用户名: 密码: 验证码:
人工林红松木材及木制品碳素储存的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球变暖主要是由人类活动所制造的温室气体特别是CO2的不断增加而导致,而木材中含碳50%,是一个巨大的碳素储存库,木材碳素储存功能的研究对定向培育优质高碳素储存量的人工林、制定储碳减排措施具有重要意义。
     本文以人工林红松木材为研究对象,主要研究了红松木材及木制品的碳素储存功能。首先,通过回归分析和相关分析的方法研究红松木材解剖和物理特征分别对木材碳素储存量的影响,分析各项特征指标与碳素储存量之间的内在相关性;第二,通过统计分析、多元回归分析和相关分析的方法,研究不同经营措施(立地条件、气候条件、培育措施)对木材碳素储存量的影响,以明确高碳素储存量的优质人工林经营措施;第三,基于分形理论,从非线性角度出发,对红松木材碳素储存量进行分形分析,研究其规律性变化;最后,基于生命周期评价理论,建立木制品碳素储存周期C02排放的计算模型,并结合具体实例,对木制品的碳素储存周期进行评价。
     所得到的研究结论总结如下:
     (1)红松生长轮、早材、晚材碳素储存量的径向变异规律相似;生长轮碳素储存量分别与早材、晚材碳素储存量具有高度显著的相关性。
     (2)红松解剖和物理特征对碳素储存量的影响主要表现在,早晚材碳素储存量分别与早晚材管胞长度、管胞长宽比呈高度显著的正相关,与早晚材管胞壁厚分别呈较显著的负、正相关,与早晚材微纤丝角呈高度显著的负相关;晚材碳素储存量与晚材管胞直径、胞璧率呈较显著的正相关。早晚材碳素储存量与早晚材密度呈显著的正相关,与晚材率呈高度显著的正相关,与生长速率呈高度显著的负相关;早材碳素储存量与早材宽度呈高度显著的负相关。木材碳素储存量与其他特征无显著相关性。
     (3)针对不同立地条件红松木材碳素储存量的多少,方正林场>凉水林场>老山生态站;坡位中的既阴坡又坡上的位置>其他坡位;土壤类型中的白浆化暗棕壤>白浆土。
     (4)针对不同气候条件,老山生态站和凉水林场红松碳素储存量与平均气温、平均地温、日照百分率、相对湿度及降水量均有一定的相关性。当气象因子交互影响时,老山生态站1月降水量与碳素储存量呈高度显著负相关,4月平均地温与碳素储存量呈高度显著正相关,10月平均地温与晚材碳素储存量呈高度显著正相关,相对湿度与生长轮、早材碳素储存量呈高度显著的负相关;凉水林场1月降水量、2月日照百分率与生长轮、早材碳素储存量均呈高度显著的负相关,4月平均地温与生长轮、早材碳素储存量呈高度显著正相关,10月相对湿度与晚材碳素储存量呈高度显著负相关;老山和凉水林场3月、5月、7—8月、11月的气象因子与碳素储存量均无显著相关性。
     (5)针对不同培育措施红松木材碳素储存量的多少,林分结构中的纯林>混交林>三株一丛;初植密度1.5m×1.0m>2.0m×2.0m>1.5m×1.5m;抚育间伐措施中的间伐>未间伐。
     (6)经营高碳素储存量的人工林红松时,方正林场较凉水林场,既阴坡又坡上的坡位较其他坡位,白浆化暗棕壤较白浆土更有助于提高木材碳素储存量;还可适量调高4月、7月平均地温1~2℃,合理升高11月相对湿度,降低1月、5月、7月、9月、10月相对湿度,及合理降低1月降水量,提高4月降水量;而且,最佳林分结构为纯林,最佳初植密度为1.5m×1.0m,并可进行适度间伐。
     (7)由分形理论研究红松的碳素储存量得出,老山和凉水林场红松碳素储存量的径向变异趋势相近,凉水林场碳素储存能力高于老山生态站,凉水林场幼龄材和成熟材碳素储存量的分形维数平均值明显高于老山生态站,碳素储存量的梯度分布比老山生态站更复杂,碳素储存效果明显优于老山生态站;阳坡和阴坡碳素储存量的径向变异趋势相一致,阴坡碳素储存能力高于阳坡,阴坡幼龄材和成熟材碳素储存量的分形维数平均值明显高于阳坡,碳素储存量的梯度分布比阳坡变化幅度大,碳素储存效果优于阳坡。
     (8)由生命周期评价理论,建立了木制品全生命周期及生产、运输、处置阶段C02排放量的计算模型;并以某中密度纤维板厂生产的中纤板为例,评价其碳素储存周期,得出中纤板在碳素储存周期内的生产、运输、处置阶段C02排放总量为32.8135kg/m2,约59%来自处置阶段,39%来自生产阶段,2%来自运输阶段。
Global warming was mainly caused by the increasing number of greenhouse gases made by the human activity, especially CO2. And the wood contained50%carbon, it was a huge carbon sink. Studying the wood carbon storage function had great significance to cultivate the superior quality plantation forest with high carbon storage, and establish the measures of carbon storage and emission reduction.
     This paper took man-planted Pinus koraiensis wood as the research object, mainly studied the carbon storage function of Pinus koraiensis wood and wood products. First of all, researched the influence of Pinus koraiensis wood anatomical and physical characteristics on wood carbon storage through the methods of regression analysis and correlation analysis, and analyzed the internal correlation between characteristic indexes and carbon storage. Secondly, researched the influence of different management measures (included the site conditions, meteorological conditions and cultivating measures) on wood carbon storage through the methods of statistical analysis and multiple regression analysis and correlation analysis, in order to confirm the management measures of superior quality plantation forest with high carbon storage. Thirdly, based on the fractal theory, studied the Pinus koraiensis wood carbon storage through fractal analysis from the nonlinear perspective, and discussed the regular change. Finally, based on the theory of life cycle assessment, established the calculation model of CO2emissions of wood products carbon storage cycle, and combined with specific instances, evaluated the wood products carbon storage cycle.
     The research conclusions were summarized as follows:
     (1) The radial variation rules of Pinus koraiensis carbon storage of growth ring, early wood and latewood were similar. And grow ring carbon storage respectively had highly significant correlation with early wood and latewood carbon storage at the level of0.01.
     (2) The influence of Pinus koraiensis wood anatomical and physical characteristics on carbon storage was mainly displayed in the following aspects. Earlywood and latewood carbon storage respectively had highly significant positive correlation with earlywood and latewood tracheid length and tracheid length-width ratio, and had relatively significant negative and positive correlation with earlywood and latewood tracheid wall thickness, and had highly significant negative correlation with earlywood and latewood microfibril angle. Latewood carbon storage had relatively significant positive correlation with latewood tracheid diameter and tracheid wall rate. Earlywood and latewood carbon storage had significant positive correlation with earlywood and latewood density, and had highly significant positive correlation with latewood rate, and had highly significant negative correlation with growth rate. Earlywood carbon storage had highly significant negative correlation with earlywood width. Wood carbon storage and other characteristics had not significant correlation.
     (3) Aiming at Pinus koraiensis wood carbon storage under different site conditions, drew the summary that, Fangzheng Forest Farm> Liangshui Forest Farm> Laoshan Forest Farm, and the slope position which both in shady slope and on top of slope> other slope position, and during the soil types, albic horizon dark brown soil> albic soils.
     (4) Under different meteorological conditions, Pinus koraiensis carbon storage of Laoshan Forest Farm and Liangshui Forest Farm had certain correlation with mean temperature, mean ground temperature, sunshine percentage, relative humidity and rainfall. When the meteorological factors influenced reciprocally, in Laoshan Forest Farm, the rainfall of January had highly significant negative correlation with wood carbon storage, the mean ground temperature of April had highly significant positive correlation with wood carbon storage, the mean ground temperature of October had highly significant positive correlation with latewood carbon storage, and the relative humidity of October had highly significant negative correlation with growth ring and earlywood carbon storage. In Liangshui Forest Farm, the rainfall of January and sunshine percentage of February both had highly significant negative correlation with growth ring and earlywood carbon storage, the mean ground temperature of April had highly significant positive correlation with growth ring and earlywood carbon storage, the relative humidity of October had highly significant negative correlation with latewood carbon storage. And the meteorological factors of March, May, July, August, November of Laoshan and Liangshui Forest Farm, and wood carbon storage all had not significant correlation.
     (5) Aiming at Pinus koraiensis wood carbon storage under different cultivating measures, drew the summary that, during the stand structure, pure forest> mixed forest> three trees a clump. During the planting density,1.5m×1.0m>2.0m×2.0m>1.5m×1.5m. And during the thinning measures, thinning> no thinning.
     (6) When managing the man-planted Pinus koraiensis with high carbon storage, Fangzheng Forest Farm was better than Liangshui Forest Farm, the slope position which both in shady slope and on top of slope was better than other slope positions, albic horizon dark brown soil was better than albic soils, they could help to improve the wood carbon storage. It was better to increase1~2℃of the mean ground temperature of April and July appropriately, and rise the relative humidity of November, reduce the relative humidity of January, May, July, September and October, reduce the rainfall of January and raise the rainfall of April appropriately. And that, the best stand structure was pure forest, the best planting density was1.5m×1.0m, also could implement moderate thinning.
     (7) To study the carbon storage of Pinus koraiensis by fractal theory, could drew the summary that, the radial variation trend of Pinus koraiensis carbon storage of Laoshan ForestFarm was close to Liangshui Forest Farm, and the carbon storage capacity of Liangshui Forest Farm was higher than that of Laoshan Forest Farm. The mean fractal dimension of juvenile wood and mature wood carbon storage of Liangshui Forest Farm was obviously higher than that of Laoshan Forest Farm, its gradient distribution of carbon storage was more complex than Laoshan Forest Farm and the effect of carbon storage was superior to Laoshan Forest Farm. The radial variation trend of carbon storage of sunny slope and shady slope was similar, and the carbon storage capacity of shady slope was higher than sunny slope. The mean fractal dimension of juvenile wood and mature wood carbon storage of shady slope was obviously higher than that of sunny slope, its range of variation of gradient distribution of carbon storage was larger than sunny slope, and the effect of carbon storage was better than sunny slope.
     (8) Based on the theory of life cycle assessment, established the calculation model of CO2emissions during the whole life cycle of wood products and the stages of production, transportation and disposal. And taking the medium density fiberboard produced by a MDF factory as an example, evaluated its carbon storage cycle, and obtained that, the total CO2emissions of medium density fiberboard during the stages of production, transportation and disposal of carbon storage cycle was32.8135kg/m2. Among it, about59%came from the stage of disposal,39%came from the stage of production and2%came from the stage of transportation.
引文
[1]J. Shen, Z. Q. Song, X. R. Qian. Fillers and the Carbon Footprint of Papermaking. BioResources.2010,5 (4):2026-2028
    [2]M. P. Ayres, M. J. Lombardero. Assessing the Consequences of Global Change for Forest Disturbance from Herbivores and Pathogens. Science of Total Environment.2000 (262): 263-286
    [3]M. Broadmeadow, R. Matthews. Forests, Carbon and Climate Change:The Uk Contribution. Forestry Commission Information Note.2003,48 (2)
    [4]L. Rattan. Carbon Sequestration. Philosophical Transactions of the Royal Society.2008 (363):815-830
    [5]R. K. Dixon, J. A. Sathaye, S. P. Meyers. Greenhouse Gas Mitigation Strategies: Preliminary Results from the US Country Studies Program. Ambio.1996 (25):26-32
    [6]P. B. Woodbury, J. E. Smith, L. S. Heath. Carbon Sequestration in the US Forest Sector from 1990 to 2010. Forest Ecology and Management.2007,241 (1):14-27
    [7]P. M. Fearnside, D. A. Lashof, P. Moura-Costa. Accounting for Time in Mitigating Global Warming through Land-Use Change and Forestry. Mitigation and Adaptation Strategies for Global Change.2000 (5):239-270
    [8]J. Brainard, I. J. Bateman, A. A. Lovett. The Social Value of Carbon Sequestered in Great Britain's Woodlands. Ecological Economics.2009,68 (4):1257-1267
    [9]G. A. Stainback, J. R. R. Alavalapati. Economic Analysis of Slash Pine Forest Carbon Sequestration in the Southern Us. Journal of Forest Economics.2002,8 (2):105-117
    [10]I. P. O. C. Change. Climate Change 2007:The Physical Science Basis. Agenda.2007,6 (7)
    [11]X. Q. Zhang, D. Xu. Potential Carbon Sequestration in China's Forests. Environmental Science and Policy.2003,6 (5):421-432
    [12]刘焕彬.低碳经济视角下的造纸工业节能减排.中华纸业.2009,30(12):10-12
    [13]T. Clarke. Communities Make Forest Carbon Trading Work. Earth.2002
    [14]董恒宇,云锦凤,王国钟.碳汇概要.北京:科学出版社,2012:9-15
    [15]R. Ray, D. Ganguly, C. Chowdhury. Carbon Sequestration and Annual Increase of Carbon Stock in a Mangrove Forest. Atmospheric Environment.2011,45 (28):5016-5024
    [16]J. Liski, T. Karjalainen, A. Pussinen. Trees as Carbon Sinks and Sources in the European Union. Environmental Science and Policy.2000,3 (2):91-97
    [17]G. M. Domke, C. W. Woodall, S. J. E. Consequences of Alternative Tree-Level Biomass Estimation Procedures on US Forest Carbon Stock Estimates. Forest Ecology and Management.2012 (270):108-116
    [18]P. Nepal, R. K. Grala, D. L. Grebner. Financial Feasibility of Increasing Carbon Sequestration in Harvested Wood Products in Mississippi. Forest Policy and Economics. 2012,14 (1):99-106
    [19]黄从德,张国庆.人工林碳储量影响因素.世界林业研究.2009,22(2):34~38
    [20]P. Nepal, P. J. Ince, K. E. Skog, et. al. Projection of Us Forest Sector Carbon Sequestration under US and Global Timber Market and Wood Energy Consumption Scenarios,2010-2060. Biomass and Bioenergy.2012 (45):251-264
    [21]M. Ha-Duong, D. W. Keith. Carbon Storage:The Economic Efficiency of Storing CO2 in Leaky Reservoirs. Clean Techn Environ Policy.2003 (5):181-189
    [22]J. Donlan, K. Skog, K. A. Byrne. Carbon Storage in Harvested Wood Products for Ireland 1961-2009. Biomass and Bioenergy.2012 (46):731-738
    [23]A. White, M. G R. Cannell, A. D. Friend. Climate Change Impacts on Ecosystems and the Terrestrial Carbon Sink:A New Assessment. Global Environmental Change.1999 (9): S21-S30
    [24]A. Pussinen, T. Karjalainen, S. Kellomaki, et. al. Potential Contriburion of the Forest Sector to Carbon Sequestration in Finland. Biomass and Bioenergy.1997,13 (6):377-387
    [25]IPCC. Climate Change 2001:Synthesis Report:Third Assessment Report of the Intergovernmental Panel on Climate Change. New York:Cambridge University Press, 2001
    [26]R. C. Dewar. Analytical Model of Carbon Storage in the Trees, Soils, and Wood Products of Managed Forests. Tree Physiology.1991 (8):239-258
    [27]J. K. Winjum, S. Brown, B. Schlamadinger. Forest Harvests and Wood Products:Sources and Sinks of Atmospheric Carbon Dioxide. Forest Science.1998,44 (2):272-284
    [28]W. H. Schlesinger. Carbon Sequestration in Soils. Science.1999,284 (5423):2095
    [29]V. W. Ford, A. R. Ennos, J. F. Handley. "City Form and Nature Process" Indicators for the Ecological Performance of Urban Areas and Their Application to Merseyside Landscape and Urban Planning.2001 (57):91-103
    [30]H.-K. Jo. Impacts of Urban Green Space on Offsetting Carbon Emissions for Middle Korea. Journal of Environmental Pollution.2002 (64):115-126
    [31]R. Lal. Forest Soils and Carbon Sequestration. Forest Ecology and Management.2005, 220 (1):242-258
    [32]B. Tonn, G. Marland. Carbon Sequestration in Wood Products:A Method for Attribution to Multiple Parties. Environmental Science and Policy.2007:162-168
    [33]A. C. Dias, M. Louro, L. Arroja. Comparison of Methods for Estimating Carbon in Harvested Wood Products. Biomass and Bioenergy.2009,33 (2):213-222
    [34]M. v. Breugel, J. Ransijn, D. Craven, et. al. Estimating Carbon Stock in Secondary Forests: Decisions and Uncertainties Associated with Allometric Biomass Models. Forest Ecology and Management.2011,262 (8):1648-1657
    [35]Y. Gunalay, E. Kula. Optimum Cutting Age for Timber Resources with Carbon Sequestration. Resources Policy.2012,37 (1):90-92
    [36]罗天样.中国主要森林类型生物生产力格局及其数学模型.北京:中国科学院.1996
    [37]康惠宁.中国森林C汇功能基本估计.应用生态学报.1996,7(3):230~234
    [38]方精云,唐艳鸿,林俊达等.全球生态学——气候变化与生态响应.北京:高等教育出版社,2000
    [39]J. Y. Fang, A. Chen, C. Peng, et. al. Changes in Forest Biomass Carbon Storage in China between 1949 and 1998. Science.2001 (22):2320-2322
    [40]魏殿生,徐晋涛,李怒云.造林绿化与气候变化碳汇问题研究.北京:中国林业出版社,2003
    [41]李顺龙.森林碳汇问题研究.哈尔滨:东北林业大学出版社,2006
    [42]J. M. Chen, S. C. Thomas, Y. Yin, et. al. Enhancing Forest Carbon Sequestration in China: Toward an Integration of Scientific and Socio-Economic Perspectives. Journal of Environmental Management.2007,85 (3):515-523
    [43]李怒云,杨炎朝,陈叙图.发展碳汇林业应对气候变化——中国碳汇林业的实践与管理.中国水土保持科学.2010,8(1):13~16
    [44]李长胜,李顺龙.黑龙江省国有林区森林碳汇及经济评价.中国林业经济.2012(4):40~43
    [45]李克让.土地利用变化和温室气体净排放与陆地生态系统碳循环.北京:气象出版社,2002
    [46]中国科学院华南植物园.Science杂志刊登我国科学家重要发现:成熟森林土壤可持续积累有机碳.自然科学进展.2007,17(6):747
    [47]李坚.木材的碳素储存与环境效应.家具.2007(3):32~36
    [48]刘杏娥,江泽慧,王妍.1-72杨树冠特性与碳蓄积量的相关性.干旱区地理.2009,32(2):183~187
    [49]M. H. Guo, X. Guan, J. Li. Study on Wood Carbon Sequestration Based on Micro-Characteristics of Wood. Environment Materials and Environment Management.2010 (3): 1693-1696
    [50]X. Guan, M. H. Guo, J. Li. Study the Effect of Growing Environment on Carbon Sequestration of Populus Ussuriensis Based on Wood Microscopic Image Processing. In: 2010 3rd International Conference on Environmental and Computer Science,2010: 128-131
    [51]郭明辉,李坚,关鑫.木材碳学.北京:科学出版社,2012:25~26
    [52]阮宇,张小全,杜凡,何英.木质林产品碳贮量变化计算方法.东北林业大学学报. 2005,33(Sup.):56~60
    [53]白彦锋,姜春前,鲁德,朱臻.中国木质林产品碳储量变化研究.浙江林学院学报.2007,24(5):587-592
    [54]郭明辉,关鑫,李坚.中国木质林产品的碳储存与碳排放.中国人口资源与环境.2010,20(5):19~21
    [55]R. Dewar. A Model of Carbon Storage in Forests and Forest Products. Tree Physiology. 1990,6 (4):417-428
    [56]S. C. Davis, A. E. Hessl, C. J. Scott, et. al. Forest Carbon Sequestration Changes in Response to Timber Harvest. Forest Ecology and Management.2009,258 (9):2101-2109
    [57]J. S. Nunery, W. S. Keeton. Forest Carbon Storage in the Northeastern United States:Net Effects of Harvesting Frequency, Post-Harvest Retention, and Wood Products. Forest Ecology and Management.2010,259 (8):1363-1375
    [58]S. Lehmann. Low Carbon Construction Systems Using Prefabricated Engineered Solid Wood Panels for Urban Infill to Significantly Reduce Greenhouse Gas Emissions. Sustainable Cities and Society.2013 (6):57-67
    [59]李坚.木材科学.北京:高等教育出版社,2002
    [60]刘一星,赵广杰.木质资源材料学.北京:中国林业出版社,2004
    [61]丁宝永,张世英,陈祥伟等.人工林红松培育理论与技术.哈尔滨:黑龙江科学出版社,1994
    [62]李晶.红松幼苗抗寒抗旱生理学研究.哈尔滨:东北林业大学出版社,2004:1-7
    [63]郭明辉.木材品质培育学.哈尔滨:东北林业大学出版社,2001:90-92
    [64]J. Hansen, R. Turk, G. Vogg. Conifer Carbohydrate Physiology:Updating Classical Views. Trees:contributions to modern tree physiology.1997:97-108
    [65]孟宪宇.测树学.北京:中国林业出版社,2006
    [66]崔永志,刘镇波.木材学试验指导书.哈尔滨:东北林业大学出版社,2005:23-24
    [67]刘永辉,戚大海,敬克兴等.用直接x射线法测木材微密度.原子能科学技术.1991,25(4):45~49
    [68]阮锡根,潘惠新.材性改良研究:Ⅰ.X射线木材密度测定.林业科学.1995,31(3):260~268
    [69]M. Pedini. The Effect of Modem Forest Practices on the Wood Quality of Fast Grown Spruce. Reprot of the Royal Veterinary and Agricultural University.1990 (32):1-44
    [70]高河,冯国臣,于占春.红松在四平地区低山区的生长和造林展望.吉林林业科技.1985(5):4
    [71]刘惠兰.我国实现森林面积和蓄积量双增长-人工林保存面积居世界首位.In:经济日报,2012-6-5
    [72]P. Schroeder. Can Intensive Management Increase Carbon Storage in Forests? Environmental Management.1991,15 (4):475-481
    [73]C. S. Papadopol. Impacts of Climate Warming on Forests in Ontario:Options for Adaptation and Mitigation. The Forestry Chronicle.2000,76 (1):139-149
    [74]郭明辉,陈广胜,王金满等.人工林红松木材解剖特征与气象因子的关系.东北林业大学学报.2000,28(4):30~35
    [75]陈礼芬,谢正生,黄小凤等.林地上下坡土壤的异质性及其对树木生长的影响.中国农学通报.2007,23(5):148~151
    [76]姜贵勇,何玉玲,高立刚.谈人工林红松森林经营技术.林业勘查设计.2010(2):16~17
    [77]李耀翔,杨俊学.论抚育间伐的效应.森林工程.1999,15(3):7-8
    [78]陈广胜,郭明辉,黄冶.不同初植密度兴安落叶松人工林木材解剖特征的径向变异.东北林业大学学报.2001,29(2):12~16
    [79]费本华.分形理论在木材科学与工艺学中的应用.木材工业.1999,13(4):27~28
    [80]辛厚文.分形理论及其应用.合肥:中国科学技术大学出版社,1993
    [81]B. B. Mandelbrot. Fractal:Form, Chance, and Dimension. San Francisco:Freeman,1977
    [82]B. B. Mandelbrot. The Fractal Geometry of Nature Times. Books,1982
    [83]B. B. Mandelbrot, D. E. Passoja, A. J. Paullay. Fractal Character of Fracture Surfaces of Metals. Nature.1984,308:721-722
    [84]褚武扬.材料科学中的分形.北京:化学工业出版社,2004:22-26
    [85]江泽慧,姜笑梅.木材结构与其品质特性的相关性.北京:科学出版社,2008:298~301
    [86]谢和平,薛秀谦.分形应用中的数学基础与方法.北京:科学出版社,1997:50~52
    [87]文志英,苏虹译.分形对象——形、机遇和维数.北京:世界图书出版公司北京公司,1999
    [88]江泽慧,费本华,阮锡根.木材密度曲线的分形分析.东北林业大学学报.2000,28(4):1-3
    [89]高峻,张劲松,孟平.分形理论及其在林业科学中的应用.世界林业研究.2005,17(6):11~16
    [90]J. A. Redinz, P. R. C. Guimaraes. The Fractal Nature of Wood Revealed by Water Absorption. Wood and Fiber Science.1997,29 (4):333-339
    [91]S. G. Hatzikiriakos, S. Avramidis. Fractal Dimension of Wood Surfaces from Sorption Isotherms. Wood Science and Technology.1994,28 (4):275-284
    [92]费本华.木材干缩的分形分析.林业科学.2002,38(1):136~140
    [93]王克奇,谢永华,陈立君.基于分形理论的木材纹理特征研究.林木机械与木工设备.2005,33(7):19~20
    [94]赵西平,郭明辉,闫丽.人工林落叶松木材早材宽度径向变异的分形分析.东北林业 大学学报.2005,33(6):47-48
    [95]赵荣军,费本华,张波.杨树木材细胞腔径分布的分形表征.南京林业大学学报.2008,32(1):133~135
    [96]罗蓓,赵广杰.木材细胞壁中纤维超微构造的分形特征.In:第二届中国林业学术大会——S11木材及生物质资源高效增值利用与木材安全论文集北京,2009:113-117
    [97]宋莎莎,赵广杰.木材宏微观细胞堆砌构造图案的分形表征.北京林业大学学报.2011,33(4):102~106
    [98]罗蓓,赵广杰.分形理论在木材科学领域中的应用.北京林业大学学报.2010,3:204~207
    [99]T. Wiedmann, J. Minx. A Definition of Carbon'Footprint'. CC Pertsova, Ecological Economics Research Trends.2007 (2):55-65
    [100]A. C. Dias, L. Arroja. Comparison of Methodologies for Estimating the Carbon Footprint-Case Study of Office Paper. Journal of Cleaner Production.2012 (24):30-35
    [101]H. N. Larsen, J. Pettersen, C. Solli, et. al. Investigating the Carbon Footprint of a University-the Case of NTNU. Journal of Cleaner Production.2011 (10):1-9
    [102]朱莉,李坚.追寻家具的碳足迹.家具.2012(2):105~107
    [103]M. Finkbeiner. Carbon Footprinting-Opportunities and Threats. International Journal of Life Cycle Assessment.2009,14 (2):91-94
    [104]P. A. Specification. PAS 2050:Specification for the Assessment of the Life Cycle Greenhouse Gas Emissions of Goods and Services. BSI British Standards.2011:10
    [105]R. Houghton. Converting Terrestrial Ecosystems from Sources to Sinks of Carbon. Ambio.1996,25 (4):267-272
    [106]J. Salazar, J. Meil. Prospects for Carbon-Neutral Housing:The Influence of Greater Wood Use on the Carbon Footprint of a Single-Family Residence. Journal of Cleaner Production.2009,17(17):1563-1571
    [107]G. L. Liu, S. J. Han. Long-Term Forest Management and Timely Transfer of Carbon into Wood Products Help Reduce Atmospheric Carbon. Ecological Modelling.2009 (220): 1719-1723
    [108]W. A. Cote, R. J. Young, K. B. Risse. A Carbon Balance Method for Paper and Wood Products. Environmental Pollution.2002 (116):S1-S6
    [109]S. Hashimoto, M. Nose, T. Obara. Wood Products:Potential Carbon Sequestration and Impact on Net Carbon Emissions of Industrialized Countries. Environmental Science and Policy.2002,5(2):183-193
    [110]白彦锋.中国木质林产品碳储量.北京:中国林业科学研究院.2010
    [111]IPCC.2006 IPCC Guidelines for National Greenhouse Gas Inventories. Agriculture, Forestry and Other Land Use.2006
    [112]O. N. Krankina, M. E. Harmon, J. K. Winjum. Carbon Storage and Sequestration in the Russian Forest Sector. Ambio.1996,25 (4):284-288
    [113]A. C. Dias. The Contribution of Wood Products to Carbon Sequestration in Portugal. Annals of Forest Science.2005,62 (8):902-909
    [114]S. Brown, B. Lim, B. Schlamadinger. Evaluating Approaches for Estimating Net Emissions of Carbon Dioxide from Forest Harvesting and Wood Products-Meeting Report. IPCC/OECD/IEA Programme on National Greenhouse Gas Inventories.1998
    [115]阮宇,张小全,杜凡等.中国木质林产品碳贮量.生态学报.2006,26(12):4212~4218
    [116]FAO. State of the World's Forests 1997 Food and Agriculture Organisation of the United Nations.1997
    [117]D. J. Gielen. Potential CO2 Emissions in the Netherlands Due to Carbon Storage in Materials and Products. Ambio.1997,26 (2):101-106
    [118]J. Perez-Garcia, B. Lippke, J. Comnick, et. al. An Assessment of Carbon Pools, Storage, and Wood Products Market Substitution Using Life-Cycle Analysis Results. Wood and Fiber Science.2005 (37):140-148
    [119]B. Schlamadinger, G. Marland. The Role of Forest and Bioenergy Strategies in the Global Carbon Cycle. Biomass and Bioenergy.1996,10 (5):275-300
    [120]G. H. Kohlmaier, M. Weber, R. A. Houghton. Carbon Dioxide Mitigation in Forestry and Wood Industry. In:Carbon Dioxide Mitigation in Forestry and Wood Industry. Berlin: Springer-Verlag,1998
    [121]F. Werner, R. Taverna, P. Hofer. Carbon Pool and Substitution Effects of an Increased Use of Wood in Buildings in Switzerland:First Estimates. Annals of Forest Science. 2005,62 (8):889-902
    [122]K. E. Skog. Sequestration of Carbon in Harvested Wood Products for the United States. Forest Products Journal.2008,58 (6):56-72
    [123]P. Dwivedi, R. Bailis, A. Stainback. Impact of Payments for Carbon Sequestered in Wood Products and Avoided Carbon Emissions on the Profitability of Nipf Landowners in the US South. Ecological Economics.2012:63-69
    [124]杨建新,王如松.生命周期评价的回顾与展望.环境科学进展.1998,6(2):21~28
    [125]张智慧,尚春静,钱坤.建筑生命周期碳排放评价.建筑经济.2010(2):44~46
    [126]G. Sinden. The Contribution of PAS 2050 to the Evolution of International Greenhouse Gas Emission Standards. International Journal of Life Cycle Assessment.2009,14 (3): 195-203
    [127]J. Glover, D. O. White, T. A. G. Langrish. Wood Versus Concrete and Steel in House Construction:A Life Cycle Assessment. Journal of Forestry.2002,100 (8):34-41
    [128]美国阔叶木外销委员会对木制品生命周期评估研究的初步成果.木材工业.2012,26(2):57~59
    [129]张涛,吴佳洁,乐云.建筑材料全寿命期C02排放量计算方法.工程管理学报.2012(1):23~26
    [130]薛拥军,王珺.板式家具产品的生命周期评价.木材工业.2009,23(4):22-25
    [131]陈志林,傅峰,叶克林.我国木材资源利用现状和木材回收利用技术措施.中国人造板.2007,14(5):1-3
    [132]朱嬿,陈莹.住宅建筑生命周期能耗及环境排放案例.清华大学学报:自然科学版.2010(3):330-334

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700