文政等.滇中高原及干热河谷薪材树种热值研究[J].西南林学院院报, 1996, 16(4): 294-302.
    [92]鲍雅静,李政海,韩兴国等.植物热值及其生物生态学属性[J].生态学报, 2006, 25(9): 1095 -1103.
    [93]李高扬,李建龙,王艳,等.优良能源植物筛选及评价指标探讨[J].可再生能源, 2007, 25 (6): 84- 89.
    [94]宁祖林,陈慧娟,王珠娜等.几种高大禾草热值和灰分动态变化研究[J].草业学报, 2010, 19 (2): 241-247.
    [95] Mani S, Tabil L, Sokhansanj S. Grinding performane and physical properties of wheat and barley straws, corn and switchgrass[J]. Biomass and Bioenergy, 2004, 27: 339-352.
    [96]林宗虎,魏郭崧,安恩科等.循环流化床锅炉[M].北京:化学工业出版社, 2004.
    [97]韩占忠,王敬,兰小平. FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社, 2004: 20.
    [98]温正,石良辰,任毅如. FLUENT流体计算应用教程[M].北京:清华大学出版社,2009:22.
    [99]江帆,黄鹏. Fluent高级应用与实例分析[M].北京:清华大学出版社,2008.
    [100] Horio M, Iwadate Y, Sugaya T.Dynamic behavior of cohesive granular materials in a vibrated bed[J].Power Tech.,Vol.96, 1998: 148-157.
    [101]周力行.湍流气粒两相流动和燃烧的理论与数值模拟[M].北京:科学出版社, 1994.
    [102] Ge W, Li J. In Circulating Fluidized Bed Technology V (eds,Kwauk M,Li J)[M]. Science Pre -ss, Beijing, 1996: 260-266.
    [103] Lun C K K, Savage S B, Jerey D J,et al. Kinetic Theories for Granular Flow: Inelastic Partic -les in Couette Flow and Slightly Inelastic Particles in a General Flow Field[J]. Fluid Mech, 1984, 140: 223-256.
    [104] Lebowitz J, Exact L. Solution of Generalized Percus-Yevick Equation for a Mixture of Hard Spheres[J]. The Phy Rev, 1964, 133(4A):A895-A899.
    [105] Gidaspow D. Bezbaruah R, Ding J. Hydrodynamics of circulating fluidized beds kinetic theo -ry approach. In Fluidization VII, Proceedings of the 7th Engineering Foundation Conference on Fluidization, NewYork; Potter, O. E., Nicklin, D. J., Eds.; Engineering Foundation, 1992; pp 75-82.
    [106] Ding J, Gidaspow D. A Bubbling Fluidization Model Using Kinetic Theory of Granular Flow[J]. AICHE, 1990, 36(4): 523-538.
    [107] Alder B J, Wainwright T E. Studies in Molecular Dynamics II:Behaviour of a Small Number of Elastic Spheres[J]. Chem Phys, 1990, 33: 1439.
    [108] Wen C Y, Yu Y H. A generalized method for predicting minimum fluidization velocity. AIChE J. 1966, 12 (3): 610.
    [109] Wen C Y,Yu Y H.Mechanicsoffluidization.Chem.Eng.Prog.Symp. Series 1966, 62: 100-111.
    [110] Ergun S. Fluid flow through packed columns. Chem. Eng. Prog.1952, 48 (2): 89–94.
    [111] Syamlal M, Rogers W, O’Brien T J. MFIX documentation:Theory Guide. Technical Report DOE/METC-94/1004 (DE9400087), Morgantown Energy Technology Centre, Morgantown, West Virginia(can be downloaded from the Multiphase Flow with Interphase eX-changes (MFIX) Web site, http://www.mfix.org, 1993.
    [112] Benyahia S, Syamlal M, O’Brien T J. Study of the Ability of Multiphase Continuum Models to Predict Core-Annulus Flow. AIChE J. 2007, 53 (10): 2549–2568.
    [113] Gidaspow D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions; Academic Press: New York, 1994.
    [114] Lun C K K, Savage S B. Kinetic theory for inertial flows of dilute turbulent gas-solids mixtures. In Granular Gas Dynamics;Poeschel, T., Brilliantov, N., Eds.; Springer-Verlag: Berlin Heidelberg, Germany, 2003; Vol. 624: 267-289.
    [115]俞自涛,胡亚才,洪荣华等.温度和热流方向对木材传热特性的影响[J].浙江大学学报(工学版), 2006, 40(1): 123-126.
    [116]武锦涛,陈纪忠,阳永荣.移动床中颗粒接触传热的数学模型[J].化工学报, 2006, 57(4): 719-725.
    [117] Mohan D, Pittman Jr C U, Steele P H. Pyrolysis of Wood/Biomass for Bio-oil: A CriticalReview[J]. Energy & Fuels, 2006, 20: 848-889.
    [118] Czernik S, Bridgwater A V. Overview of Applications of Biomass Fast Pyrolysis Oil[J]. Energy & Fuels, 2004, 18: 590-598.
    [119]李京京.中国生物质资源可获得性评价[M].北京:中国环境科学出版社, 1998.
    [120] Westerhof R J M,Brilman D W F, Kersten S R A, et al. Effect of condenser operation on the biomass fast pyrolysis oil[C]. 16th European Biomass Conference & Exhibition. Valencia, Spain, 2008.
    [121] Ramachandran R P B, van Rossum G, van Swaaij W P M, et al. Evaporation of biomass fast pyrolysis oil: Evaluation of char formation[J]. Environ. Progr.Sustainable Energy, 2009, 28 (3): 410- 417.
    [122] Boateng A A, Mullen C A, Goldberg N, et al. Production of Bio-oil from Alfalfa Stems by Fluidized-Bed Fast Pyrolysis[J]. Ind. Eng. Chem. Res. 2008, 47: 4115–4122.
    [123] Scott S D, Radlein J P D. Liquid products from the continuous flash pyrolysis of biomass[M]. Ind Eng Chem Process Res Dev 1985.
    [124]丁赤民,李建隆.秸秆快速热裂解过程的高效热能利用方法[P]. China Patent: CN101613613, 2009.
    [125]丁赤民,李建隆.秸秆快速热裂解产物的净化系统[P]. China Patent: CN101602953, 2009.
    [126]丁赤民,李建隆.秸秆快速热烈接生产燃料的方法及其燃料产品[P]. China Patent: CN101602954, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700