用户名: 密码: 验证码:
氧化铁高温煤气脱硫行为及助剂影响规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭是世界上最丰富的化石燃料资源,整体煤气化联合循环发电(IGCC)是二十一世纪很有发展前途的一项高效率、低污染的燃煤发电技术,它不仅能满足日趋严格的环境保护要求,而且可以显著提高发电效率。高温煤气净化脱硫是IGCC的关键技术,脱硫剂在循环使用中稳定性下降是制约高温煤气脱硫技术发展的主要问题。深入了解脱硫剂在真实脱硫过程中的脱硫行为,并充分认识脱硫剂在循环使用中的各种变化规律以及助剂对脱硫剂脱硫性能的影响有助于这一问题的根本解决。
     作者采用不同粘土作为结构助剂,以赤泥为主要原料制备高温煤气氧化铁粗脱硫剂。首先,在固定床反应器中对制备出的各种粗脱硫剂在模拟Texaco炉煤气气氛中分别进行了连续的硫化再生循环性能考察。研究表明,各种脱硫剂的硫容随硫化/再生循环次数的增加有不同程度的降低,强度则有一定程度的增加;由砖瓦粘土制备的脱硫剂MS57802不仅具有最佳的脱硫活性,还有很好的脱硫稳定性,由高岭土类粘土制备的脱硫剂循环稳定性差;脱硫反应主要发生在R>2000的粗孔中,硫容随脱硫剂中大于2000的孔所占孔容增大而增大,反之亦然,脱硫剂在循环过程中的织构变化,即孔径分布和孔容的变化是引起硫容下降的主要因素;固定床反应器在氧化铁高温煤气脱硫过程中整个床层可分硫化反应区、过渡区和还原区,三个区域随脱硫进行不断发生着迁移更替。
     对新鲜、硫化和再生后的脱硫剂进行XRD表征研究表明,由赤泥添加一定量不同粘土助剂制备的脱硫剂在煅烧过程中,铁的存在形式按温区大致可分为三个区域,常温~400℃主要为Fe_3O_4和FeO,400~700℃主要为γ-Fe_2O_3,700~800℃为γ-Fe_2O_3向α-Fe_2O_3转型。煅烧后,各脱硫剂的晶相构成都基本相似。氧化铁在脱硫剂中的存在形式为γ-Fe_2O_3和α-Fe_2O_3,二者的相对含量与脱硫剂的煅烧时间、煅烧温度有关。在Texaco炉煤气气氛中,脱硫剂在固定床反应器中的还原区被还原为Fe_3O_4,硫化后铁的晶相主要为Fe_(1-x)S、Fe_7S_8和FeS。脱硫剂再生后αFe_2O_3含量相对增加。虽然新鲜脱硫剂的晶相与再生后的晶相有明显差异,但所有脱硫剂在经过一次再生后结构稳定,晶相变化不是脱硫剂在循环使用中性能下降的主要因素。新鲜脱硫剂中有不定量的CaCO_3,CaO以高度分散的“单相”或“复合”形式存在于脱硫剂中,硫化后CaS也同样高度分散,经再生后成为CaSO_4。CaSO_4在之
    
    太原理工大学博士学位论文
    后的硫化/再生循环中参与了反应,并与HZS发生反应,形成单质硫。
     在模拟真实煤气气氛下对制备出的MS87802粗脱硫剂的还原和硫化动力学行
    为进行了热重研究和模型表征。在400一550℃温区,0.14一0.6%的硫化氢浓度范围内,
    随着温度的升高、硫化氢浓度的增加,脱硫剂硫化速率加快,在脱硫全过程未出现
    先还原再硫化的现象;改良收缩核模型可以很好地模拟高温煤气氧化铁粗脱硫剂还
    原与硫化过程,氧化铁脱硫剂还原过程的表面反应控制区大大长于硫化过程的表面
    反应控制区;在还原、硫化过程中扩散活化能高于表面反应活化能;与文献结果相
    比,MS87802的还原活化能很高,这避免了脱硫剂的深度还原,提高了脱硫剂的性
    育巨。
     通过强度、比表面积、孔容、孔径分布、XRD、DTA、FflR、开R以及TG等
    表征研究,考察了粘土助剂对氧化铁脱硫剂脱硫性能的影响,探讨了助剂的作用机
    理。研究表明:助剂对脱硫剂性能的影响主要表现在四个方面:(l)对脱硫剂织构的
    影响;(2)对本征脱硫反应性能的影响,包括还原和硫化反应;(3)对脱硫剂在循环使
    用过程中的稳定性影响;(4)对机械强度的影响。
     在脱硫剂的锻烧过程中除了有机质的燃烧分解、赤泥中铁的晶型转变外,粘土
    中各矿物组分的结构也发生改变,并伴随着产物气体的溢出,粘土事实上也起到一
    定的造孔作用,对脱硫剂的织构形成产生重要影响。
     仰R研究表明,助剂的加入使得赤泥易被还原,由不同助剂制备的脱硫剂的还
    原温度不同,引起脱硫剂还原温度差异的原因可能与其中含有的“复合铁”,特别
    是“铁钙复合物”的含量有关。脱硫剂中钙含量越高,“铁钙复合物”含量也就
    越高,就越难被氢还原,钙对氧化铁脱硫剂的影响不可忽视。对脱硫剂的还原动力
    学进行了参数估值,发现由不同助剂制备的脱硫剂其还原过程存在补偿效应。
     热重研究表明,脱硫剂在真实煤气气氛中的脱硫反应事实上是硫化与还原反应
    的叠加,反映的是综合效应。脱硫速率的快慢不仅与其活性成分的高低、比表面积
    的大小有关,更与其还原性能有重要关系。在真实煤气气氛中脱硫剂的还原程度与
    其游离态氧化铁的含量以及比表面积的大小有很好的对应关系。游离态氧化铁的含
    量越高,比表面积愈大,还原速率愈快。
     DTA和FflR的分析结果揭示了粘土和赤泥在混合高温锻烧过程中相互影响,
    
    太原理工大学博士学位论文
    赤泥中铁氧化物可以扩散溶入粘土矿物的空间格架中,活性成分最终被“囚禁”,
    并在不同脱硫剂中处于不同的化学环境。选择层间性质活跃的层状粘土矿物作为高
    温脱硫剂的助剂可以大大提高氧化铁在脱硫剂中的分散度,提高其循环稳定性。
     助剂对脱硫剂的机械强度
Coal is the most abundant fossil energy in the world. Integrated gasification combined cycle (IGCC) power generation process is an attractive option for using coal for electricity generation with a high efficiency and a low environmental pollution, and is regarded to be the most promising technology in this century. In IGCC system, removal of sulfur species (mainly H2S) is crucial for the efficient and economic coal utilization. Up to now, the main problem of high temperature coal gas desulfurization technology is the decrease of durability of desulfurization sorbents, which was considered to be a obstacle for industrial development. In order to solve this problems, it is very necessary to master the behaviors of desulfurization of the sorbents, the rules of texture changing in high temperature coal gas during cycles, and the effects of additives on the properties of desulfurizer.
    In this study, various clay were chosen as the additives of iron oxide sorbent made from redmud. First, the sorbents were each subjected to five sulfidation /regeneration cycles in a fixed-bed reactor, with simulated Texaco coal-derived gas as testing gas. The experimental results revealed a marked difference in the sulfur capacity of the sorbents, and progressive decay of sulfur capacity of all sorbents as the number of cycles increased for all sorbent. MS57802 exhibited the best in the respect of both sulfur capacity and durability. Sulfidation mostly took place in pores of radium larger than 2000A. Sulfur capacity increased with the increasing of pore volume larger than 2000A in radium. The change of texture of sorbents appeared as the main cause of the decline of sulfur capacity. It was shown that fixed-bed could be divided into sulfidation, transmitted and reduction zones, which converted to each other with the process of desulfurization.
    The mineral structures of redmud, fresh, sulfided and regenerated sorbnets were investigated by XRD. The results showed that the mineral structure of iron in sorbent changed with the calcination temperature increasing. From room temperature to 400 ℃, the main phases were Fe3O4 and FeO, 400-800 ℃ , v - Fe2O3, and the conversion of Y -
    
    
    
    Fe2O3 to alpha - Fe2O3 appeared during 700-800 ℃. In fresh sorbent gamma- Fe2O3 and a -Fe2O3 were the main phases. In the sulfided samples the most significant phases were Fe1-xS, Fe7S8 and FeS, the presence of Fe3O4 indicated the reduction of Fe2O3. CaCO3 was also detected in fresh sorbents, whereas the phase of CaO was not found indicating that CaO was highly dispersed in sorbents. Calcium sulfate formed during regeneration could react with H2S to produce sulfur in later sulfidation cycles, which means that calcium took part in every sulfidation/regeneration cycle. In all of the regenerated samples the same chemical species was detected indicating that mineral structural change was not the main cause for the decrease of sulfur capacity during multicycles.
    The microkinetics of reduction and sulfidation of the desulfurizer MS87802 in simulated Texaco coal-derived gas were studied by thermogravimetric analysis. Experiments were carried out with the powder of 180-200 mesh, at temperatures range of 400~550 ℃ , with H2S concentration 0.14-0.6%. It was found that in the overall
    sulfidation process, the rate of sulfidation was all faster than that of reduction. Improved shrinking core model can successfully describe the kinetics behavior of reduction and sulfidation. At the initial stage of reaction, sulfidation and reduction was all controlled by surface reaction rate, then the processes entered the diffusion rate controlled region at the middle and last stages. The surface reaction region of reduction was longer than that of sulfidation. It should be pointed out that diffusion activation energy was higher than the reaction energy in both reduction and sulfidation processes. Compared with literature, the activated energy of reduction was much higher, which indicating that further reduction of MS87802 could be avoided.
    Redmud, Clay and sorbents were characterized us
引文
[1] Gupta R., Gangwal S.K. and Jain S.C. 1992 Development of Zinc Ferrite for Desulfurization of Hot Coal Gas in a Fluid-Bed Reactor Energy & Fuels 6:21-27
    [2] 焦树建1995论IGCC的发展现状与趋势 燃气轮机技术8(1):1
    [3] 徐振刚1999国外煤气化联合循环发电项目概况 能源工程4:6
    [4] Gangwal S.K., Harkins S.M., Stonger J. and S.I.Bossart 1989 Testing of Novel Sorbents for H_2S Removal from Coal Gas Envron. Prog. 8(1): 26
    [5] Grindley T. and Goldsmith H. 1987 Development of Zinc Ferrite Desulfurization Sorbents for Large Scale Testing AIChE Annual meeting, Session 114d Newyork, Nov. 15-20
    [6] Lew S., Jothimurugeson K., Flytzani-steppanopoulos M. 1989 High Temperature H_2S Removal from Fuel Gases by Regenerable Zinc oxide-Titanium Sorbents Ind. Eng. Chem. Res. 28: 535-541
    [7] Lew S., Sarofim A.F. and Flytzani-steppanopoulos M. 1992 The Reduction of Zinc Titanate and Zinc Oxide Solides Chem. Eng. Sci. 47:1421-1431
    [8] Evangelos A., Efthimiadis and Stratis V. Sotirchos 1993 Effects of Pore Structure on the Performance of Coal Gas Desulfurization Sorbents Chem. Eng. Sci. 48(11): 1971-1984
    [9] Westmoreland and Harrodon D.P. 1976 Evaluation of Candidate Solids for High Temperature Desulfurizationof Low-Btu gases Environ. Sci. Techns. 10(7): 659
    [10] Oldaker E.C., Poston A.M. and Farrior W.L. 1975 Removal of Hydrogen Sulfide from Hot-low-Btu Gas with Iron Oxide-Fly Ash Sorbents Report No. METC/TPR-75 Vols Ⅰ and Ⅱ, Morgantown Energy Technology Center
    [11] Tamhankar S.S., Hasatani M. and Wen C.Y. 1981 Kinetic Studies on the Reactions involved in the Hot Gas Desulfurization using a Regenerable Iron Oxide Sorbent-Ⅰ Reduction and Sulfidation of Iron Oxide Chem. Eng. Sci. 36(7): 1181-1191
    [12] Tamhankar S.S., Hasatani M. And Wen C.Y. 1985 Kinetic Study on the Reactions Involved in Hot Gas Desulfurization Using a Regenerable Iron Oxide Sorbent-Ⅲ Reactions of the sulfided sorbent with steam and steam-air mixture Chem. Eng. Sci. 40(6): 1019-1025
    [13] Tseng S.C, Tamhankar S.S. and Wen C.Y. 1981 Kinetic Studies on the Reactions involved in the Hot Gas Desulfurization using a Regenerable Iron Oxide Sorbent-Ⅱ Reactions of Iron Sulfide with Oxygen and Surfur Dioxide Chem. Eng. Sci. 36:1287-1294
    [14] Joshi D.K., Olsen J.H., Hayes M.L. and Shah V. 1979 Hot Low-Btu Producer Gas Desulfurization in Fixed Bed of Iron Oxide-Fly Ash Report No DOE/FE-2757-3 Air products and chemicals Inc for Department of Energy
    
    
    [15] Schrodt J.T. and John Yamanis 1982 Reaction of Sulfides in Fuel Gases with the Iron Oxide in Coal Ash. Fixed-bed Experiments and Simulations Ind. Eng. Chem .Process Des. Dev. 21: 382-390
    [16] Schrodt J.T. 1980 Hot Gas Desulfurization vol Ⅰ Use of Gasifier Ash in a Fixed Bed Process U.S.DOE Report ET/10463-T2
    [17] Schrodt J.T. 1982 Design and Cost Optimization of a Hot Fuel Gas Desulfurization Process Fuel Processing Technology 6:255-267
    [18] Kiyoshi Fuda, Allan Palmer, Paul Sears, Diane Blais and Edward Fudmsky 1991 Chemical Changes Occurring During Sulphidation and Regeneration of Iron Containing Sorbents Fuel 70: 100-105
    [19] Peter J. Wakker, Albert W.G. and Jacob A.M. 1993 High Temperature H_2S and COS Removal with MnO and FeO on γ -Al_2O_3 acceptors Ind. Eng. Chem. Res. 32:139-149
    [20] Eiji Sasaoka, Masayo Sakamoto, Tomoo Ichio, Shigeaki Kasaoka, and Yusaku Sakata 1993 Reactiviy and Durability of Iron Oxide High Temperature Desulfurization Sorbents Energy &Fuels 7:632-638
    [21] Jalan V. and Wu D. 1980 High Temperature Desulfurization of Fuel Gases for Molten Carbonate Fuel Cell Power Plants National Fuel Cell Seminar, San Diego, CA
    [22] Grindley T. and Steinfeld G. 1981 Development and Testing of Regenerable Hot Coal-Gas Desulfurization Sorbents DOE/MC/16545-1125
    [23] Flytzani-Stephanopouls M.J., Gavalas G.K. and Tamhankar S.S. 1985 Novel Sorbents for High-Temperature Regenerative H_2S Removal Final Report DOE/MC/20417-1898
    [24] Gibson J.B. and Harrison D.P. 1980 The Reaction between Hydrogen Sulfide and Spherical Pellets Zinc Oxide Ind. Eng. Chem. Process Des. Dev. 19:231-237
    [25] Ranade P.V. and Harrison D.P. 1981 The Variable Property Grain Model Applied to the Zinc Oxide Hydrogen Sulfide Reaction Chem. Eng. Sci. 36:1079-1089
    [26] James B. Gibson and Douglas P. Harrison 1980 The Reaction Between Hydrogen Sulfide and Spherical Pellet of Zinc Oxide Ind. Eng. Chem. Process Des. Dev. 19:231-237
    [27] Tamhankar S.S., Bagajewicz M., Gavalas G.R., Sharma P.K. and Flytzani-Stephanopouls M.J. 1986 Mixed-Oxide Sorbents for High-Temperature of Hydrogen sulfide Ind. Eng. Chem. Process Des. Dev. 25(2): 429-437
    [28] Eiji Sasaoka 1994 Stability of Zinc Oxide High Temperature Desulfurization Sorbents for Reduction Energy & Fuel 8:763-769
    [29] Clyde S. Brooks and Recycle Metals 1990 Desulfurization Over Metal Zeolites Separation
    
    Science and Technology 25(13-15): 1817-1828
    [30] Patrick V., Gavalas G.R., Flytzani-stephanopoulos M. and Jothimurugasan K. 1989 High-Temperature Sulfidation-Regeneration of CuO-Al_2O_3 Sorbent. Ind. Eng. Chem. Res. 28: 931-940
    [31] Takashi Kyotani, Hiroyuki Kawashima, Arira Tomita, Allan Palmer and Edward Furimsky 1989 Removal of H_2S from Hot Gas in the Presence of Cu-containing Sorbents Fuel 68:74-79
    [32] Patrik Yrjas, Kristiina Lisa and Mikko Hupa 1996 Limestone and Dolomite as Sulfur Absorbents under Pressurized Gasification Conditions Fuel 75(1): 89-95
    [33] Husnu Atakiil, Peter J. Wakke, Albert W. Geritsen and Pieter J. Vanden Berg 1995 Removal of H_2S from Fuel Gases at High Temperatures using MnO/γ-Al_2O_3 Fuel 74(2): 187-191.
    [34] Husnu Atakiil, Peter J. Wakke, Albert W. Geritsen and Pieter J. Vanden Berg 1996 Regeneation of MnO/γ-Al_2O_3 used for High-Temperature Desulfurization of Fuel Gases Fuel 750): 373-378
    [35] Zeng Y., Kaytakoglu S. and Harrison D.P. 2000 Reduced Cerium Oxide as an Efficient and Durable High Temperature Desulfurization Sorbent Chem. Eng. Sci. 55:4893-4900
    [36] Zeng Y., Zhang S. Groves F.R. and Harrison D.P. 1999 High Temperature Gas Desulfurization with Element Sulfur Production Chem. Eng. Sci. 54:3007-3017
    [37] Jalan V. 1983 Studies Involving High-Temperature Desulfurization/Regeneration Reaction of Metal Oxides for Fuel Cell Development Final ReportDOE/MC/16021-86.NTIS/DE84000222 October
    [38] Pineda M., Palacios J.M. Alonso L., Garcia E. and Moliner R. 2000 Performance of Zinc Oxide Based Sorbents for Hot Coal Gas Desulfurization in Multicycle Tests in a Fixed-Bed Reactor Fuel 79:885-895
    [39] Gangwal S.K., Harkins S.M., Woods M.C., Stonger J. and Bossart S.I. 1989 Bench Scale Testing of High Temperature Desulfurization Sorbents Envron. Prog. 8(4): 26
    [40] Focht G.D., Ranrde P.V. and Horrison D.P. 1988 High-Temperature Desulfurization using Zinc Ferrite Reduction and Sulfidation Kinetics Chem. Eng. Sci. 43(11): 3005-3013
    [41] Focht G.D., Ranrde P.V. and Horrison D.P. 1989 High-Temperature Desulfurization Using Zinc Ferrite Regeneration Kinetics and Muiticycle Testing Chem. Eng. Sci. 44(12): 2919-2926
    [42] Haldipur G.B. Schmidt D.K., Smith K.J., and Lucas J.L. 1987 KRW Process Development coal Gasification/Hot-gas Clean-up In proceeding of seventh Annual Gasification and Gas Stream cleanup systems contractors Review meeting DOE/METC-87/6079 Vol.2, NTIS/DE87006496 pp 668-677
    [43] Wu J.C, Robin A. M. and Kassman J. S. 1989 Integration and Testing of Hot gas Desulfurization
    
    and Entrained Flow Gasification for Power Generation systems In proceedings of the Ninth Annual Gasification and Gas stream Cleanup System Contractors Review Meeting, DOE/METC-89-6107 Vol.1, NTIS/DE 89011706 June
    [44] Gupta R. and Gangwal S.K. 1991 Enhanced Durability of Desulfurization Sorbents for Fluidized Bed Applications Topic report to DOE/METC Report No. DOE/MC/250063011 Morgantown energy technology center, U.S. Department of Energy, Morgantown
    [45] Grindley T. 1991 Study of Fluidized-Bed Desulfurization with Zinc Ferrite Technical note, DOE/METC Report No.DOE/MC/914107 Morgantown energy technology center, U.S. Department of Energy, Morgantown
    [46] Sa L.A., Focht G.D., Ranrde P.V. and Harrison D.E 1989 High-Temperature Desulfurization using Zinc Ferrite. Solid structural property changes Chem. Eng. Sci. 44(2): 215-224
    [47] Woods M.C., Gangwal S.C., Harrison D.P. and Jothimarvgesan K. 1991 Kinetics of the Reactions of Zinc Ferrite Sorbent in High-Temperature Coal Gas Desulfurization Ind. Eng. Chem. Res. 30:100-107
    [48] Jale F Akyurtlu and Ates Akyurtlu 1995 Hot Gas Desulfurization with Vanadium-Promoted Zinc Ferdte Sorbents Gas Sep. Purif. 9(1): 17-25
    [49] Flytzani-Stephanopoulos M., Gavalas G.R., Jothimurugesan K., Lew S., Sharma P. K., Bagajewicz M.J. and Patrick V. 1987 Detailed Studies of Novel Regenerable Sorbents for High-Temperature Coal-Gas Desulfurization Final Report DE-FC21-85MC221930 October
    [50] Jain S.C. and Gupta R.P. Gangwal S.K. 1992 Removal of Sulfur from Hot Coal-Derived Fuel Gases in a High Pressure Fluidized-Bed Reactor Prepared for presentation at AIChE Spring national metting New Orieans, LA, March 29-April 2
    [51] Gupta R.P. and Gangwal S.K. 1993 High-Temperature High-Pressure Testing of Zinc Titanate in a Bench-Scale Fluidized-Bed reactor for 100 Cycles DOE/MC25006-3492 (DE94000025)
    [52] Wahab Mojtahedi and Javad Abbasian 1995 H_2S Removal from Coal Gas at Elevated Temperature and Pressure in Fluidized Bed with Zinc Titanate 1. Cyclic Tests Energy & Fuels 9: 429-434
    [53] Eiji Sasaoka, Shigeru Hirano, Shigeaki Kasaoka, and Yusaku Sakata 1994 Characterization of Riaction between Zinc Oxide and Hydrogen Sulfide Energy & Fuel 8:1100-1105
    [54] Silaban A. and Harrison D.P. 1991 The Reactivity and Durability of Zinc Ferrite High Temperature Desulfurization Sorbents Chem. Eng. Comm. 107:55-71
    [55] Lew S., Sarofim A.F. and Maria Flytzani-Stephanopoulos 1992 Sulfidation of Zinc Titanate and Zinc Oxide Solids Ind. Eng. Chem. Res. 31:1890-1899
    
    
    [56] White J.O., Groves F.R. and Harrison D.P. 1998 Element Sulfur Production during the Regeneration of Iron Oxide High-Temperature Desulfurization Sorbent Catalysis Today 40: 47-57
    [57] Ahmed M.A., Alonso L., Palacios J.M., Cilleruelo C. and Abanades J.C. 2000 Structural Changes in Zinc Ferrites as Regenerable Sorbents for Hot Coal Gas Desulfurization Solide State Ionics 138:51-62
    [58] James A. Poston 1996 A Reduction in the Spalling of Zinc Titanate Desulfurization Sorbents through the Addition of Lanthanum Oxide Ind. Eng. Chem. Res. 35: 875-882
    [59] Ramacanadran P.A. and Doraiswamy I.K. 1982 Modeling of Noncatalytic Gas-Solide Reactions AIChE J. 28(6): 881-990
    [60] Flytzani-Stephanopoulos M. 1986 Detailed Studies of Novel Regeneration Sorbents for High-Temperation Coal-Gas Desulfurization Proceeding of the Sixth Annual Meeting on Contaminant Control in Coal-Derived Gas Streams, DOE/METC/-86/6042
    [61] 郭汉贤,王恩过,梁生兆1993微量TG法研究氧化锌脱硫的催化加氢效应及动力学行为燃料化学学报21(3):261-269
    [62] 郭汉贤,王恩过,梁生兆1994 T305氧化锌脱硫剂脱除COS宏观动力学研究 自然科学进展—国家重点实验室通讯4(1):59-68
    [63] 王恩过,张拴兵,郭汉贤1993 T305脱硫剂脱除H_2S反应的宏观动力学行为 工业催化4:21-28
    [64] 张栓兵,郭汉贤,梁生兆1991 T305脱除H_2S的微观动力学 太原工业大学学报22(3):1-9
    [65] Huiling Fan, Chunhu Li, Hanxian Guo, Kechang Xie 2003 Microkinetics of H_2S Removal by Zinc Oxide in the Presence of Moist Gas Atmosphere Journal of Natural Gas Chemistry 12(1): 43-48
    [66] Hulling Fan, Chunhu Li, Kechang Xie and Hanxian Guo 2001 Kinetics of the Reaction of Hydrogen Sulfide with Zinc Oxide Desulfurization Sorbent Proceedings of the Australia-China Joint Workshop on Clean Power from Coal with Maximised Efficiency pp287-294
    [67] Evangelos A. Efthimiadis and Stratis V. Sotirchos 1993 Reactivity Evolution during Sulfidation of Porous Zinc Oxide Chem. Eng. Sci. 48(5): 829-843
    [68] 曹晏1998错流移动床反应器模拟以及床内气固相流动规律的研究 中国科学院山西煤炭化学研究所博士学位论文
    [69] Kechang Xie, Yongfa Zhang, Chunzhu Li and Daqi Ling 1991 Pyrolysis Characteristics of Macerals Separated from a Single Coal and their Artificial Mixture Fuel 79:474-479
    
    
    [70] Huiling Fan, Chunhu Li, Hanxian Guo and Kechang Xie 2001 Effect of H_2O and CO_2 on the Reaction between Zinc Oxide and Hydrogen Sulfide 11th International Conference on Coal Science San Francisco, USA, Sep. 30
    [71] 樊惠玲,郭汉贤,李春虎,谢克昌2003一氧化碳和氧对氧化锌脱硫行为的影响 复旦学报42(3):274-279
    [72] 李春虎,郭晓汾,上官炬等 常低温改性活性炭有机硫脱硫剂及制备 中国专利ZL98104969.9
    [73] 李春虎,上官炬等 常低温有机硫水解催化剂及制备 中国专利ZL97125340.4
    [74] 李春虎 李彦旭 上官炬 樊惠玲 梁生兆 沈芳 谢克昌等2000高温煤气脱硫剂研制及脱硫和再生工艺研究开发 “九五”国家重点科技攻关项目总结报告97-A26-03-02-02
    [75] 李彦旭,李春虎,郭汉贤,钟炳1998高温氧化铁脱硫剂还原硫化的热重热磁研究 燃料化学学报26(4):345-350
    [76] 李彦旭,宋靖,李春虎,郭汉贤,谢克昌21101铁钙混合氧化物脱硫剂的硫化与再生过程研究,高校化学工程学报15(2):133-137
    [77] 朴玲钰,李春虎,李彦旭2001 ZnFe_2O4高温煤气脱硫剂的还原与硫化,高校化学工程学报15(6):546
    [78] 侯相林,高荫本,陈诵英1998几种金属氧化物TPS性能比较 环境科学17(2):154-158
    [79] 张金昌,王树东,吴迪镛,付桂芝1997 Mn-Fe/γ-Al_2O_3高温脱H_2S的实验研究 煤气与热力17(5):3
    [80] 张金昌,王树东,吴迪镛,付桂芝1997 Mn-Fe/γ-Al_2O_3高温脱硫再生性能的研究 煤气与热力17(6):3
    [81] 王乃计,戴和武,谢可玉 2000 钛酸锌硫敏陶瓷高温脱硫过程中的结构及性能变化煤炭学报 25(1):91-94

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700