用户名: 密码: 验证码:
中国荷斯坦牛乳房炎相关基因遗传效应、IL8和CXCR1基因聚合效应及表达规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳房炎是奶牛最常见和最复杂的疾病之一,给世界奶牛业造成了巨大的经济损失。除改善母牛营养、加强环境卫生管理和改进挤奶技术外,研究者正试图通过遗传育种和兽医生物技术手段来预防和控制乳房炎。
     本研究对扬州周边4个牧场奶样中的主要病原菌(大肠杆菌、葡萄球菌和链球菌)进行了分离鉴定;运用荧光定量PCR技术检测了IL8、CXCR1、TLR4、LYZ和LF5个相关基因在主要病原菌攻毒下在奶牛乳腺细胞中的表达规律;同时以来自30个公牛家系的610头中国荷斯坦牛为研究对象,通过PCR-SSCP、PCR-RFLP和测序相结合的方法,对以上5个基因进行了单核苷酸多态性(SNPs)扫描并分析其与泌乳性状和体细胞评分(SCS)的关系;采用Logistic回归模型和多因子降维法(multifactor dimensionality reduction,MDR)法对IL8和CXCR1基因的5个SNPs进行聚合效应分析;最后通过荧光定量PCR技术对奶牛血液中IL8和CXCR1基因mRNA的含量进行了分析。主要研究结果如下:
     1.采用BMT法整群抽样检测了4个奶牛场310头无临床症状的荷斯坦奶牛隐性乳房炎,其中有139头患有隐性乳房炎,发生率44.84%,在1163个乳区中,患病乳区有208个,乳区患病率为17.88%。在208份奶样中共分离到葡萄球菌、大肠杆菌、链球菌3种主要病原菌322株,其中葡萄球菌71株,占分离菌株的22.05%:大肠杆菌95株,占分离株数的29.50%;链球菌156株,占分离菌株的48.45%;分析感染情况表明,病原菌单独感染率为43.16%,其中链球菌的单独感染率达31.65%;病原菌混合感染率占54.68%,主要为大肠杆菌和链球菌混合感染。
     2.对奶牛的乳腺细胞进行培养,采用大肠杆菌、葡萄球菌和链球菌对乳腺细胞进行了攻毒实验,检测奶牛乳房炎抗性候选基因(IL8、CXCR1、TLR4、LYZ和LF基因)在不同菌种刺激下在乳腺细胞的表达规律。结果发现在刺激后的不同阶段均检测到5个基因的mRNA,在不同的阶段表达量不同,说明在主要病原菌刺激下,5个基因的均显示出抗菌反应。IL8基因和CXCR1基因在葡萄球菌的刺激下随着时间的延长表达量逐渐提高;TLR4基因在大肠杆菌的刺激下表达量显著高于其它两种菌种;LF基因在三种菌种刺激下,随着时间的延长,表达量逐渐提高;LYZ基因在三种菌的刺激下,表达量较低,但随着时间的延长都有提高的趋势。
     3.对IL8、CXCR1、TLR4、LYZ和LF基因的多态性检测发现11SNPs位点(IL8-233(G>A)、IL82789(A>G)&2862(T>C)、CXCR1-1830(A>G)、CXCR1-1768(T>A)、CXCR1-344(T>C)、CXCR1783(C>A)、LYZ115(T>G)、TLR4-226(G>C)、 TLR4exon31760(C>T)、LF exonl133(G>C)和LF-3727(C>G)&-3717(A>G)),将突变位点基因型与泌乳性状以及体细胞评分进行了关联分析,主要结果如下:
     IL8-233(G>A)位点对体细胞评分达到极显著水平(P<0.01),GG基因型体细胞评分极显著小于GA和AA基因型(P<0.01); IL82789(A>G)&2862(T>C)位点对体细胞评分、测定日产奶量和305d校正产奶量的影响达到极显著水平(P<0.01),结果显示:KK基因型测定日产奶量、305d校正产奶量极显著高于AA和KA基因型型(P<0.01)。KK基因型的体细胞评分(SCS)极显著低于KA、AA基因型(P<0.01)。对于测定的乳蛋白率AA基因型显著低于KA、KK型(P<0.05):
     CXCR1-1830(A>G)位点对体细胞评分、测定日产奶量、测定日乳脂率和305d校正产奶量的影响达到极显著水平(P<0.01),结果显示:在-1830(A>G)位点AA基因型个体的体细胞评分最小二乘均值与AG基因型相比达到极显著水平(P<0.01);AG基因型的测定日产奶量显著高于AA和GG基因型(P<0.01);AA基因型的测定日乳脂率显著高于AG基因型(P<0.01);AG基因型的305天校正产奶量极显著高于AA基因型(P<0.01),显著高于GG基因型(P<0.05);
     CXCR1-1768(T>A)位点对体细胞评分、测定日产奶量和305d校正产奶量的影响达到极显著水平(P<0.01),结果显示:TT基因型个体的体细胞评分最小二乘均值显著小于TA基因型(P<0.01);TA基因型的测定日产奶量显著高于TT和AA基因型(P<0.01);TA基因型的305d校正产奶量极显著高于AA和TT基因型(P<0.01); CXCR1-344(T>C)位点对体细胞评分、测定日产奶量和测定日蛋白率的影响达到极显著水(P<0.01),结果显示:TT基因型个体的体细胞评分最小二乘均值显著小于TC和CC基因型(P<0.01);TT基因型的测定日产奶量极显著高于CC基因型(P<0.01);显著高于TC基因型(P<0.05)。CC基因型的测定日蛋白率极显著小于TT和TC基因型(P<0.01);
     TLR4-226(G>C)位点对305d校正产奶量影响达到极显著水平(P<0.01),对测定日产奶量到显著水平(P<0.05),结果显示:CC基因型305d校正产奶量显著高于GC和GG基因型(P<0.01),CC基因型的测定日产奶量显著高于GC和GG基因型(P<0.05);TLR4基因exon31760(C>T)位点对体细胞评分、测定日产奶量和测定乳蛋白率影响达到极显著水平(P<0.01),测定乳脂率达到显著水平(P<0.05),结果显示:CC基因型的体细胞评分显著低于CT和TT基因型;CT基因型的测定日产奶量极显著高于TT,显著高于CC; TT基因型测定日乳蛋白率极显著高于TC, CC显著高于TC;TT基因型的测定日乳脂率极显著高于TC和CC基因型,CC基因型显著高于TC基因型;
     LYZ115(T>G)位点对SCS、乳脂率和305d产奶量有极显著影响(P<0.01),对乳蛋白率有显著影响(P<0.05),GG基因型个体的SCS极显著低于TT基因型(P<0.01),显著低于TG基因型(P<0.05);GG基因型的305d产奶量极显著高于TT基因(P<0.01),显著高于TG基因型,乳脂率和乳蛋白率基因型之间差异不显著;
     LF-3727(C>G)&-3717(A>G)位点对体细胞评分影响达到极显著水平(P<0.01),对测定日产奶量的影响达到显著水平(P<0.05),结果显示:TT基因型体细胞评分极显著低于AA和TA基因型(P<0.01)。TT和TA基因型的测定日产奶量显著高于AA基因型(P<0.01)。LF基因exon1133(G>C)突变位点对测定日产奶量、测定日乳脂率、测定日乳蛋白率和305d校正产奶量影响达到极显著水平(P<0.01),对体细胞评分影响显著(P<0.05)。结果显示:GG基因型的测定日产奶量极显著高于CC(P<0.01),GC基因型的体细胞评分显著高于GG和CC基因型(P<0.05)。
     4.MDR法、MPVA法和Logistic回归分析CXCR1和IL8基因各位点突变及其基因型组合对奶牛乳房炎易感性的影响,单因素Logistic回归分析结果表明:CXCR1基因和IL8基因五个SNP位点变异对该牛场奶牛乳房炎易感性均没有达到显著水平,但MDR分析发现CXCR1(-1768)-IL8两位点、CXCR1(-1768)-(783)-IL8三位点及CXCR1(-1768)-(-344)-(783)-IL8四位点交互作用均达到显著水平,且交叉验证一致性均为最大(10/10)。CXCR1(-1768)-(783)-IL8三位点互作模型和CXCR1(-1768)-IL8二位点互作模型检验样本准确度较高(分别为0.5457和0.5485),但四个位点联合效应分级图表明CXCR1(-1768)-IL8两易感基因型为强正交互作用,同时将CXCR1(-1768)-(783)-IL8三位点互作效应和CXCR1(-1768)-IL8二位点互作效应;MPVA法得出CXCR1(-1830)-(-1768)-IL8为最佳组合。综合分析得出:CXCR1(-1768)-IL8二位点互作效应对该牛场奶牛乳房炎易感性达到显著水平。
     5.通过荧光定量PCR技术检测CXCR1-1768(T>A)、IL8-233(G>A)和IL82789(A>G)&2862(T>C)的突变位点不同基因型在奶牛血液中的表达变化。结果表明,对于CXCR1-1768(T>A)位点产生的三种基因型,TT和TA基因型的表达量显著高于AA基因型,TT的表达量最高;对于IL8-233(G>A)位点产生的基因型,GG基因型的表达量极显著高于AA和AG两种基因型(P<0.01);对于IL82789(A>G)&2862(T>C)位点,KK基因型的相对表达量极显著高于KA基因型(P<0.01),显著高于AA基因型(P<0.05)。
Mastitis is the most frequent and important disease in the dairy industry worldwide with great economic losses to the dairy industry. Most researchers have managed to prevent and control mastitis in cow through genetic and breeding technology, and veterinary technology besides the improvement of milking technology and management in nutrition and sanitation.
     In the study, mainly causing pathogens subclinical mastitis, including Staph ylococcus, Escherichia coli and Streptococcus, were isolated and identified among4dairy cattle herds in Yangzhou, Jiangsu province. The mRNA levels of five genes, IL8, CXCR1, TLR4, LYZ and LF, were detected by real-time PCR technique in the mammary cell lines of dairy cow, after infected by main pathogenic bacteria. To explore the associations between these five genes and milking traits and somatic cell score (SCS), polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP), polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis and sequencing were performed to screen single nucleotide polymorphisms (SNPs) in610Chinese Holstein cows from30bull families. MDR and Logistic regression methods were used to identify the synergic interaction of five SNP loci of CXCR1and IL8and their impacts on the mastitis resistance. The mRNA levels of CXCR1and IL8gene were detected by real-time PCR technique. The main results were as follows:
     1. In order to investigate the incidence of mastitis in Yangzhou area, the total310 Holstein cows were sampled from four dairy cattle farms for subclinical mastitis test with the method of BMT (Beijing Mastitis Test). The results showed that139dairy cows with208mammary areas among totally1163mammary areas were suffering with subclinical mastitis, the incidence of subclinical mastitis for cow numbers and mammary zones were44.84%and17.88%, respectively.322strains of bacteria were isolated from the above208mastitis positive milk samples, and identified as mainly Staphylococcus, Escherichia coli and Streptococcus.71strains among them were Staphylococcus (22.05%),95strains were Escherichia coli (29.50%),156strains were Streptococcus (48.45%). Among the139mastitis positive cows, the infection rate of single pathogen was43.16%, within which the infection rate of Streptococcus was31.65%. The infection rate of dual and more pathogens was54.68%, including mainly Escherichia coli and Streptococcus.
     2. Mammary epithelial cell line was cultured, and challenged by Staphylococcus, Escherichia coli and Streptococcus. The five genes, IL8, CXCR1, TLR4, LYZ and LF, were detected by real-time PCR to explore their reaction against these pathogenic bacteria. The results showed that the expressions of the five genes exhibited with different mRNA values in different phases, and the five genes reacted to all three pathogens. The expression values of IL8and CXCR1genes increased gradually in the Staphylococcus challenge, while the expression values of TLR4gene under E.coli challenge were significantly higher than any other pathogen. The expression values of LF gene increased gradually, while LYZ gene showed a very low expression level under these three pathogens, however, with a tendency of rise.
     3. In the polymorphic research,11SNPs were detected in IL8, CXCR1, TLR4, LYZ and LF genes:IL8-233(G>A), IL82789(A>G)&2862(T>C), CXCR1-1830(A>G), CXCR1-1768(T>A), CXCR1-344(T>C), CXCR1783(C>A), LYZ115(T>G), TLR4-226(G>C), TLR4exon31760(C>T), LFexonl133(G>C) and LF-3727(C>G)&-3717(A>G)), The associations between these11SNPs loci and milking traits and somatic cell score (SCS) were analyzed, the results showed:
     Significant association of the SNP, IL8-233(G>A), with somatic cell score (SCS)(P<0.01) was indentified, GG genotype had very significantly lower (P<0.01) SCS than GA or AA. The very significant association of the SNPs, IL82789(A>G) and2862(T>C) with somatic cell score (SCS), test day milk yield,305-day corrected milk yield (P<0.01) were indentified. The results showed that KK genotype had higher test day milk yield,305-day corrected milk yield than AA or KA genotype (P<0.01), Least squares mean of SCS of KK was significantly lower than that of AA or KA genotype (P<0.01). AA genotype was significant lower in tested day milk protein percentage than KK or KA genotype (P<0.05).
     The very significant association of SNP CXCR1-1830(A>G) with somatic cell score (SCS), test day milk yield, test day milk fat percentage,305-day corrected milk yield (P<0.01) were identified. The results showed that the least squares mean of SCS in AA genotype was significantly lower than that in AG (P<0.01), AG was very significantly higher in test day milk yield than AA or AG (P<0.01), AA was significantly higher in test day milk fat percentage than AG (P<0.01), AG was very significantly higher in305-day corrected milk yield than AA (P<0.01), and significantly higher than GG (P<0.05).
     The very significant association of SNP CXCR1-1830(A>G) with somatic cell score (SCS), test day milk yield,305-day corrected milk yield (P<0.01) were indentified. The results showed the least squares mean of SCS in TT genotype was significantly lower than that in TA (P<0.01), TA was very significantly higher in test day milk yield than AA or TT (P<0.01), TA was very significantly higher in305-day corrected milk yield than AA or TT (P<0.01).
     The very significant associations of SNP CXCR1-344(T>C) with somatic cell score (SCS), test day milk yield, test day milk protein percentage (P<0.01) were indentified. The results showed that the least squares mean of SCS in TT genotype was significantly lower than that in TC or CC (P<0.01), TT was very significantly higher in test day milk yield than CC (P<0.01), and significantly higher than TC (P<0.05), CC was very significantly lower in test day milk protein percentage than TT or CC (P<0.01).
     The very significant association of SNP TLR4-226(G>C) with305-day corrected milk yield (P<0.01) and significantly association with test day milk yield (P<0.05) were indentified. The results showed that CC genotype was very significantly higher in305-day corrected milk yield than GC or GG (P<0.01), CC was very significantly higher in test day milk yield than GC or GG (P<0.01).
     The very significant association of SNP TLR4exon31760(C>T) with somatic cell score (SCS), test day milk protein percentage, test day milk yield (P<0.01) and significant association with test day fat percentage (P<0.05) were indentified. The results showed that the least square mean of SCS in CC genotype was highly significantly lower than that in TC or TT (P<0.01), and CT was very significantly higher in test day milk yield than TT (P<0.01), and significantly higher than CC (P<0.05). TT was very significantly higher in test protein percentage than TC (P<0.01), CC was significantly higher in test day protein percentage than TC (P<0.05), TT was very significantly higher in test day fat percentage than TC or CC (P<0.01), CC was significantly higher in test day fat percentage than TC (P<0.05).
     The very significant association of SNP LYZ115(T>G) with somatic cell score (SCS), test day milk protein fat percentage,305-day corrected milk yield (P<0.01) were indentified. The results showed that the least square mean of SCS in GG genotype was highly significantly lower than that in TT (P<0.01), and significantly lower than TG (P<0.05). The least square mean of305-day corrected milk yield in GG was greatly significantly higher than that in TT (P<0.01), and significantly higher than in TG (P<0.05).
     The very significant association of SNP LF-3727(C>G) and-3717(A>G) with somatic cell score (SCS) and significant association with test day milk yield (P<0.05) were indentified. The results showed that the least square mean of SCS in TT was highly significantly lower than that in AA or TA (P<0.01), and TT or TA was very significantly higher in test day milk yield than AA (P<0.01).
     The very significant association of SNP LF exonl133(G>C) with test day milk protein percentage, test day milk yield, test day milk fat percentage,305-day corrected milk yield (P<0.01) and significant association with somatic cell score (SCS)(P<0.05) were indentified. The results showed that GG was very significantly higher in test day milk yield than CC (P<0.01), and GC was significantly higher in SCS than GG or CC (P<0.05).
     4. Identify the interaction of CXCR1and IL8and their impacts on the risk of mastitis susceptibility using MDR, MPVA and Logistic regression. The main effects of polymorphism of5SNPs of CXCR1and IL8gene showed no significant impacts on the mastitis susceptibility of cow based on the single factor Logistic regression. The interactions of CXCR1(-1768)-IL8, CXCR1(-1768)-(783)-IL8, and CXCR1(-1768)-(-344)-(783)-IL8showed significant impacts on the mastitis susceptibility of cow using MDR model, and the cross-validation consistency were maximum (10/10). The interactions of CXCR1(-1768)-IL8and CXCR1(-1768)-(783)-IL8showed high testing balance accuracy (0.5457and0.5485respectively). The interaction of CXCR1(-1768)-IL8was high degree synergy for mastitis susceptibility from the interaction dendrogram of multi-genotypes of CXCR1and IL8. CXCR1(-1830)-(-1768)-IL8were the best combination from MPVA method. In the meanwhile, the interactions of CXCR1(-1768)-IL8showed significant impacts on the mastitis susceptibility of cow using Logistic regression model including the main effect of5SNPs and the interaction effect of CXCR1(-1768)-IL8and CXCR1(-1768)-(783)-IL8(P<0.05).
     5. The variations of mRNA expression of CXCR1and IL8were detected by real-time PCR technique for different genotypes of CXCR1and IL8based on SNPs, CXCR1-1768(T>A), IL8-233(G>A), IL82789(A>G) and IL82862(T>C), in peripheral blood of Holstein. The results showed the expression levels of TT or TA were significantly higher than AA based on SNP CXCR1-1768(T>A) site. The expression level of GG genotype was very significantly higher than that of AA or AG (P<0.01) based on SNP IL8-233(G>A) site. The expression level of KK genotype was highly significantly higher than that of KA (P<0.01), and significantly higher than that of AA (P<0.05).
引文
[1]韩博,苏敬良,吴培福,王九峰.牛病学—疾病与管理[M].北京:中国农业大学版社.2006,301-303.
    [2]宣小龙,赵鹏,张成,史远刚.奶牛乳腺防御机理研究进展[J].农业科学研究.2005,26(2):81-86.
    [3]郭小雅,束婧婷,杨章平,汪志国.奶牛隐性乳房炎发生规律的调查分析[J].中国兽医杂志.2005,41(3):23-25.
    [4]Jose A, Aldo C A, Horaco R, Rampone A, Giraudo A T, Boqni C, Larriestra A, Naqel R. Field trials of a vaccine against bovine mastitis:evaluation in heifers[J]. J Dairy Sci.1997,80:845-853.
    [5]尹柏双,李国江.奶牛乳房炎的研究新进展[J].中国畜牧兽医.2010.37(2):182-184.
    [6]Hillerton J E and Berry E A. Treating mastitis in the cow-a tradition or an archaism[J]. J Appl Microbiol.2005,98:1250-1255.
    [7]Ranjan R, Swarup D, Patra R C. Bovine protothecal mastitis:a review.Perspectives in Agriculture, Veterinary Science[J]. Nutrition and Natural Resources.2006,1(17):7-17.
    [8]袁永隆,张礼华,刘纯传,杨玉英,侯奕昭;李宏胜,潘虎,张志常,郁杰,李新圃,张永欣.我国奶牛乳房炎常见病原菌的区系调查[J].中国农业科学.1992,25(4):70-76.
    [9]Bradley A J. Bovine mastitis:an evolving disease [J]. Vet J.2002,164:116-128.
    [10]杨章平,王健,丁焕峰,贝水荣,孙希云.奶牛隐性乳房炎发生规律的研究[J].中国奶牛1998.1:18-20.
    [11]赵兴绪主编.兽医产科学.北京:中国农业出版社.2002,p457-468.
    [12]张磊,冯士彬,王希春,周凡,吴金节.乳房炎奶牛部分血.液生化指标的变化[J].畜牧与饲料科学.2009,30(3):163-164.
    [13]孙凌志,陈庆勋.奶牛乳腺炎常见类型及治疗[J].中兽医医药杂志.2007,3:46-48.
    [14]马吉锋,潘忠学,黎玉琼,梁小军.奶牛隐性乳房炎研究进展[J].畜牧与饲料科学.2009,30(9):79-81.
    [15]Jayarao B M, Wolfgang D R. Bulk-tank milk analysis:A useful tool for improving milk quality and herd udder health[J]. Vet Clin North Am:Food Anim Pract.2003,19(1):75-92.
    [16]张雪梅,刘明军,杨波,谭立新,张宁,玛依拉.奶牛隐性乳房炎的病原检测与小白鼠致病性研究[J].中国畜牧兽医.2009,36(6):119-123.
    [17]Shook G E, and Schutz M M. Selection on somatic cell score to improve resistance to mastitis in the United States [J]. J Dairy Sci.1994,77:648-658.
    [18]Emanuelson, Danell U B, Philipsson J. Genetic parameters for clinical mastitis, somatic cell counts, and milk production estimated by multiple-trait restricted maximum likelihood[J]. J Dairy Sci.1988,71:467-476.
    [19]Heuven H C. Daignostic and genetic analysis of mastitis field data[D]. Ph.D. Diss.Univ. Wisconsin, Madison.1987.
    [20]Banos G E, Shook G E. Genotype by environment interaction and genetic correlations among paritie for somatic cell count and milk yield[J]. J Dairy Sci.1990,73:2563-2571.
    [21]Young C W, Legates J E, Leece J G. Genetic and phenotypic relationships between clinical mastitis laboratory criteria,and udder height[J]. J Dairy Sci.1960,43:54-62.
    [22]Shook G E. Selection for disease resisrance[J]. J Dairy Sci.1989,72:1349-1362.
    [23]Young C W, Legates J E, Leece J G. Genetic and phenotypic relationships between clinical mastitis, laboratory criteria, and udder height[J]. J Dairy Sci.1960,43:54-62.
    [24]储明星,周国利,金海国,石万海,曹福存,方丽,叶素成,朱颜.7个微卫星座位与北京荷斯坦母牛体细胞评分关系的研究[J].遗传学报.2005,32(5):471-475.
    [25]母安雄,胡松华.奶牛乳房炎抗生素疗法失败原因探讨[J].中国兽医杂志.2002,(2):18-20.
    [26]Kerr D E, Wellnitz O. Mammary expression of new genes to combat mastitis[J]. J Dairy Sci. 2003,81(3):38-47.
    [27]Kerr D E, Plaut K, Bramley A J, Williamson C M, Lax A J, Moore K, Wells K D, Wall R J. Lysostaphin expression in mammary glands confers protection against staphylococcal infection in transgenic mice[J]. Nat Biotechnol.2001,19:66-70.
    [28]蒋春茂,孙怀昌,王涛,张鸻,卢炜.人溶菌酶基因在奶牛乳腺中的表达试验[J].中国畜牧兽医.2004,31(12):20-21.
    [29]王应安,张才骏.奶牛隐性乳房炎调查[J].青海一畜牧兽医杂志.1988,(6):23.
    [30]Shook G E. Genetic Improvement of Mastitis Through Selection on Somatic Cell Count[J]. Vet Clin North Am:Food Anim Pract.1993,9(3):563-581.
    [31]Baggiolini M, Dewald B, Moser B. Interleukin-8 and related chemotactic cytokines-CXC and CC chemokines[J]. Adv Immunol.1994,55:97-179.
    [32]Baggiolini M, Dewald B, Moser B. Interleukin-8 and related chemotactic cytokines-CXC and CC chemokines[J]. Adv Immunol.1993,55:97-179.
    [33]Bannerman D D, Paape M J, Lee J W, Zhao X, Hope J C, Rainard P. Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection[J]. Clin Diagn Lab Immunol.2004,11:463-472.
    [34]Riollet C, Rainard P, Poutrel B. Differential induction of complement fragment C5a and inflammatory cytokines during intramammary infections with Escherichia coli and Staphylococcus aureus[J]. Clin Diagn Lab Immunol.2000,7:161-167.
    [35]Barber M R, Yang T J. Chemotactic activities in nonmastitic and mastitic mammary secretions: Presence of interleukin-8 in mastitic but not nonmastitic secretions[J]. Clin Diagn Lab Immunol. 1998,5:82-86.
    [36]Leyva-Baca I, Schenkel F, Sharma B S, Jansen G B, and Karrow N A. Identification of single nucleotide polymorphisms in the bovine CCL2, IL8, CCR2 and IL8RA genes and their association with health and production in Canadian Holsteins[J]. Anim Genet.2007,38:198-202.
    [37]Youngerman S M, Saxton A M and Pighetti G M. Novel single nucleotide polymorphism and haplotypes within the bovine CXCR2 gene[J]. Immunogenetics.2004,56:355-359.
    [38]Youngerman S M, Saxton A M, Oliver S P and Pighetti G M. Association of CXCR2 polymorphisms with subclinical and clinical mastitis in dairy cattle[J]. J Dairy Sci.2004,87: 2442-2448.
    [39]Baggiolini M, Dewald B, Moser B. Human chemokines:an update[J]. Annu Rev Immunol, 1997,15:675.
    [40]Baggiolini M. Chemokines and leukocyte traffic[J]. Nature.1998,392(6676):565.
    [41]Roebuck K A. Regulation of interleukin-8 gene expression[J]. J Interferon and Cytokine Res. 1999,19(5):429.
    [42]Mukaida N, Shiroo M, Matsushima K. Genomic structure of the human monocyte-derived neutrophil chemotactic factor IL-8[J]. J Immunol.1989,143(4):1366.
    [43]Hoch R C, Schraufstaetter I U, Coch rane C G. In vivo, in vitro, and molecular aspects of interleukin-8 and interleukin-8 receptors[J]. J L ab Clin Med.1996,128(2):134.
    [44]Wolf M, Delgado M B, Jones S A, Dewald B, Clark-Lewis 1, Baqqiolini M. Granulocyte chemotactic protein 2 acts via both IL-8 receptors, CXCR1 and CXCR2[J]. Eur J Immunol.1998, 28(1):164-170.
    [45]Paape M, Mehrzad J, Zhao X, Detilleux J, Burcenich C. Defense of the bovine mammary gland by polymorpho-nuclear neutrophil leukocytes [J]. J Mammary Gland Biol Neoplasia.2002,7(2): 109-121.
    [46]Ahuja S K, Lee J C and Murphy P M. CXC chemokines bind to unique sets of selectivity determinants that can function independently and are broadly distributed on multiple domains of human interleukin-8 receptor B. Determinants of high affinity binding and receptor activation are distinct[J]. J. Biol. Chem.1996,271(1):225-232.
    [47]Hebert C A, Chuntharapai A, Smith M, Colby T, Kim J and Horuk R. Partial functional mapping of the human interleukin-8 type a receptor. Identification of a major ligand binding domain[J]. J. Biol. Chem.1993,268(25):18549-18553.
    [48]Leong S R, Kabakoff R C, and Hebert C A. Complete mutagenesis of the extracellular domain of interleukin-8 (IL-8) type a receptor identifies charged residues mediating IL-8 binding and signal transduction[J]. J. Biol. Chem.1994,269(30):19343-19348.
    [49]Springer T A. Traffic signals for lymphocyte recirculation and leukocyte emigration:the multistep paradigm [J]. Cell.1994,76(2):301-314.
    [50]Taub D D, Oppenheim J J. Review of the chemokine meeting the third international symposium of chemotactic cytokines[J]. Cytokine.1993,5(3):175-179.
    [51]Laudanna C, Campbell J J, Butcher E C. Role of Rho in chemoatt ractant-activated leukocyte adhesion through integrins[J]. Science.1996,271(5251):981-983.
    [52]Lee J, Horuk R, Rice G C, Bennett G L, Camerato T. Wood Wl. Characterization of two high affinity human interleukin-8 receptors[J]. J Biol Chem.1992,267(23):16283-16287.
    [53]Wu D, Larosa G J, Simon M I. Gprotein-coupled signal transduction pathways for interleukin-8 [J]. Science.1993,261(5117):101-103.
    [54]Shizuo A, Kiyoshi T, Tsuneyasu K. Toll-like receptors:critical proteins linking innate and acquired immunity [J]. Nat Immunol,2001,2:675-680.
    [55]Medzhitov R, Preston-Hurburt P, Janeway C A. A human homologue of the DrosopH ila Toll protein signals activation of adaptor immunity[J]. Nature.1997,388:394-397.
    [56]Rock F L, Hardium G, Timans J C, Kastelein R A, Bazan J F. A family of human receptors structurally related to Drosophila Toll[J]. Proc Natl Acad Sci USA.1998,95(2):588-593.
    [57]Takeda K, Akira S. Toll-like receptors in innate immunity[J]. Int Immunol.2005,17(1):1-14.
    [58]Hoshino K, Kaisho T, Iwabe T, Takeuchi O, Akira S. Differential involvement of IFN-beta in Toll-like receptor-stimulated dendritic cell activation[J]. Int Immunol.2002,14(10):1225-1231.
    [59]Uenishi H, Shinkai H. Porcine Toll-like receptors:the front line of pathogen monitoring and possible implications for disease resistance[J]. Dev Comp Immunol.2009,33(3):353-361.
    [60]Qureshi S T, Lariviere L, Leveque G, Clermont S, Moore K J, Gros P, Malo D. Endotoxin-tolerant mice have mutations in toll-like receptor 4 (Tlr4)[J]. J Exp Med.1999,189(4): 615-625
    [61]Ban us H A, Vandebriel R J, Ruiter H, Dormans J A, Nagelkerke N J, Mooi F R, Hoebee B, van Kranen H J, Kimman TG. Host genetics of Bordetella pertussis infection in mice:significance of Toll like receptor 4 in genetic susceptibility and pathobiology[J]. Inf Immun.2006,74(5): 2596-2605
    [62]Jordan J M, Woods M E, Olano J, Walker D H. The absence of toll like receptor 4 signaling in C3H/HeJ mice predisposes them to overwhelming rickettsial infection and decreased protective Th1 responses[J]. Infect Immun.2008,76(8):3717-3724
    [63]Jordan J M, Woods M E, Soong L, Walker D H. Rickettsiae stimulate dendritic cells through toll-like receptor 4, leading to enhanced NK cell activation in vivo[J]. J Infect Dis.2009,199(2): 236-242.
    [64]Goldammer T, Zerbe H, Molenaar A, Schuberth H J, Brunner R M, Kata S R, Seyfert H M. Mastitis increases mammary mRNA abundance of b-Defensin 5, tolllike-receptor 2 (TLR2), and TLR4 but not TLR9 in cattle[J]. Clin Diagn Lab Immunol.2004,11(1):174-185.
    [65]Werling D, Hope J C, Howard C J, Junqi T W. Differential production of cytokines, reactive oxygen and nitrogen by bovine macrophages and dendritic cells stimulated with toll-like receptor agonists[J]. Immunology.2004,111(1):41-52.
    [66]Sharma B S, Leyva I, Schenkel F, Karrow N A. Association of toll like receptor 4 polymorphisms with somatic cell score and lactation persistency in Holstein bulls[J]. J Dairy Sci. 2006,89(9):3626-3635.
    [67]王兴平,许尚忠,马腾壑,高雪,任红艳,陈金宝.牛TLR4基因5'侧翼区的遗传变异与乳房炎的关联[J].遗传.2006,28(12):1520-1524.
    [68]王兴平,许尚忠,马腾壑,高雪,任红艳,陈金宝.牛TLR4基因的遗传多态性与乳房炎的关联分析[J].畜牧兽医报.2007,38(2):120-124.
    [69]翟春媛,杨秀芹,李海涛,李金玲,刘娣.猪TLR4基因的变异位点分析[J]遗传育种.2011,47(3):18-21.
    [70]周波,刘传武,虞德兵,黄瑞华,刘红林,王林云.用PCR-SSCP方法检测猪Toll样受体4(TLR4)基因外显子3的SNP[J].畜牧与兽医.2008,40(6):26-30.
    [71]Fogaca A C, Dasilva P I, Miranda M T, Bianchi A G, Miranda A, Ribolla P E, Daffre S. Antimicrobial activity of a bovine hemoglobin fragment in the tick Boophilus microplus[J]. J Biol Chem.1999,274(36):25330-25334.
    [72]刘仲敏,何伯安.溶菌酶及其在食品工业中的应用[J].食品与发酵工业.1995(5):80-82.
    [73]Takaki H, Toibana A, Marumoto R, Nakahama K, Kikuchi M, Fujimoto K, Ikehara M. Expression of human lysozyme in an insoluble form in yeast[J]. Gene.1987,56(1):53-59.
    [74]权志中,张丞斌,余荣.鸡蛋清溶菌酶基因的克隆及其在毕赤酵母中的表达研究[J].饲料工业:酶制剂.2007,28(24):18-22.
    [75]孙怀昌,于锋,苏建华,吴春华,张泉,李国才.人溶菌酶基因治疗奶牛乳腺炎的初步研究[J].畜牧兽医学报.2004,35(2):227-232.
    [76]Seyfert H M, Tuekoriez A, Interthal H, Koezan D, Hobom G. Structure of the bovine lactoferrin-encoding gene and its Promoter[J]. Gene.1994,143:265-269.
    [77]Tomita M, Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K. Potent Antibacterial peptides generated by pepsin digestion of bovine lactoferrin[J]. J Dairy Sci.1991, 74(12):4137-4142.
    [78]Anderson J H, Jenssen H, Guttberg T J. Lactoferrin and lactoferricin inhibit Herpes simplex 1 and 2 infection and exhibit synergy when combined with acyclovir[J]. Antivial Research.2003, 58(3):209-215.
    [79]Vorland L H. Lactoferrin:a multifunctional glycoprotein[J]. APMIS.1999,107:971-981.
    [80]Dapsanse V, Defer M C, Follezou J Y, Dugas B, Postaire E, Picard O, Damais C. Differential Pattern in cireulating nitrogenderivatives, lactoferrink, and antilactoferrin antibodies in HIV type 1 and HIV type 2 infeetions[J]. AIDS Res Hum Retroviruses.2001,17(11):1041-1045.
    [81]Wakabayashi H, Kurokawa M, Shin K, Teraguchi S, Tamura Y, Shiraki K. Oral lactoferrin prevents body weight loss and inerease cytoline responses during herpes simplex virus type 1 infeetion of mice[J]. Biosci Biotechnol Biochem.2004,68(3):537-544.
    [82]Suzuki Y A, Loimerdal B. Characterization of mammalian receptors for lactoferrin[J]. Biochemistry Cell Biology.2002,80(1):75-80.
    [83]Omata Y, Satake M, Maeda R, Saito A, Shimazaki K, Yamauchi K, Uzuka Y, Tanabe S, Sarashina T, Mikami T. Reduction of the infectivety of Toxoplasma gondi and Eimeria stiedai sporozoites by treatment with bovine lactoferrin[J]. J Vet Med Sci.2001,63(2):187-190.
    [84]He J and Furmanski P. Sequence specificity and transcriptional activation in the binding of lactoferrin to DNA[J]. Nature.1995,373(6516):721-724.
    [85]Wang Y, Yankee E, Varadhachary A. Double blind, placebo controlled trial of oral lactoferrin in combinant therapy for first line none-small cell lung cancer (NSCLC)[J]. J Clin Oncol.2005, 23(16):655.
    [86]Gaunt S N, Raffio N, Kingsbury E T, Damon R A J, Johnson W H, Mitehell B A. Variation of lactoferr and mastitis and their heritabilities[J]. J Dairy Sci.1980,63:1874-1880.
    [87]李国华,张沉,孙东晓,李宁.奶牛乳铁蛋白基因5'侧翼区PCR-SSCP多态性分析[J].遗传.2004,26:827-830.
    [88]Kaminski S, Olenski K, Brym P, Malewsk T, Sazanov A A. Single nucleotide polymorphism in the promoter region of the lactoferrin gene and its associations with milk performance traits in polish Holstein-friesian cows[J]. Genetika.2006,42(8):1117-1120.
    [89]王洪梅,孔振兴,王长法,黄金明,李秋玲,侯明海,李建斌,仲跻峰.奶牛乳铁蛋白基因5'侧翼区遗传多态性及其与乳腺炎关联性分析[J].遗传.2009,31(4):393-399.
    [90]Barloy D, Lemoine J, Abelard P, Tanguy A M, Roger Rivoal, Joseph Jahier. Marker-assisted pyramiding of two cereal cyst nematode resistance genes from Aegilops variabilis in wheat[J]. Mol Breed.2007,20(1):31-40.
    [91]倪大虎,易成新,李莉,汪秀峰,张毅,赵开军,王春连,章琦,王文相,杨剑波.分子标记辅助培育水稻抗白叶枯病和稻瘟病基因聚合系[J].作物学报.2008,34(1):100-105.
    [92]束婧婷,吉文林,包文斌,陈国宏,张学余,季从亮.鸡ADSL基因和GARS-AIRS-GART基因对鸡肉肌苷酸(IMP)含量的影响[J].畜牧兽医学报.2007,38(8):786-791.
    [93]李广,安小鹏,李玲,韩丹,侯金星,王娅娜,朱广琴,王建刚,宋宇轩,曹斌云.西农萨能奶山羊多胎基因位点的遗传聚合效应分析[J].西北农林科技大学学报.2009,37(10):47-54.
    [94]常国斌.周琼,雷黎立,张学余,王克华,陈蓉,陈国宏.鸡肌内脂肪性状的多基因聚合效应分析[J].中国家禽.2009,31(19):25-28.
    [95]邹莉玲.NER通路多个SNP对肺癌易感性的交互作用研究[D].复旦大学博士学位论文,2009.
    [97]Ritchie M D, Hahn L W, Roodi N, Bailey L R, Dupont W D, Parl F F, Moore J H. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer[J]. Am J Hum Genet.2001,69(1):138-147.
    [98]Sun X Q, Zhang Z Q, Zhang Y L, Zhang Y G, Li Y D. Multi-Locus Penetrance Variance Analysis Method for Association Study in Complex Diseases[J]. Hum Hered.2005,60:143-149.
    [99]朱水芳.实时荧光聚合酶链式反应检测技术[M].北京:中国计量出版社,2003:33-49.
    [100]程金花.鹅PIT-1基因的克隆、表达和遗传效应研究[D].扬州大学博士学位论文,2009.
    [101]朱燕,罗欣,徐增莲.中国黄牛背最长肌中capnl mRNA表达与嫩度的关系[J].南京农业大学学报.2006,29(2):89-93.
    [102]朱荣昌,林树伯,李俊奇,孙雅红,王月江,王志军.猪白细胞介素-8荧光定量PCR检测方法的建立[J].北京农学院学报.2010,25(4):74-76.
    [103]周作勇,聂奎,宋振辉,胡世君,周荣琼,郭智莉,刘丽琼,秦波.雏鸡不同组织TLR1、TLR2、TLR4、TLR5和TLR15mRNA转录水平相对定量研究[J].畜牧兽医学报.2010,41(11):1453-1459.
    [104]Candace Allert D V M. Mastitis vaccine:Alternative stategics for controlling environmental mastitis [J]. J. Large animal veterinarianl.1995,5:10-14.
    [105]林锋强,潘杭君,胡松华.奶牛乳房炎疫苗研究进展[J].中国奶牛.2002,1:40-42.
    [106]蒋春茂.奶牛乳房炎研究进展[J].中国畜牧兽医.2004,5:36-37.
    [107]叶定生,孙健.安徽省保健奶牛场奶牛隐性乳房炎病原及其流行情况的调查[J].中国奶牛.1999,3:50-57.
    [108]Pitkala A, Haveri M, Pyorala S, Myllys V, Honkanen-Buzalski T. Bovine mastitis in Finland 2001-prevalence, distribution of bacteria, and antimicrobial resistance[J]. J Dairy Sci.2004,8(7): 2433-2441.
    [109]Rendos J J, Eberhart R J, Kesler E M. Microbial populations of teat ends of dairy cows and bedding materials[J]. J. Dairy Sci.1975,58:1491-1500.
    [110]Erb H N. Rates of diagnosis of six diseases of Holstein cows during 15-day,21-day, and 30-day intervals[J]. Am.J.Vet.Res.1984,45:333-335.
    [111]Erskine R J. Incidence and types of clinical mastitis in dairy herds with High and low somatic cells counts[J]. J.Am.Vet.Med.Assoc.1988,192:761-765.
    [112]陆承平.兽医微生物学[M].第三版.北京:中国农业出版社,2001.
    [113]袁永隆,张永欣,侯奕昭,杨玉英,李宏胜.奶牛乳房炎乳汁细菌的分离和鉴定程序[J].中国兽医科技.1991,21(2):97-101.
    [114]胡松华,杜爱芳,蔡渭明.奶牛临床型和隐性型乳房炎的细菌学分析[J].中国畜禽传染病.1998,20(4):199-201.
    [115]周庭宣,颜君.重庆地区奶牛隐性乳房炎病原菌的分离鉴定与药敏试验[J].中国畜禽传染病.1997,3:4-7.
    [116]吴国娟.张中文,沈红,孔刚.北京地区奶牛乳房炎阳性率及发生规律的研究[J].北京农学院学报.2001,16(3):43-46.
    [117]王志远,宋冶萍.青岛市奶牛乳房炎的病原分离、鉴定[J].畜牧与兽医.2002,34(7):31.
    [118]威廉.C.雷布汉.奶牛疾病学(第八版)[M].赵德明,沈建忠,译.北京:中国农业大学出版社.1999.
    [119]袁永隆,张礼华,刘纯传,杨玉英,侯奕昭,李宏胜,潘虎,张志常,郁杰,李新圃,张永欣.我国奶牛乳房炎常见病原菌的区系调查[J].中国农业科学.1992,25(4):70-76.
    [120]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods.2001,25(4):402-408.
    [121]Strandberg Y, Gray C, Vuocolo T, Donaldson L. Broadway M, and Tellam R. Lipopolysaccharide and lipoteichoic acid induce different innate immune responses in bovine mammary epithelial cells[J]. Cytokine.2005,31:72-86.
    [122]Lahouassa H, Moussay E, Rainard P, and Riollet C. Differential cytokine and chemokine responses of bovine mammary epithelial cells to StapH ylococcus aureus and Escherichia coli[J]. Cytokine.2007,38:12-21.
    [123]Rabehi L, Irinopoulou T, Cholley B, Haeffner-Cavaillon N, Carreno, M P. Gram-positive and gram-negative bacteria do not trigger monocytic cytokine production through similar intracellular pathways[J]. Infect. Immun.2001,69:4590-4599.
    [124]Wellnitz O, Kerr, D E. Cryopreserved bovine mammary cells to model epithelial response to infection[J]. Vet. Immunol. Immunopathol.2004,101:191-202.
    [125]Goldamme T, Zerbe H, Molenaar A, Schuberth H J, Brunner R M, Kata S R, Seyfert H M. Mastitis increases mammary mRNA abundance of {beta}-defensin 5, toll-like-receptor 2 (TLR2), and TLR4 but not TLR9 in cattle[J]. Clin.Diagn. Lab.Immunol.2004,11:174-185.
    [126]Wei Yang. Holm Zerbe, WolframPetzl, Ronald Marco Brunner, Juliane Gunther, hristian Draing, Sonja von Aulock, Hans-Joachim Schuberth, Hans-Martin Seyfert. BovineTLR2 and TLR4 properly transduce signals from Staphy lococcus aureus and E. coli, but S. aureus fails to both activate NF-Bin mammary epithelial cells and to quickly induce TNF and interleukin-8 (CXCL8) expression in the udder[J]. Mol Immunol.2008,45:1385-1397.
    [127]Griesbeck-Zilch B, Meyer H H D, Ch. Kuhn, Schwerin M, and Wellnitz O. Staphylococcus aureus and Escherichia coli Cause Deviating Expression Profiles of Cytokines and Lactoferrin Messenger Ribonucleic Acid in Mammary Epithelial Cells[J]. J. Dairy Sci.2008,91:2215-2224.
    [128]Orsi, N. The antimicrobial activity of lactoferrin:Currentstatus and perspectives[J]. Biometals. 2004,17:189-196.
    [129]Ward P P, Paz E and Conneely O M. Multifunctional roles of lactoferrin:Acritical over view[J]. Cell. Mol.Life Sci.2005,62:2540-2548.
    [130]Hagiwara S, Kawai K, Anri A and Nagahata H. Lactoferrin concentrations in milk from normal and subclinical mastitic cows[J]. J. Vet. Med. Sci.2003,65:319-323.
    [131]Schmitz S, Pfaffl M W, Meyer H H D and Bruckmaier R M. Short-term changes of mRNA expression of various inflammatory factors and milk proteins in mammary tissue during LPS-induced mastitis [J]. Domest. Anim. Endocrinol.2004,26:111-126.
    [132]Sarikaya H, Schlamberger G, Meyer H H D and Bruckmaier R M. Leukocyte Populations and mRNA Expression of Inflammatory Factors in Quarter Milk Fractions at Different Somatic Cell Score Levels in Dairy Cows[J]. J. Dairy Sci.2006,89:2479-2486.
    [133]Barber M R, Pantschenko A G, Hinckley L S, Yang T J. Inducible and constitutive in vitro neutrophil chemokine expression by mammary epithelial and myoepithelial cells[J]. Clin Diagn Lab Immunol.1999,6(6):791-798.
    [134]Boudjellab N, Chan-Tang H S, Li X, Zhao X. Interleukin 8 response by bovine mammary epithelial cells to lipopolysaccharide stimulation[J]. Am J Vet Res.1998,59(12):1563-1567.
    [135]Caswell J L, Middleton D M, Gordon J R. Production and functional characterization of recombinant bovine interleukin-8 as a specific neutrophil activator and chemo attractant[J]. Vet Immunol Immunopathol.1999,67(4):327-340.
    [136]Mukaida N, Harada A, Matsushima K. Interleukin-8 and monocyte chemotactic and activating factor (MCAF/MCP-1), chemokines essentially involved in inflammatory and immune reactions[J]. Cytokine Growth Factor Rev.1998,9(1):9-23.
    [137]Bannerman D D, Paape M J, Lee J-W, Zhao X, Hope J C, Rainard P. Escherichia coli and StapH ylococcus aureus elicit differential innate immune responses following intramammary infection[J]. Clin Diagn Lab Immunol.2004,11(3):463-472.
    [138]Riollet C, Rainard P, Poutrel B. Differential induction of complement fragment C5a and inflammatory cytokines during intramammary infections with Escherichia coli and Staphylococcus aureus[J]. Clin Diagn Lab Immunol.2000,7(2):161-167.
    [139]Barber M R, Yang T J. Chemotactic activities in nonmastitic and mastitic mammary secretions: Presence of interleukin-8 in mastitic but not nonmastitic secretions [J]. Clin Diagn Lab Immunol. 1998,5(1):82-86.
    [140]Heaton M P, Chitko-McKown C G, Grosse W M, Keele J W, Keen J E, Laegreid W W. Interleukin-8 haplotype structure from nucleotide sequence variation in commercial populations of US beef cattle[J]. Mamm Genome.2001,12(3):219-226.
    [141]Leyva-Baca I, Schenkel F, Sharma B S, Jansen G B, and Karrow N A. Identification of single nucleotide polymorphisms in the bovine CCL2, IL8, CCR2 and IL8RA genes and their association with health and production in Canadian Holsteins[J]. Anim Genet.2007,38(3):198-202.
    [142]Lee J W, Bannerman D D, Paape M J, Huang M K and Zhao X. Characterization of cytokine expression in milk somatic cells during intramammary infections with Escherichia coli or Staphylococcus aureus by real-time PCR[J]. Vet. Res.2006,37(2):219-229.
    [143]Atsushi Watanabe, Yukio Yagi, Hiroki Shiono, Yuichi Yokomizo, Shigeki Inumaru. Effects of intramammary infusions of interleukin-8 on milk protein composition and induction of acute-phase protein in cows during mammary involution[J]. Can J Vet Res.2008,72(3):291-296.
    [144]Bannerman D D, Kauf A C W, Paape M J, Springer H R and Goff J P. Comparison of Holstein and Jersey Innate Immune Responses to Escherichia coli Intramammary Infection[J]. J. Dairy Sci. 2008,91(6):2225-2235.
    [145]Gunther Juliane, Shuzhen Liu. Esch Kathrin, Schuberth Hans-Joachim, Seyfert Hans-Martin. Stimulated expression of TNF-a and IL-8, but not of lingual antimicrobial peptide reflects the concentration of pathogens contacting bovine mammary epithelial cells[J]. Vet Immunol Immunopathol.2010,135(1-2):152-157.
    [146]Weikard R, Kuhn C, Goldammer T, Freyer G, Schwerin M. The bovine PPARGC1A gene: molecular characterization and association of a SNP with variation of milk fat synthesis[J]. Physiol Genomics.2005,21(1):1-13.
    [147]Rotter V, Nagaev I, Smith U. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is like IL-8 and tumor necrosis factor-a, over expressed in human fat cells from insulin-resistant subjects[J]. J. Biol. Chem.2003,278(46):45777-45784.
    [148]Murdoch C, Finn A. Chemokine receptors and their role in inflammation and infectious diseases[J]. Blood.2000,95:3032-3043.
    [149]郑向忠,张亚平,何丽平,庚镇城.趋化因子及其受体基因家族的系统进化分析[J].遗传学报.2000,27:672-685.
    [150]Lahouassa H, Rainard P, Caraty A, Riollet C. Identification and characterization of a new interleukin-8 receptor in bovine species[J]. Mol Immunol.2008,45:1153-1164.
    [151]Rambeaud M, Clift R, Pighetti G M. Association of a bovine CXCR2 gene polymorphism with neutrophil survival and killing ability[J]. Vet Immunol Immunopathol.2006,111:2231-2238.
    [152]Wu L, Ruffing N, Shi X, Newman W, Soler D, Mackay C R, Qin S. Discrete steps in binding and signaling of interleukin-8 with its receptors[J]. J Biol Chem.1996,271:31202-31209.
    [153]Wuyts A, Proost P, Lenaerts J P, Ben-Baruch A, Van Damme J, Wang J M. Differential usage of the CXC chemokine receptors 1 and 2 by interleukin-8, granulocyte chemotactic Protein-2 and epithelial-cell-derived neutrophilatt ractant-78[J]. Eur J Biochem.1998.255(1):67-73.
    [154]Wuyts A, Van O N, Haelens A, Samson I, Herdewijn P, Ben-Baruch A, Oppenheim J J, Proost P, Van Damme J. Characterization of synthetic human granulocyte chemotactic protein 2:usage of chemokine receptors CXCR1 and CXCR2 and in vivo inflammatory properties[J]. Biochemistry. 1997,36:221-223.
    [155]Olson T S, Ley K. Chemokines and chemokine receptors in leukocyte trafficking[J]. Am J Physiol Regul Integr Compphysiol.2002,283:R7-R28.
    [156]Oviedo-Boyso J, Valdez-Alarco'n J J, Cajero-Jua'rez M, Ochoa-Zarzosa A, Lo'Pez-Meza J E, Bravo-Patin'o A, Baizabal Aguirre V M. Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis[J]. J Infect.2006,54:399-409.
    [157]Rainard P, Riollet C. Innate immunity of the bovine mammary gland[J]. Vet R.2006,37: 369-400.
    [158]Lee J W, Bannerman D D, PaaPe M J, Huang M K, Zhao X. Characterization of cytokine expression in milk somatic cells during intramammary infections with Escherichia coli or Staphylococcus aureus by real-time PCR[J]. Vet R.2006,37:219-229.
    [159]徐敏,平富强,陈仕毅,赖松家,刘益平CXCR2基因多态性与奶牛乳房炎和乳品质的关联[J].遗传.2008,30:463-468.
    [160]官久强,王洪梅,王长法,李秋玲,仲跻峰,侯明海,帅素容.中国荷斯坦牛CXCR1基因编码区的遗传多态性[J].西北农林科技大学学报(自然科学版).2009,37(6):47-52.
    [161]官久强,王洪梅,王长法,李秋玲,李建斌,帅素容,明海,仲跻峰.中国荷斯坦牛白介素8受体基因编码区多态性与乳腺炎的关联分析[J].中国农业科学.2010,43(5):1057-1065.
    [162]Leyva-Baca I, Schenkel F, Martin J, Karrow N A. Polymorphisms in the 5'upstream regin of the CXCR1 chemokine recepror gene, and their association with somatic cell score in Holstein cattle in Canada[J]. J. Dairy Sci,2008,91:407-417.
    [163]Youngerman S M, Saxton A M, Oliver S P, Pighetti G M. Association of CXCR2 polymorphisms with subclinical and clinical mastitis in dairy cattle[J]. J. Dairy Sci.2004,87: 2442-2448.
    [164]Goertz I, Baes C, Weimann C, Reinsch N, Erhardt G. Association between single nucleotide polymorphisms in the CXCR1 gene and somatic cell score in Holstein dairy cattle[J]. J. Dairy Sci. 2009,92:4018-4022.
    [165]Hansen L B, Young C W, Miller K P, Touchberry R W. Health care requirements of dairy cattle in response to milk yield selection[J]. J. Dairy Sci.1979,62:1922-1931.
    [166]张夫千,郑小敏,唐大伟.赵鹏,史远刚.荷斯坦牛BoLA-DRB3基因多态性及其与乳房炎抗性关系分析[J].畜牧兽医学报.2007,38:115-119.
    [167]陈艳,江明锋,叶煜辉,刘勇涛,李生伟.溶菌酶的研究进展[J].生物学杂志.2009,26(2):64-66.
    [168]陈仁金,杨章平,毛永江,冀德君,常洪,陈莹,施雪奎,吴海涛.牛亚科6个群体LYZ基因序列分析及系统进化研究[J].扬州大学学报(农业与生命科学版).2009,30(2):30-33.
    [169]侯启瑞,王金玉,王慧华,李源,施会强.京海黄鸡LYZ基因SNPs检测及其与生长、产蛋性能的联系[J].畜牧兽医学报.2010,41(5):524-530.
    [170]Masahide Y, Sandra A F, Merrill D B. A novel lysozyme mutation Phe 571 Ile associated with hereditary renal amyloidosisfJ]. Kidney Int.2003,63(5):1652-1657.
    [171]Valleix S, Drunat S, Philit J B, Adoue D, Piette J C, Droz D, MacGreqor B, Canet D, Delpech M, Grateau G. Hereditary renal amyloidosis caused by a new variant lysozyme W64R in a French family[J]. Kidney Int.2002,61(3):907-912.
    [172]张勃伟,权富生,赛务加浦,孙达权,马会明,张涌.人溶菌酶基因真核表达载体构建及其在牛乳腺上皮细胞中的表达[J].西北农业学报.2008,17(1):11-14.
    [173]Tong J, Liu X, Hu W, Bi M, Wang Y, Li Q, Li N. Production of recombinant human lysozyme in the milk of transgenic pigs[J]. Transgenic Res.2011,20(20):417-419.
    [174]Sahoo N R, Kumarl P, Bhushanl B, Bhattacharya T K, Sharmal A, Dayal S, Pankaj P K, Sahoo M. PCR-SSCP of serum lysozyme gene (Exon-Ⅲ) in riverine buffalo and its association with lysozyme activity and somatic cell count[J]. Asian-Aust. J. Anim. Sci.2010,23(8):993-999.
    [175]White, S N, Taylor K H, Abbey C A, Gill C A, and Womack J E. Haplotype variation in bovine Toll-like receptor 4 and computational prediction of a positively selected ligand-binding domain[J]. Proc. Natl. Acad. Sci. USA.2003,100:10364-10369.
    [176]Werling D, Hope J C, Howard C J, Jungi TW. Differential productionof cytokines, reactive oxygen and nitrogen by bovine macrophages and dendritic cells stimulated with toll-like receptor agonists[J]. Immunology.2004,111(1):41-52
    [177]Beutler B. TLR4:central component of the sole mammalian LPS sensor[J]. Curr Opin Immun. 2000,12(1):20-26.
    [178]Goldammer T, Zerbe H, Molenaar A, Schuberth H J, Brunner R M, Kata S R, Seyfert H M. Mastitis increases mammary mRNA abundance of-Defensin 5, toll like-receptor 2 (TLR2). and TLR4 but not TLR9 in cattle[J]. Clin Diagn Lab Immunol.2004,11(1):174-185.
    [179]刘文娇,孙少华,李雪梅.TLR4基因外显子ⅢBbvl2 I酶切位点多态性与奶牛乳房炎的相关分析[J].中国农业科技导报.2008,10(2):114-118.
    [180]Nibbering P H, Ravensbergen E, Welling M M, van Berkel L A, van Berkel P H, Pauwels E K, Nuijens J H. Human lactoferrin and peptides derived from its N terminus are highly effective against infections with antibiotic-resistant bacteria[J]. Infect Immun.2001,69(3):1469-1476.
    [181]Nash D L, Rogers G W, Cooper J B, Hargrove G L, Keown J F. Relationships among severity and duration of clinical mastitis and sire transmitting abilities for somatic cell score, udder type traits, productive life, and protein yield[J]. J Dairy Sci.2002,85(5):1273-1284.
    [182]Molenaar A J, Kuys Y M, Davis S R, Wilkins R J, Mead P E, Tweedie J W. Elevation of lactoferrin gene expression in developing, ductal, resting, and regressing parenchymal epithelium of the ruminant mammary gland[J]. J Dairy Sci.1996,79(7):1198-1208.
    [183]Kaminski S, Olenski K, Brym P, Malewsk T, Sazanov A A. Single nucleotide polymorph ism in the promoter region of the lactoferrin gene and its associations with milk performance traits in polish Holstein-friesian cows [J]. Genetika.2006,42(8):1117-1120.
    [184]Daly M, Ross P, Giblin L, Buckley F. Polymorphisms within the lactoferrin gene promoter in various cattle breeds [J]. Anim Biotechnol.2006,17(1):33-42.
    [185]周磊.bLF基因部分序列的PCR-SSCP分析及其作为乳腺炎抗性分子标记的可行性研究[M]南京农业大学硕士学位论文,2006.
    [186]张利军,蔡亚非,刘庆华,宋维龙,李莲,王根林.奶牛乳铁蛋白基因启动子区PCR-RFLP分析与乳房炎的相关性[J].福建农林大学学报.2005,34(1):84-91.
    [187]Ritchie M D, Hahn L W, Roodi N, Bailey L R, Dupont W D, Parl F F, Moore J H. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer[J]. Am J Hum Genet.2001,69(1):138-147.
    [188]Sun X Q, Zhang Z Q, Zhang Y L, Zhang Y G, Li Y D. Multi-Locus Penetrance Variance Analysis Method for Association Study in Complex Diseases[J]. Hum Here.2005:60:143-149.
    [189]李佳圆,龙启明,陶萍,胡锐,李卉;雷放鸣;周卫东;李双飞.基于多因子降维法模型的代谢酶易感基因多态性与乳腺癌患病风险的交互作用研究基于多因子降维法模型的代谢酶易感基因多态性与乳腺癌患病风险的交互作用研究[J].四川大学学报(医学版).2008,39(5):780-783.
    [190]李世平,毛永江,常洪,杨章平.南方地区中国荷斯坦牛乳中体细胞数变化规律的研究[J].中国畜牧杂志.2008,44(3):7-9.
    [191]骆常好,刘桂芳,张爱莲.多因子降维法和ILogistic回归交互效应对比研究[J].中国药物与临床.2008,8(10):777-779
    [192]Laudanna C, Campbell J J. Butcher E C. Role of Rho in chemoattractant-activated leukocyte adhesion through integrins[J]. Science.1996,271:981.
    [193]Taub D D, Oppenheim J J. Review of the chemokine meeting the third international symposium of chemotactic cytokines[J]. Cytokine.1993,5 (3):175-179.
    [194]Wu D Q, Larosa G J, Simon M I. G protein-coupled signal transduction pathways for interleukin-8[J]. Science.1993,261:101-103.
    [195]Wolf M, Delgado B M, Jones S A, Dewald B, Clark-Lewis I, Baggiolini M. Granulocyte chemotactic protein 2 acts via both IL-8 receptors, CXCR1 and CXCR2[J]. Eur J Immunol.1998, 28(1):164-170.
    [196]Leyva-Baca I, Schenkel F, Martin J and Karrow N A. Polymorphisms in the 5'upstream regin of the CXCR1 chemokine_receptor gene, and their association with somatic cell score in Holstein cattle in Canada[J]. J Dairy Sci.. 2008,91:407-417.
    [197]Cho Y M, Ritchie M D, Moore J H, Park J Y, Lee K U. Shin H D, Lee H K, park K S. Multifactor-dimensionality reduction shows a two-locus interaction associated with type 2 diabetes mellitus[J]. Diabetologia.2004,47:549-554.
    [198]Shahryar Pourfarzam, Tooba Ghazanfari, Roya Yaraee, Hassan Ghasemi. Serum levels of IL-8 and IL-6 in the long term pulmonary complications induced by sulfur mustard:Sardasht-Iran Cohort Study[J]. Int Immunopharmacol.2009,9:1482-1488.
    [199]Jintaek Im, Seok-Seong Kang, Jae Seung Yang, Cheol-Heui Yun, Young Yang, Seung Hyun Han,3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) attenuates LPS-induced IL-8 expression by decreasing mRNA stability in THP-1 cells[J]. Toxicol Lett.2008,177:108-115.
    [200]Akira Kuroiwa, Akinori Hisatsune, Yoichiro Isohama, Hiroshi atsukiBacterial neuraminidase increases IL-8 production in lung epithelial cells via NF-jB-dependent pathway[J]. Biochem Biophys Res Commun.2009,379:754-759.
    [201]Zohar Keren, Yolanda Braun-Moscovici, Doron Markovits, Alexander Rozin, Menahem Nahira, Alexandra Balbir-Gurman, Doron Melamed.Depletion of B lymphocytes in rheumatoid arthritis patients modifies IL-8-anti-IL-8 autoantibody network[J]. Clin Immunol.2009,133: 108-116.
    [202]Dengyong Hou, Zhen Yan, Jihong Shi, Wei Han, Yingqi Zhang. Expression and one-step ion-exchange puriwcation of (AAR) IL-8 (human IL-8 receptor antagonist)[J]. Protein Expr Purif. 2005,44:104-109.
    [203]Takatoshi Ishiko, Seiji Mita, Hideki Hidaka, Hidenobu Kamohara, Osamu Ikeda, Masashi Takahashi, Kiyoshi Sakamoto, Michio Ogawa. Human carcinoma cells express IL-8 and IL-8 receptor:their role and regulation in cancer biology[J]. International Congress Series.2003,1255: 327-332.
    [204]Jacqueline Van De Walle, B'eatrice Romier, Yvan Larondelle, Yves-Jacques Schneider. Influence of deoxynivalenol on NF-_B activation and IL-8 secretion in human intestinal Caco-2 cellsfJ]. Toxicol Lett.2008,177:205-214.
    [205]Manxiang Wang, Naping Li, Jiansha Li, Yan Ma, Dan Li, Lingzhi Qin, Xi Wang, Renliang Wu. Involvement of p120 in LPS-induced NF-_B activation and IL-8 production in human bronchial epithelial cells[J]. Toxicol Lett.2010,195:75-81.
    [206]Liyan Wang, Gencheng Han, Renxi Wang, Guojiang Chen, Ruonan Xu, He Xiao, Xia Li, Shaoxia Geng, Yurong Li, Xinying Li, Jianan Wang, Jiannan Feng, Niels C. Riedemann, Renfeng Guo. Beifen Shen, Yan Li. Regulation of IL-8 production by complement-activated product, C5a, in vitro and in vivo during sepsis[J]. Clin Immunol.2010,137:157-165.
    [207]Nicolas Weiss, Cyrille Deboux, Nathalie Chaverot, Florence Miller, Anne Baron-Van Evercooren, Pierre-Olivier Couraud, Sylvie Cazaubon. IL8 and CXCL13 are potent chemokines for the recruitment of human neural precursor cells across brain endothelial cells[J]. J Neuroimmunol. 2010,223:131-134.
    [208]Lee J W, Bannerman D D, Paape M J, Huang M K and Zhao X. Characterization of cytokine expression in milk somatic cells during intramammary infections with Escherichia coli or StapH ylococcus aureus by real-time PCR[J]. Vet. Res.2006,37(2):219-229.
    [209]Atsushi Watanabe, Yukio Yagi, Hiroki Shiono, Yuichi Yokomizo, Shigeki Inumaru. Effects of intramammary infusions of interleukin-8 on milk protein composition and induction of acute-pH ase protein in cows during mammary involution[J]. Can J Vet Res.2008,72(3):291-296.
    [210]Bannerman D D, Kauf A C W, Paape M J, Springer H R and Goff J P. Comparison of Holstein and Jersey Innate Immune Responses to Escherichia coli Intramammary Infection[J]. J. Dairy Sci. 2008,91(6):2225-2235.
    [211]Gunther Juliane, Shuzhen Liu, Esch Kathrin, Schuberth Hans-Joachim, Seyfert Hans-Martin. Stimulated expression of TNF-a and IL-8, but not of lingual antimicrobial peptide reflects the concentration of pathogens contacting bovine mammary epithelial cells[J]. Vet Immunol Immunopathol.2010,135(1-2):152-157.
    [212]Laudanna C, Campbell J J, Butcher E C. Role of Rho in chemoattractant-activated leukocyte adhesion through integrins[J]. Science.1996,271:981
    [213]Taub D D, Oppenheim J J. Review of the chemokine meeting the third international symposium of chemotactic cytokines[J]. Cytokine.1993,5 (3):175-179.
    [214]Frendeus B, Godaly G, Hang L, Karpman D, Lundstedt A, Svanborg C. Interleukin-8 receptor deficiency confers susceptibility to acute experimental pyelonephritis and may have a human counterpart[J]. J Exp Med.2000,192:881-890.
    [215]Smithson A, Sarrias M R, Barcelo J, Suarez B, Horcajada J P, Soto S M, Soriano A, Vila J, Martinez J A, Vives J, Mensa J, Lozano F. Expression of interleukin-8 receptors (CXCR1 and CXCR2) in premenopausal women with recurrent urinary tract infectionsv[J]. Clin Diagn Lab Immunol.2005,12:1358-1363.
    [216]Hang L, Frendeus B, Godaly G, Svanborg C. Interleukin-8 receptor knockout mice have subepithelial neutrophil entrapment and renal scarring following acute pyelonepH ritis[J]. J Infect Dis.2000,182:1738-1748.
    [217]Hammond M E, Lapointe G R, Feucht P H, Hilt S, Gallegos C A, Gordon C A, Giedlin M A, Mullenbach G and Tekamp-Olson P. IL-8 induces neutrophil chemo tax is predominantly via type IL-8 receptors[J]. J Immunol.1995,155:1428-1433.
    [218]Jones S A, Wolf M, Qin S, Mackay C R and Baggiolini M. Different functions for the interleukin-8 receptors (IL-8R) of human neutrophil leukocytes:NADPH oxidase and phospholipase D are activated through IL-8R1 but not IL-8R2[J]. Proc Natl Acad Sci USA.1996,93: 6682-6686.
    [219]Green S P, Chuntharapai A and Curnette J T. Interleukin-8 (IL-8), melanoma growth stimulatory activity, and neutrophil-activating peptide selectively mediate priming of the neutrophil NADPH oxidase through the type A or type B IL-8 receptor[J]. J Biol Chem.1996,271: 25400-25405.
    [220]Ulukus M, Ulukus E C, Seval Y, Zheng W. Arici A. Expression of interleukin-8 receptors in endomertiosis[J]. Hum Reprod.2005,20(3):794-801.
    [221]王立杰,冷金华,郎景和.IL-8在子宫内膜异位症发病中的作用[J].山东大学学报(医学版).2004,42(4):456-459.
    [222]Arici A. Local cytokines in endometrial tissue:the role of interlekuin-8 in the Pathogenesis of endometriosis[J]. Ann N Y Acad Sci.2002,955:101-109.
    [223]Barcz E, Rozewska E S, Kaminski P, Demkow U, Bobrowska K, Marianowski L. Angiogenic aetivity and IL-8 eoneentrations in peritoneal fluid and sera in endometriosis[J]. Int J Gynaecol Obstet.2002,79 (3):229-235.
    [224]朱定,李劫.IL-8及其受体CXCR1在子宫内膜异位症中的表达及意义[J].中国现代医生.2010.14:12-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700