用户名: 密码: 验证码:
生物质焦油催化转化新型催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质能作为一种环境友好型的可再生能源,是目前唯一有望能在将来替代传统化石能源的新能源。生物质气化技术是生物质能转化的最有效途径之一。但是在生物质气化过程中,不可避免的产生生物质焦油。生物质焦油不仅能堵塞传输管道,影响气化系统的正常运行,而且对环境及人体健康都有严重的威胁。因此,生物质焦油是影响生物质气化技术推广应用的致命弱点。
     本文对国内外生物质焦油脱除技术做了详细的阐述及比较,从中得出结论,催化转化法是生物质焦油脱除的最有效途径。而催化剂的选择是生物质焦油催化转化的重要因素,催化剂的催化活性和寿命是催化剂性能的重要标志。从经济和技术的角度考虑,镍基催化剂被认为是生物质焦油催化转化的最理想催化剂。
     本文以筛选催化活性高,抗积炭能力强的新型催化剂为主要目的,对生物质焦油的催化转化做了一系列的实验研究,获得了充实的数据,并对数据进行整理和详细的分析。在对真实生物质焦油催化转化之前,先以甲苯和苯作为生物质焦油模拟化合物,在微型反应装置上对自制的两类镍基镁橄榄石催化剂进行性能测试。首先考察了活性中心镍和助剂铈的负载量对催化剂性能的影响,同时考察了反应条件温度及水碳比对甲苯催化转化的影响。结果显示,CeO_2促进的镍基镁橄榄石催化剂有较好的催化性能,在测试条件下,1%Ce-3%Ni/Olivine催化剂有最好的催化活性,在反应温度为800℃,水碳摩尔比为5的条件下,对甲苯的转化率为88.2%。在此催化剂的基础上,考察了碱性助剂镁的添加对催化剂的催化活性和抗积炭能力的改善情况,同时考察了助剂添加次序的不同所带来的影响。结果显示,镁的添加能显著提高催化剂的抗积炭能力,不同的浸渍次序对催化剂的活性有较大影响;在同等条件下,依次浸渍镁、铈、镍的催化剂有最高的催化活性,在测试条件下,1%Mg-1%Ce-3%Ni/Olivine在反应温度为800℃,水碳摩尔比为3.5时有最好的催化活性,对甲苯和苯的转化率分别为93.8%和76.9%。
     为了进一步提高生物质燃气中焦油的催化脱除水平,设计了一套生物质气化和相配套的燃气整体催化净化实验装置,对自行合成的催化剂性能作进一步的验证。实验是以松木锯末为原料,考察了不同的气化条件对气化气中气体组分及焦油含量的影响。同时,以生物质气化产生的整体燃气作为生物质焦油的来源,对自制的1%Ce-3%Ni/Olivine催化剂进行性能测试,并对催化剂的添加以及催化转化过程中蒸气的添加对生物质焦油催化转化前后的气体成分和生物质焦油含量的影响进行分析。结果显示,在催化床温度为750℃,有蒸汽加入的条件下此催化剂对重焦油的脱除效率能达到90%,并且能使H_2的浓度增加6~7%。
As an environment-friendly and renewable resource, biomass is only one of the promising substitutions of fossil fuels at present. The gasification is one of the effective technologies for its conversion. However, the gasification process is inevitably accompanied by the formation of tar. The condensable compounds that present in tar not only cause conglomeration and sediment in the gasification equipment and gas transporting line, but also threat the environment and health of man. Therefore, the tar affects the extensive utilization of the technology of the biomass gasification.
     A review of current researches and development of biomass tar destruction is given in this thesis, from which the conclusion can be drew that the catalytic steam reforming of tar is the most effective method to suppress the problem. The choice of catalysts is the important factor of the catalytic reforming of biomass tar, and the reaction activity and life span are the chief performance factors of catalyst. From economical and technical considerations, nickel-containing catalyst appears to be the most appropriate choice.
     In the aim of the choice for the new catalysts possessing higher reaction activity and better function to prevent coking, a series of experiments were carried out, from which the useful and systematical data were studied. At first, the performance of two series of synthesized nickel-containing olivine catalysts was investigated using toluene and benzene as model biomass tar. The effects of the content of Nickel and Cerium impregnated olivine and the reaction condition on toluene catalytic reforming were investigated. The results showed: for 1 % Ce-3 % Ni/Olivine catalyst, the conversion efficiency of toluene is 88.2% at the temperature of 800℃and the steam to carbon (s/c) of 5. And then on the basis, the effects of the addition of the basic promoter Mg and the different impregnating order of promoter were examined. The results showed that the catalysts of adding the basic promoter possessed better function to prevent coking. Impregnating order of promoter affected the reaction activity seriously. The catalyst of sequentially impregnating Mg, Ce, Ni exhibited higher catalytic activity under the same condition. For 1%Mg-1%Ce-3%Ni/Olivine catalyst, the conversion efficiencies of toluene and benzene were 93.8% and 76.9% respectively at the temperature of 800°C and the steam to carbon (s/c) of 3.5.
     In order to eliminate the formation of the tar derived from the gasification of biomass, a set of apparatus that used for the gasification of biomass and the corresponding catalytic reforming of tar was set up. The further tests for synthesized catalysts were conducted in this apparatus. The effects of the reaction condition on the composition of gas and the content of biomass tar were determined. At the same time, the performance of synthesized 1%Ce-3%Ni/Olivine catalyst was researched using the producer gas derived from biomass gasification, and changes in gas composition and the tar content by the addition of catalyst and the steam were also analyzed in this study. The catalyst proved effective and the conversion efficiency of heavy tars was 90% in the presence of steam and at the temperature of 750℃, and hydrogen yield also increased 6~7%
引文
[1] J. Han, H. Kim. The reduction and control technology of tar during biomass[J]. Renewable and Sustainable Energy Reviews (2006), doi: 10. 1016/j. rser. 2006. 07. 015.
    [2] 丛德奇,侯金华,金花.生物质能开发与吉林省利用现状研究[J].农业与技术,1999,19(6):1-4.
    [3] 郭庆杰,张锴,刘振宇等.生物质的流化床转化[J].煤炭转化,1998,21(3):33-37.
    [4] 张瑞芹,魏新利.生物质衍生的燃料和化学物质[M].郑州:郑州大学出版社,2004:2-3.
    [5] 蒋剑春.生物质能源应用研究现状与发展前景[J].林产化学与工业,2002,22(2):75-80.
    [6] 杨立忠,杨钧锡,别义勋.新能源技术[M].北京:中国科学技术出版社,1994.
    [7] 吴创之,马隆龙.生物质能现代化利用技术[M].北京:化学工业出版社,2003.
    [8] 吴创之,阴秀丽,刘平等.生物质焦油裂解的技术关键[J].新能源,1998,20(7):1—5.
    [9] C. M. Kinoshita, Y. Wang, J. Zhou. Tar Formation Under Different Biomass Gasification Conditions[J]. Analytical and Applied Pyrolysis, 1994, 29 (2): 169-181.
    [10] C. Brage, Q. Yu, G. Chen, et al. Tar evolution profiles obtained from gasification of biomass and coal[J]. Biomass and Bioenergy, 2000, 18 (1): 87-91.
    [11] A. Demirbas. Biomass Resource Facilities and Biomass Conversion Processing for Fuels and Chemicals[J]. Energy Conversion and Management, 2001, (42): 1357-1378.
    [12] A. Ganesh, R. Banerjee. Biomass Pyrolysis for Power Generation-A Potential Technology[J]. Renewable Energy, 2001, (22): 9-14.
    [13] 刘圣勇,张杰.生物质气化技术现状及应用前景展望[J].资源节约与综合利用,1999,(2):24-27.
    [14] 刘亚军.生物质焦油催化裂解实验及中热值气化技术应用研究[D].杭州:浙江大学,2004.
    [15] 王炎昌.生物质气化中焦油的催化转化[D].郑州:郑州大学,2005.
    [16] D. Sutton, B. Kelleher, J. R. H. Ross. Review of Literature on Catalysts for Biomass Gasification[J]. Fuel Processing Technology, 2002, 73 (3): 155-173.
    [17] 郭秀兰,黄鹤,周强等.生物质焦油裂解催化剂研究进展[J].可再生能源,2004,113(1):9-13.
    [18] L. Devi, J. Krzysztof, K. J. Ptasinski, et al. Pretreated Olivine as Tar Removal Catalyst for Biomass Gasifiers: Investigation Using Naphthalene as Model Biomass Tar[J]. Fuel Processing Technology, 2005, (86): 707-730.
    [19] C. Ekstrom, N. Lindman, R. Pettersson. Catalytic conversion of tars, carbon black and methane from pyrolysis/gaisification of biomass, in: Fundamentals of Thermochemical Biomass Conversion[J]. Elsevier Applied Science, London, 1985: 601-618.
    [20] J. Sami, Juutilainen, A. Pekka. Zirconia: Selective oxidation catalyst for removal of tar and ammonia from biomass gasification gas[J]. Applied Catalysis B: Environmental, 2005, (62): 86-92.
    [21] M. P. Aznar, M. A. Caballero, J. Gil, et aI. Commercial Steam Reforming Catalysts to Improve Biomass Gasification with Steam-oxygen Mixtures. 2. Catalytic Tar Removal[J]. Industrial and Engineering Chemistry Research, 1998, 37 (1): 2668-2680.
    [22] A. Orio, J. corello, I Narvaez. Proceedings of conference on developments on thermochemical biomass conversion[C]. Banff: Blackie academic & professional, 1996.
    [23] J. Srinakruang, K. Sato, T. Vitidsant, et al. A Highly Efficient Catalyst for Tar Gasification with Steam[J]. Catalysis Communications, 2005, (6): 437-440.
    [24] T. J. Wang, J. Chang, C. Z. Wu. The Steam Reforming of Naphthalene over a Nickel-dolomite Cracking Catalyst[J]. Biomass and Bioenergy, 2005, (28): 508-514.
    [25] P. A. Simell, E. K. Hirvensalo. Steam Reforming of Gasification Gas Tar over Dolomite with Benzene as a Model Compound[J]. Industrial and Engineering Chemistry Research, 1999, (38): 1250-1257.
    [26] P. A. Simell, J. K. Leppalahti, E. A. Kurkela. Tar-Decomposing Activity of Carbonate Rocks under High CO_2 Partial Pressure[J]. Fuel, 1995, 74 (6): 938-945.
    [27] P. A. Simell, J. O. Hepola, A. O. I. Kraus. Effects of Gasification Gas Components on Tar and Ammonia Decomposition over Hot Gas Clean up Catalysts[J]. Fuel, 1997, 76 (12): 1117-1127.
    [28] R. N. Andre, F. Pinto, C. Franco, et al. Fluidised Bed Co-gasification of Coal and Olive Oil Industry Wastes[J]. Fuel, 2005, 84 (12-13): 1635-1644.
    [29] S. Rapagna, N. Jand, P. U. Foscolo. Catalytic Gasification of Biomass to Produce Hydrogen Rich Gas[J]. International Journal of Hydrogen Energy, 1998, (23): 551-557.
    [30] J. Gil, M. A. Caballero. Biomass Gasification with Air in Fluidized Bed: Effect of In-bed Use of Dolomite under Different Operation Conditions[J]. Industrial and Engineering Chemistry Research, 1999, (138): 4226-4235.
    [31] L. Devi, K. J. Ptasinski, E J. J. G. Janssen, et al. Catalytic Decomposition of Biomass Tars: Use of Dolomite and Untreated Olivine[J]. Renewable Energy, 2005, (30): 565-587.
    [32] 骆仲泱,张晓东,周劲松等.生物质热解焦油的热裂解与催化裂解[J].高校化学工程学报,2004,18(2):163-167.
    [33] 谢威,郭瓦力,周世贤等.生物质焦油在氧化钙上的催化裂解研究[J].沈阳化工学院学报,2000,14(3):205-208.
    [34] S. Rapagná, N. Jand, A. Kiennemann. Steam-gasification of Biomass in a Fluidized-bed of Olivine Particles[J]. Biomass and bioenergy, 2000, 19 (3): 187-197.
    [35] C. Courson, E. Makaga, C. Petit, et al. Development of Ni Catalysts for Gas Production from Biomass Gasification. Reactivity in Steam- and Dry-reforming[J]. Catalysis Today, 2000, 63 (2-4): 427-437.
    [36] W. B. Hauserman. Steam Reforming of Model Compounds of Fast-pyrolysis Oil[J]. International Journal of Hydrogen Energy, 1994, (19): 413.
    [37] L. K. Mudge, E. G. Baker. Catalytic Steam Gasification of Biomass for Methanol and Methane Production[J]. Journal of Solar Energy Engineering, 1985, 107 (1): 88-92.
    [38] A. Demirbas. Gaseous Products from Biomass by Pyrolysis and Gasification: Effects of Catalyst on Hydrogen Yield[J]. Energy Conversion and Management, 2002, (43): 897-909.
    [39] G. Jin, H. Iwaki, N. Arai, et al. Study on the Gasification of Wastepaper/carbon Dioxide Catalyzed by Molten Carbonate Salts[J]. Energy, 2005, (30): 1192-1203.
    [40] T. Furusawa, A. Tsutsumi. Development of Cobalt Catalysts for the Steam Reforming of Naphthalene as a Model Compound of Tar Derived from Biomass Gasification[J]. Applied Catalysis A: General, 2005, 278 (2): 195-205.
    [41] K. Sato, K. Fujimoto. Development of New Nickel Based Catalyst for Tar Reforming with Superior Resistance to Sulfur Poisoning and Coking in Biomass Gasification[J]. Catalysis Communications, 2007, (8): 1697-1701.
    [42] C. Pfeifer, H. Hofbauer. Development of Catalytic Tar Decomposition Downstream from a Dual Fluidized Bed Biomass Steam Gasifier[J]. Powder Technology, 2007, doi: 10.1016/j. powtec. 2007. 03.08.
    [43] D.N.Bangala, N. Abatzoglou, E. Chornet. Steam Reforming of Naphthalene on Ni-Cr/Al_2O_3 Catalysts Doped With MgO, TiO_2 and La_2O_3 [J]. AIChE Journal, 1998, 44 (4): 927-936.
    [44] D. Swierczynski, C. Courson, A. Kiennemann. Study of Steam Reforming of Toluene Used as Model Compound of Tar Produced by Biomass Gasification[J]. Chemical Engineering and Processing, 2007, CEP-5257.
    [45] R. Q. Zhang, R. C. Brown, A. Suby, et al. Catalytic Destruction of Tar in Biomass Derived Producer Gas[J]. Energy Conversion and Management, 2004, (45): 995-1014.
    [46] K. A. Magrini-Bair, S. Czernik, R. French, et al. Fluidizable Reforming Catalyst Development for Conditioning Biomass-derived Syngas[J]. Applied Catalysis, 2007, (318): 199-206.
    [47] C. Courson, L. Udron, C. Petit. Grafted NiO on Natural Olivine for Dry Reforming of Methane[J]. Science and Technology of Advanced Materials, 2002, (3): 271-282.
    [48] C. Courson, L. Udron, D. Swierczynski. Hydrogen Production from Biomass Gasification on Nickel Catalysts: Tests for Dry Reforming of Methane[J]. Catalysis Today, 2002, (76): 75-86.
    [49] L. Ma, H. Verelst, G. V. Baron. Integrated High Temperature Gas Cleaning: Tar Removal in Biomass Gasification with a Catalytic Filter[J]. Catalysis Today, 2005, (105): 729-734.
    [50] L. Ma, G. V. Baron. Mixed Zirconia-alumina Supports for Ni/MgO Based Catalytic Filters for Biomass Fuel Gas Cleaning[J]. Powder Technology, 2007, doi: 0.1016/j. powtec. 2007. 02. 035.
    [51] T. Miyazawa, T. Kimura, J. Nishikawa. Catalytic Performance of Supported Ni Catalysts in Partial Oxidation and Steam Reforming of Tar Derived From the Pyrolysis of Wood Biomass[J]. Catalysis Today, 2006, (115): 254-262.
    [52] 豆斌林,任建兴.生物质气化发电过程中焦油蒸汽催化裂解的研究[J].上海电力学院学报,2006,22(3):233-238.
    [53] 王铁军,常杰,吴创之等.生物质气化焦油催化裂解特性[J].太阳能学报,2003,24(3):376—379.
    [54] 向德辉,刘惠云.化肥催化剂实用手册[M].北京:化学工业出版社,1992:134-137.
    [55] 张晓东,骆仲泱,周劲松等.焦油催化裂化催化剂积炭失活的实验研究[J].燃料化学学报,2004,32(3):542-546.
    [56] 刘维桥,孙桂大.固体催化剂使用研究方法[M].北京:中国石化出版社,2000:37—38
    [57] J. L. Figueiredo. Carbon Formation and Gasification on Nickel[J]. NATO Advanced Study Institutes Series, Series E: Applied Sciences 1982, 54.
    [58] E. T. C. Vogt, A. J. Van Dillen, J. W. Geus. Prevention of Growth of Filamentary Carbon in Supported Iron and Nickel Catalysts[J]. Studies in Surface Science and Catalysis, 1987, (34): 221-226.
    [59] A. Guerrero-Ruiz, A. Sepulveda-Eseribano, I. Rodriguez-Ramos. Cooperative Action of Cobalt and MgO for the Catalyzed Reforming of CH4 with CO_2[J]. Catalysis Today, 1994, (21 ): 545-550.
    [60] C. Petit, A. Kiennemann, P. Chaumette. US Patent No. 5, 447, 705 (1995).
    [61] H. Provendier, C. Petit, C. Estoumes. Stabilization of Active Nickel Catalysts in Partial Oxidation of Methane to Synthesis Gas by Iron Addition[J]. Applied Catalysis A, 1999, (180): 163-173.
    [62] 宋若钧,张量渠,郭慎独.稀土添加对镍转化催化剂性能的影响[C].第五届全国催化会议论文集,1990,147.
    [63] 傅利勇,吕绍洁,谢卫国等.碱性助剂的添加对Ni/CaO-Al_2O_3催化性能的影响[J].分子催化,2000,14(3):179-183.
    [64] Provisional Protocol for the Sampling and Analysis of Tar and Particulates in the Gas from Large-scale Biomass Gasifiers, Version 1998, Working Group of the Biomass Gasification Task of the IEA Bioenergy Agreement, 23 June 1998.
    [65] 贾永斌,张守玉.热解和气化过程中焦油裂解的研究[J].煤炭转化,2000,23(4):1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700