用户名: 密码: 验证码:
废塑料裂解制取液体燃料技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
废塑料来源广泛、危害极大且难于处理,利用其裂解制备液体燃料作为废塑料的解决办法已受到广泛关注。由于技术落后,在以往的裂解过程中存在着不能连续进料、不能连续釜底清渣、管道容易结胶和产生二次污染等问题。为此,本文开展了塑料裂解行为和催化改质特性和改质催化剂的研究,进行了废塑料、废塑料与废油、废塑料与废油及重油的裂解制取液体燃料技术的研究。
     本文通过实验证实,各种塑料均有自己的热裂解温度特性,研究其热裂解温度特性,有助于研究其它影响因素对其热裂解的影响。研究了不同的塑料在不同的温度下裂解的液体收率、残渣收率、不凝气体收率以及汽油溜分、柴油溜分和重油溜分的量。
     研究了各种反应影响条件对废塑料裂解气催化改质过程的影响,比较了各种催化剂的催化性能;实验证明,热裂解未经催化改质的产物与裂解气经催化改质后的产物组成有明显的区别。
     本文以硝酸铝、硝酸锆、尿素为原料,用共沉淀法制得以Al_2O_3为载体的ZrO_2改质催化剂;在最佳条件下,用这种催化剂所得液体油品产率高,汽油质量明显提高,且催化剂积碳率低。
     在塑料的热裂解过程中,重油的加入可以显著地改善传热传质条件,减少残渣的生成,不仅充分利用了重油,减少了结焦,而且改善了汽油的品质,汽油辛烷值大大增加。在此基础上研究了废塑料、废油及重油混合裂解制取燃料油的方法,设计了固定床反应器的裂解工艺流程。
     研究了带连续进料装置和连续出渣装置的移动床反应器技术,并以此为基础设计了整套工艺流程,建立了处理废塑料规模达1吨/小时的示范装置;该示范装置实现了废塑料裂解制备液体燃料的连续生产,得到了符合国家标准的汽、柴油产品,生产中的二次污染问题得到了较好的处理。
Waste plastic originated widely is much hazardous and difficult to dispose. As a solution for waste plastic pollution, production of liquid fuel oil by pyrolysis of waste plastics has been paid much attention. Because of old and simple technology, the problem of un-continue feed, un-continue clear the residue at the bottom of reactor, apt to coke in the pipe and the secondary pollution are existed in the production process. So the pyrolysis of waste plastic, the characteristics of catalytic reforming and reforming catalyst were studied in this thesis, the technologies of manufacture fuel oil from waste plastics, the mixture of waste plastics and used oil, and the mixture of waste plastics, used oil and heavy oil were studied, too.
    Experiment demonstrated that every kind of waste plastic has its own special characteristic of thermal pyrolysis versus temperature. Research on the characteristic is helpful to study the effect of other factors on the thermal pyrolysis of the waste plastic. The yields of liquid, carbon residue and gas, and the quantity of gasoline, diesel and heavy oil generated by pyrolysis of different kinds of waste plastic at different temperature were studied.
    Effects of variety of condition on the process of catalytic reforming were studied in the thesis, the performance of kinds of catalyst were compared to each other, too. Experiment showed that the product components of catalytic reforming are distinctively different from that of thermal pyrolysis.
    Taken Al (NO3)3, Zr(NO3)4, and (NH2)2 CO as material, the reforming catalyst with Al2O3 as carrier and ZrO2 as main component was prepared. Research demonstrated that, in the course of catalytic reforming of the product from the pyrolysis of waste plastics, with this catalyst used, the yield of oil is high, the quality of gasoline is improved obviously, and what's more, the coking rate is low.
    In the course of thermal pyrolysis of waste plastics, addition of heavy oil can obviously improve the heat transfer and mass transfer and decrease the residue production. So this technology can make better use of heavy oil, decrease the coking, and improve the quality of gasoline with the great increase of RON. On the basis of this research, the technique of production fuel oil from the mixture of waste plastic,
    
    
    waste oil and heavy oil was studied, and the pyrolysis process with fixed bed as reactor was designed.
    Fluidized bed technology with equipment of continuous feed and residue removal was studied. On the basi
    s of this research, the whole process for the technology was designed, and demonstration production facility was established, which dispose of the mixed waste plastics at the rate of 1 t/h. Through the facility, the continuous production of fuel oil by pyrolysis of waste plastic was achieved, the gasoline and diesel met national standard were produced, and the problem of the secondary pollution met in the product was properly solved.
引文
[1] 1994,45(6):23.
    [2] 丁言行.我国塑料工业现状和发展.当代石油化工,2002,10(1):15-18.
    [3] Audet C, Langlet B. Plastic waste management: Disposal, recycling, and reuse (ed. Mustafa N). Marcel Dekker, 1993,141.
    [4] Carroll W F, Goodman D. Plastics Recycling:Products and Processes (ed. Ehrig R.J). Hanser Publisher, 1992,136.
    [5] 村田德治.现代化学.1991,(12):54;1992,(1):42.
    [6] Moser M L, Lee D O. A fourteen-year survey of plastics ingestion by western North Atlantic seabirds. Colonial Waterbirds, 1992, 15(1): 83-94.
    [7] Robards M D. Increasing frequency of plstic particles ingested by seabirds in the Subbartic North pacific. Mar. Pullut. BuU., 1995, 30(1): 151-157.
    [8] Arnould J P, Croxall J P. Trends in entanglem of Antarctic Fur Seal(Arctocephalus gazella) in mam-made debris at South Georgia. Mar. Pullut. Bull., 1995, 30(4):707-712.
    [9] 蔡中丽,李细峰.环境科学进展.1997,5(4):41-48.
    [10] Nash A D. Impacts of marine debris on subsistence fisherman: a exploratory study. Mar. Pullut. Bull., 1992, 24(3):586-592.
    [11] 安琼.塑料对农业生态系统的污染及防治.农业生态环境,1996,12(2):44-47.
    [12] 包永忠,朱慧芳.废塑料的回收利用.2002,20(3):11-14.
    [13] Wagner J P, El-Ayyoubl M A, Konzen R B. Heavy-metals emission from controlled combustion of polyvinyl chloride plastics. Polym-plast. Technol. Eng., 1991, 30(8): 827-851.
    [14] Karasak F W, Viau A G, Guiocbon, G, Gonnord M F. Gas chromalographic mass-spactromatric study on the formation of polychlorinaled dibenzo-para-dioxins and polychlorobenzenes from polyvinyl chloride in a municipal incinerator. J. Chromatogr., 1983, 270: 227-234.
    [15] Collegman R T, Carroll W F, Figbbein L. Vinyl industry Response to environmental concern about PVC in Municipal Solid Waste. Energy Progess, 1988, 8(3):148-153.
    
    
    [16] William F, Carroll W F. PVC and incineration. J.Vinyl. Technol., 1988, 10(2):90-94.
    [17] Akira M. Chemical recycling polymer. 1997, 46(6):406-410.
    [18] 森本尚夫.复合材料废弃物的再资源化技术.高分子加工,1997,46(2):88-93;46(4):184-187.
    [19] Scott D S, Czemik SR. Fast pyrolysis of plastic wastes. Energy and fuels. 1990,4(4):407-411.
    [20] 周继承.废旧聚苯乙烯泡沫塑料的回收利用.化学世界,1995,(2):63-67.
    [21] Scott D S, Majerski P, Piskorz J. Production of liquid fuels from waste plastics. Canadian Journal of Chemical Engineering, 1999, 77(5): 1021-1027.
    [22] Ciocco M V, Cugini A V, Wildman D J, et al. Rheology of coal/waste coprocessing mixtures. Powder Technology, 1997, 94(3): 207-210.
    [23] Collin G, Bujnowska B, Polaczek J. Co-coking of coal with pitches and waste plastics. Fuel Processing Technology, 1997, 50(2-3): 179-184.
    [24] Feng Z, Zhao J, Rockwell J, et al. Direct liquefaction of waste plastics and coliquefaction of coal-plastic mixtures. Fuel Processing Technology , 1996, 49(1-3): 17-30.
    [25] 张元琴,黄勇.国内外降解塑料的研究进展.化学世界,1999,(1):3-8.
    [26] 熊汉国,曾庆想,国内降解塑料的生产现状及发展中应注意的问题.化工环保,2000,20(3):15-17.
    [27] 冀星,钱家冀,王剑秋等.我国废塑料油化技术的应用现状与前景.化工环保,2000,20(6):18-22.
    [28] 张秀霞,周家顺.聚乙烯塑料类固体废弃物热裂化研究.上海环境科学,1999,18(7):325-327.
    [29] 万升龙,王剑秋.聚烯烃塑料降解特性研究.石油炼制与化工,1997,28(9):41-42.
    [30] Songip A R, Masuda T, Kuwanhara H, et al. Production of High-Quality Gasoline by Catalytic Cracking over Rare-Earth Metal Exchanged Y-type Zeolite of Heavy Oil from Waste Plastics. Energy and Fuels, 1994, 18(1): 136-140.
    [31] Songip A R, Masuda T, Kuwanhara H, et al. Kinetic Studies for Catalytic Cracking of Heavy Oil Heavy Oil over REY Zeolite. Energy and Fuels, 1994,18(1): 131-135.s
    
    
    [32] Masuda T, Kuwahara H, Mukai S R, Hashimoto K. Production of high quality gasoline from waste polyethylene derived heavy oil over Ni-REY catalyst in steam atmosphere. Chem. Eng. Sci., 1998, 54(13): 2773-2779.
    [33] Walendziewski J, Steininger M. Thermal and catalytic conversion of waste polyolefines. Catalysis Today, 2001, 65(2-4): 323-330.
    [34] McIntosh M J, Arzoumanidis G G, Brockmeier F E. Recovery of fuels and chemicals through catalytic pyrolysis of plastic wastes. Environmental Progress, 1998, 17(1): 19-23.
    [35] Sakata Y, Uddin A, Muto A, Koizumi K, et al. Thermal and catalytic degradation of municipal waste plastics into fuel oil. Polymer Recycling, 1996, 2(4): 309-315.
    [36] 邓蜀平,张健民,王洋.我国废塑料回收利用技术的发展.化工环保,1995,15(6):338-342.
    [37] 曹志荣.流化床在废塑料回收生产中的应用.化学世界,1999,(8):444-446.
    [38] 刘以荣.废聚苯乙烯的化学回收方法.化工环保,1998,18(6):332-337.
    [39] Zhu J X, Yu Z Q, Jin Y, Grace J R, Isangya A. Cocurrent downflow Circulating Fluidized Bed (Downer) Reactors—A State of the Art Review. The Canadian Journal of Chemical Engineering, 1995, 73(11): 662-675.
    [40] Zeng G M, Yuan X Z, Hu TJ, Yan G. Application Study on the Manufacture of Liquid Fuel by Catalytic Cracking Waste Plastics in Fluidized Bed. Energy Resource, ACCEPTED.
    [41] Wey Ming-Yen, Lo Cheng-Shing, Wu Shu-Yii, Lee Ying-Tso. Operating parameters of autothermal pyrolysis of plastics waste in a fluidized bed. Waste Management and Research, 1998,16(1): 72-82.
    [42] Jürgen M, Helmut P, Hans(?)rg S. Recycling plastics. Chemistry and Industry, 1977, 16(6):570-573.
    [43] Veba P G. Apparatus for recovery of fuel oils from waste foam plastics treatment. Umwelt, 1993, 23(5): 301-302.
    [44] Botom P G. Syestem of thermal decomposition of waste plastics for oil manufacture. Chemical Week, July 21,1993.
    [45] Ono T, Tabele G, Kobayashi A, Matsuda A. Manufacture of aromatic hydrocarbon oils by pyrolysis of waste polyolefinic plastics. JP 04 180995,1991.
    
    
    [46] Ono T, Hirota T. Manufacture of low-boiling hydrocarbon oils. JP 0386790,1991.
    [47] Gotanda B S. Waste plastic treatment accompanied with no environmental pollution and thermal decomposition apparatus. Waste Manage Res, 1993, 11(4):319-332.
    [48] Yamaguchi T. Apparatus for oil production from pyrolysis of waste plastics. JP 0450 292,1992.
    [49] Kurata H. Light oils from pyrolysis waste plastics. JP 05 279 673,1994.
    [50] Kurata H. Apparatus for production of heavy fuel oils from waste plastics. JP 05279 672,1994.
    [51] Kaminsky W, Menzel J, Sinn H. Method for aromatic hydrocarbon recovery from waste plastics. Cons. Rec., 1976,1.
    [52] Potts J E. In paper presented before the division of water, air and waste chemistry. ACS, Chicago, 1970.
    [53] Nishioka J. Apparatus for oil recovery from pyrolysis of waste plastics. JP 08 188 788,1996.
    [54] Takahashi T, Tanimoto Y. Thermal decomposition of plastic wastes using catalysis. EP 555 833,1993.
    [55] Kastner H, Kaminsky W. Recycle plastics into Feedstocks. Hydrocabon process, 1995, 74(5):109-112.
    [56] 杨震,张蕙珍,王毓秀.CN1164542A,1997.
    [57] 松原恒,牧原洋,长谷川繁夫.CN1157296A,1996.
    [58] 唐敖庆.高分子反应统计动力学.科学出版社,北京,1985:366.
    [59] 冀星,王剑秋,钱家冀.等温相继气相色谱法研究聚丙烯的热裂解.石油化工,1999,28(2):82-86.
    [60] 冀星,刘以荣,王剑秋,钱家冀.等温相继气相色谱法研究高密聚乙烯的热裂解.中国环境科学,1999,19(4):301-305.
    [61] Wu C H, Chang C Y, Hor J L, et al. On the thermal treatment of plastic mixtures of MSW: Pyrolysis kinetics. Waste management(N.Y), 1993, 13(3):221-235.
    [62] Willems P A, Freoment G F. Kinetics modeling of the thermal cracking of hydrocarbons.2. Calculation of Activation Energies. Ind Eng Chem Res, 1988,(27): 1966-1971.
    [63] Ursel H. Determination of the gasification kinetics of plastics with the aid of an
    
    isothermally operating circulating reactor. Fortschr.-Ber. VDI, Reihe, 1997, 48(5): 1-170.
    [64] 角仕云,余建川,祝京旭,M 衣库拉.液态废塑料热裂化转换过程动力学的研究与模型化.四川化工与腐蚀控制,1999,2(2):28—31.
    [65] Weekman V W. Kinetic and dynamics of catalytic cracking selectivity in fixed-bed reactors. Ind. Eng. Chem., Process Des. Dev., 1969, 8(3):385-391.
    [66] Oliveira L L, et al. Catalytic kinetic models: Parameter estimation and model evaluation. Ind. Eng. Chem.Res., 1989, 28(3):264-271.
    [67] Leidner J. Plastic waster. Recycling of economic value. Marcel Dekker, 1981, 64.
    [68] Allen N S. Degradation and stabilization of polyolefines. Applied Science Publishers, 1983
    [69] 芊振明,高忠爱,祁梦兰,吴天宝.固体废物的处理与处置(修订版).高等教育出版社,北京,1993:209—228.
    [70] Zhou J, Zhang X. Co-processing of waste polyethylene with vacuum residue in delayed coking process. Preprints, 1998, 43(1): 194—198.
    [71] 冀星,王剑秋,钱家冀.聚乙烯聚丙烯树脂及废料的裂解.环境科学,1999,20(5):82—85.
    [72] 杨震,江勇,王世明等.废聚苯乙烯热降解回收苯乙烯单体的研究.环境科学,1997,18(2):43—45.
    [73] Ohkita H, Nishiyama R, Tochihara Y, et al. Acid Properties of silica-alumina catalysts. Bull .Chem. Soc. Jpn., 1983, 56(9):2768—2773.
    [74] Songip A R, Masuda T, Kuwahara H, Hashimoto K. Test to screen catalysts for reforming heavy oil from waste plastics. Appl. Catal. B. Environ., 1993, (2):153—164.
    [75] Songip A R, Masuda T, Kuwahara H, Hashimoto K. Production for producing hydracabon catalytic cracking over REY zeolites of heavy oil from waste plastics. Energy and Fuels, 1994, 8(1): 136—140.
    [76] 杨震,乔维川,张晋华,王世明等.聚烯烃类废塑料热分解技术中催化剂的选择和机理初探.环境科学,1998,19(5):48—51.
    [77] Uemichi Y, Kashiwaya T, Tsukidate M, et al. Product distribution of polypropylene over silica-alumina and CaX zeolite catalysts. Bull. Chem. Soc. Jpn., 1983, 56(9):2768—2773.
    
    
    [78] Dufaud V, Basset J M. Catalytic hydrogenolysis at low temperature and pressure of polyethylene and polypropylene to diseles or lower alkanes by a zirconium hydride supported on silica-alumina: A step toward polyolefin degradation by the microscopic reverse of Ziegler-Natta polymerization. Angew. Chem. Ind. Ed., 1998, 37(6):806—810.
    [79] 李稳宏,李迓红.废塑料降解工艺过程催化剂的应用研究.石油化工,2000,29(5):344—346.
    [80] 冀星,王剑秋,钱家冀.聚丙烯油化催化剂的研制与性能.石油化工,1999,28(10):681—685.
    [81] Arandes J M, Abajo I, Valerio D L, et al., Thermodynamic simulation pyrolysis of plastics at elevated temperatures. Ind. Eng. Res., 1997, 36(11):4523—4529.
    [82] 席国喜,梁蕊,汤清虎,李靖华.废聚苯乙烯裂解催化剂的筛选及工艺条件的优化.环境科学研究,1999,12(3):60—61.
    [83] 毕明树,王淑兰,丁信伟.废塑料油化技术综述.节能,2000,(3):40—41.
    [84] 许翩翩,张藩贤.废旧塑料催化裂解制备汽油.1998,18(1):20—24.
    [85] 林风治等.日本化学会志.1984,(6):1060—1065.
    [86] 张敬畅,曹维良.用碳化铁超微粒子催化剂F-T合成催化性能的评价及反应.石油化工,1996,(5):311—314.
    [87] 王亚明.云南化工,1995,(1):15—18.
    [88] 杨军,柴亮等.超细非晶态Ni-B催化剂的制备及催化性能研究.化学学报,1994(52):54-58.
    [89] 胡小玲,王秀山,姚秀之.磷酸钴铝分子筛的合成、结构与性能研究.石油化工,1996,(7):165-169.
    [90] 韩淑云,孙学平等.磷酸钴镁分子筛的合成与表征.石油化工,1996,(7):470-474.
    [91] Burton J J, Robert R C著,林西平译.新兴催化材料.石油工业出版社,北京,1984:94.
    [92] J. J. Burton, R.CRobert 著.林西平译,新兴催化材料.石油工业出版社,北京,1984:235.
    [93] 胡长文,刘彦勇等.新型层柱催化剂ZnAl-XWllZ的脂化催化活性.1996,(3):23-26.
    [94] 冀星.废聚乙烯的油化工艺.化工环保,1998,18(4):215—219.
    
    
    [95] 冀星,钱家鳞,王剑秋.聚乙烯及其废料油化技术中催化剂的研制与性能研究.环境化学,1999,18(5):437—443.
    [96] CN1077479A, 1993.
    [97] Kurata H. JP.05279672, 1993.
    [98] Takao M, Hiroshi K, Shin R, et al. Production of high quality gasoline from waste polyethylene derived heavy oil over Ni-REY catalyst in steam atmosphere. Chemical Engineering Science, 1999, (54):2773—2779.
    [99] Uemichi Y, Hattori M, Itoh T, Nakamura J, Sugioka M. Deactivation beha-viors of zeolite and silica-alumina catalysts in the degradation of polyethylene. Industry and Engineering Chemistry Research, 1998, 37(3):867—872.
    [100] Walendziewski J, Steininger M. Thermal and catalytic conversion of waste polyolefine. Catalysis Today, 2001, (65):323—330.
    [101] 杨先春. CN 1106371A, 1995.
    [102] 胡长文,刘彦勇等,新型层柱催化剂ZnAl-XWllZ 的脂化催化活性.1996,(3):23-26.
    [103] Yanik J, Uddin M A, Sakata Y. The effect of red mud on the liquefaction of waste plastics in heavy vacuum gas oil. Energy and Fuels, 2001, 15(1):163—169.
    [104] 薛福连.废塑料生产汽油、柴油的工艺及设备.中国物资再生,1999,(6):12—13.
    [105] 山口进明.特开昭49-93326,1973.
    [106] 郭宝森.CN1084156A,1994.
    [107] 罗新明,CN1039577A,1990.
    [108] 杨祖荣.CN1105351A,1995.
    [109] 张建荣,薛苏生.催化剂在废塑料热裂解回收燃料油和化学晶中的作用.环境科学动态,1999,(3):21—23.
    [110] 谢朝刚.制取低碳烯烃的催化裂解催化剂及及工业应用.石油化工,1997,(12):825-828.
    [111] 沙颖逊,崔中强等.重油直接裂解制乙烯的HCC工艺.石油炼制与化工,1995,(6):9-14.
    [112] 张国华.国外研制多种原料的催化裂解工艺.石油化工动态,1996,(9):11.
    [113] 施志诚.CRP-1催化裂解催化剂的研究与开发.石油炼制与化工,1996,(4):1-4.
    
    
    [114] 施志诚.CIP-1催化裂解催化剂的研究.工业催化,1996,(2):30-34.
    [115] 杨勇刚,罗勇.DCC-Ⅱ型工艺的工业应用和生产的灵活性.石油炼制与化工,2000,(4):1—7.
    [116] 沙颖逊,崔中强等.重油直接裂解制乙烯的的LCM-5催化剂的研究.石油炼制与化工,2000,(1):29-32.
    [117] 徐亚贤,崔红,杨忠生.填充柱气相色谱法快速分析石脑油中的烷烃、环烷烃和芳烃的含量.石油化工,1993,22(7):475-480.
    [118] 张韧坚.气相色谱自动测定汽油组成.分析试验室,1993,12(5):78-80.
    [119] Diehl J W, Finkbeiner J W, Disanzo F P. Determination of benzene, toluene, ethylbenzene, and xylenes in gasolines by gas chromatographyl deuterium isotope dilution fourier transform infrared spectroscopy. Anal. Chem., 1993, 65,2493-2496.
    [120] Lovasic G P, et al. Determination of catalytic reformed gasoline octane number by high resolution gas ckromatography. Fuel, 1990, 69(4): 525.
    [121] Hooper J B. Natural gas and refined products. Anal. Chem., 1993, 65(2):189-192.
    [122] 徐亚贤,周云琪,靳昆.气相色谱法和库仑法联合测定含烯汽油的烃族组成.色谱,1992,10(2):113-115.
    [123] 朱彭龄.高效液相色谱在石油族组成分析中的应用.1992,21(9):632-636.
    [124] Akhlaq M S. Rapid group-type analysis of crude oils using high-performance liquid chromatography and gas chromatography. J. Chromatography, 1993, 64(4):253-258.
    [125] Durand J P, Boscher Y. On-line chromatographic analyzer for determining the composition and octane number of reforming process effluents. 1990, 509(1):47-52.
    [126] 廖珊,陈东华.毛细管气相色谱测定汽油的八项质量指标.石油化工,1993,22(6):404-408.
    [127] 李瑞峰,王雅婧.毛细管柱气相色谱法测定焦化柴油中α-烯烃、正构烷烃.化学世界,1994,35(7):370-372.
    [128] 朱俊章,王培荣.原油中nC4-nC14馏份峰的色谱鉴定及地质应用初探.色谱,1994,12(5):336-341.
    [129] 武杰,陆婉珍.程序升温毛细管气相色谱分析180℃以前直馏汽油中单体烃.
    
    分析化学,1984,12(7):572-578.
    [130] 赵藻藩,周性尧,张焐铭,赵文宽.仪器分析,高等教育出版社,1992,367.
    [131] 周曦亚,欧阳世蓊,程吉平.液相共沉淀法制Al2O3超细粉过程及防团聚措施.华中理工大学学报(自然科学版),1996,24(7):78—82.
    [132] 何国新,祝丽华,张洁尧,杜海清.表面活性剂在溶胶—凝胶法制备超细氧化物粉末中的作用.硬质合金,1993,10(2):69—73.
    [133] 梁汉昌 主编.石油化工分析手册.北京:中国石化出版社,2000年,393-405.
    [134] 刘维桥,孙桂大编著.固体催化剂实用研究方法.北京:中国石化出版社,2000年,46~49.
    [135] 孙桂大,闫富山主编.石油化工催化作用导论.北京:中国石化出版社.2000年,86.
    [136] Kajdas C. Majior pathways for used oil disposal and recycling. TriboTest, 2000, 7(1):61-74.
    [137] 李西昌,晏双利.废油的污染及防治对策.中国物资再生,1999,(3):24-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700