用户名: 密码: 验证码:
海冰热力学参数辨识及脊帆特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海冰作为极地下垫面最重要的特征,对全球大气、海洋环流和气候变化均有极其重要的影响。另外,冰脊作为海冰表面的主要形态特征,对大气、海冰、海水间的动量、热量交换及冰量、冰厚估算起关键作用,对海冰热动力学模式的改进和完善有也起推动作用。本论文以极地海冰热力过程、冰脊形态及动力学特征为研究背景,依据中国第二次北极科学考察期间得到的海冰温度实测数据,研究了一类分片光滑非线性分布参数系统的主要性质及参数辨识问题;又依据德国阿尔弗雷德-魏格纳极地和海洋研究所在南极威德尔海冬季科学考察期间测得的海冰表面起伏数据,研究了一类具有非线性约束的统计优化问题以及聚类算法在数据分析中的应用问题,并对冰-气拖曳系数和脊帆形拖曳力的参数化方案进行了初步改进。以最优化算法、偏微分方程数值方法及概率统计为研究和分析工具,将实测数据与数值计算结合起来,分别对海冰热力学参数、脊帆形态和动力学参数进行了认真探讨和研究。本文的研究内容和取得的主要结果概括如下:
     1.针对北极海冰的热力学过程,构造了描述时变区域上海冰热力学过程的抛物型分布参数系统;利用偏微分方程的L2理论证明了该系统弱解的存在唯一性和解对辨识参数的连续依赖性;采用非重叠区域分解法将考虑的区域分为雪层、冰层和海水层三个时变子域,并在内边界上引入连续性条件,使每个子域充分光滑;基于不可微函数的优化理论及方法,分析并得到了系统及其弱解的一些基本性质;基于中国第二次北极科学考察期间现场测得的雪、冰、海水温度数据,提出了以雪、冰厚度为辨识参数,以数值计算值和实测冰温偏差为性能指标的参数辨识模型;证明了最优参数的存在性,并导出了最优性条件;计算结果不但较好地反映了冰温随时间和空间的变化规律,并且与实测冰温吻合良好。
     2.依据机载激光高度计测得的海冰上表面高度数据,确定出实测脊帆高度和间距分布的概率密度;以切断高度为优化变量,以脊帆高度和间距分布的概率密度数学模型与实测分布的概率密度之间的误差为目标函数,以对应于优化参数的脊帆高度和间距分布的概率密度为约束条件,建立了具有非线性约束的统计优化模型,得到了最优切断高度,进而从海冰上表面起伏中确定出脊帆;针对传统k均值聚类算法需要事先制定类别数k和容易陷入局部最优的缺陷,将粒子群优化与传统k均值聚类算法相结合搜寻最优聚类中心,在迭代过程中不断更新误差准则以确定出最佳类别数,提出了一种改进的k均值聚类算法;依据脊帆强度(平均脊帆高度和间距的比值),利用所改进的算法将所测剖面分为三类;并通过与卫星图像的比较验证了算法的有效性;在聚类分析基础上通过统计分析和显著性检验讨论了脊帆强度对脊帆高度和间距分布的影响,并分析了脊帆各形态参数之间的相关性。
     3.利用拖曳分割理论将冰-气拖曳力分为两部分:由冰面局部粗糙单元产生的摩拖曳力和由脊帆引起的形拖曳力;依据实测数据,利用脊帆形态参数和空间分布对中性条件下对应10m高度处风速的冰-气拖曳系数Cdn(10)和脊帆形拖曳力及其对冰-气总拖曳力的贡献的参数化方案进行了初步改进;讨论了冰-气拖曳系数Cdn(10)和脊帆形拖曳力及其对冰-气总拖曳力的贡献随脊帆强度和冰面粗糙长度的变化趋势:脊帆形拖曳力及其对冰。气总拖曳力的贡献均随脊帆强度减小而减小,随着粗糙长度增大而减小,但变化率和变化幅度不同,冰-气拖曳系数Cdn(10)随脊帆强度增大呈递增趋势,对较小的脊帆强度,Cdn(10)随粗糙长度的增大而增大,但脊帆强度较大时,Cdn(10)随粗糙长度减小而增大。造成不同变化趋势的主要原因是:对应不同脊帆强度与粗糙长度,摩拖曳力和形拖曳力在冰-气总拖曳力中相对优势地位发生变化,即对应较小的脊帆强度,摩拖曳力占优势地位,而对应较大的脊帆强度,形拖曳力占优势地位。本项工作有助于推动海冰动力学模式、热力-动力模式的改进和完善。
As the most important characteristics of the underlying surface in Polar Regions, sea ice has a significantly effect on the global atmosphere, ocean circulations, and climate change. Meanwhile, as one of the important characteristics of the sea ice surface, pressure ridges are the main factor for the estimations of the momentum and thermal transfer between the atmosphere and sea ice, as well as between the ocean and sea ice, ice mass and thickness. On the background of the thermodynamic process of sea ice, and characteristics of morphology and dynamics of pressure ridges, based on the measured sea ice temperature during the Second China Arctic Research Expedition and elevations of sea ice surface in the Weddell Sea measured during the Winter Weddell Outflow Study2006by the Germany Alfred Wegener Institute for Polar and Marine Research, the optimization methods, numerical computation for partial differential equations, and probability theory and mathematical statistics are used to identify the thermodynamic parameters and analyze the parameters of morphology and dynamics of pressure ridges. The main content and contributions are as follows.
     1. For the thermodynamic process of the sea ice in the Arctic, a parabolic distributed parameter system is established to describe the thermodynamic process of sea ice. L2theory for partial equations is used to prove the existence and uniqueness of the weak solution of the system and the continuous dependence of this solution on the identified parameters. A non-overlapped domain decomposition method is applied to decompose the time-dependent domain to three sub-domains of snow, ice and sea water, and the continuous condition is introduced at all interfaces to make each sub-domain smooth. Some important properties of the system and its weak solution are analyzed by optimization theory and methods. An optimal model with state constraints is presented with the thicknesses of snow and sea ice as identified parameters, and the deviation between the calculated and the measured sea ice temperature as the performance criterion. The existence of the optimal parameter is proved and the optimal conditions are derived. Numerical simulation is carried out based on the temperature of snow, ice and water measured during the Second China Arctic Research Expedition, and the results not only reflect the variability of sea ice temperature in time and space domains, but also agree well with the observed temperatures.
     2. Ice surface elevation profiles measured during Winter Weddell Outflow Study are used to investigate the morphology and distribution of pressure ridges in the northwestern Weddell Sea. To search effective methods for the determination of the cutoff height and the clustering of pressure ridges, an statistical optimal model with nonlinear constraint is presented with the cutoff height as identified parameter, and the deviation between the theoretical and the measured ridge height/spacing distributions as the performance criterion. The obtained optimal cutoff height is then used to separate pressure ridges from other sea ice surface undulations. Next, for the defects of the traditional k means clustering algorithm, an improved k means clustering algorithm is presented to cluster the measured profiles with the ridging intensity (the ratio of mean ridge height to mean spacing), and which are clustered into three regimes. These three ice regimes coincided closely with distinct sea ice regions identified in a satellite radar image. The statistical characteristics of each regime are analyzed and the influences of the ridging intensity on the ridge height and spacing distributions are also discussed. The correlations between the morphology parameters are also discussed.
     3. Wind drag is parted into two components according to the drag partition theory:form drag on pressure ridges and the skin drag over rough sea ice surface. The parameterization of form drag on pressure ridges and its contribution to the total drag and air-ice drag coefficient at a reference height of10m under a neutral stability condition are improved by the morphology parameters and distributions of pressure ridges, and the variations of them with increasing ridging intensity and roughness length are discussed. The results revealed that, for the compacted ice field, form drag on ridges and its contribution to total drag both increase with ridging intensity, while decrease with increasing roughness length. There is an increasing trend of the air-ice drag coefficient Cdn(10) with increasing ridging intensity. Meanwhile, Cdn(10) increases for the smaller ridging intensities, whereas decreases for the larger ridging intensity, with increasing roughness length, which is mainly attributed to the change of dominance of form drag on pressure ridges and skin drag over rough ice surface:the form drag on pressure ridges becomes dominant only when ridging intensity is extremely large, while the skin drag over rough ice surface is the dominant component for the profiles with the relative lower ridging intensity. This work will push the study of the sea ice thermodynamic and dynamic models.
引文
[1]Power S B, Mysak L A. On the interannual variability of arctic sea-level pressure and sea ice[J]. Atmosphere-Ocean,1992,30(4):551-577.
    [2]Wadhams P. Ice in the Ocean[M]. Gordon and Breach Science, London.
    [3]Ackley S F, Lange M A, Wadhams P. Snow cover effects on Antarctic sea ice thickness[J]. Sea Ice Properties and Processes,1990,90(1):16-21.
    [4]郑桂眉,杨宏.暖冬何以频繁出现[J].环境保护与循环经济,2008,28(2):64.
    [5]张景廉,杜乐天,范天来等.谁是“全球变暖”的主因-碳的自然排放源与地球化学循环及气候变化主因研究评述[J].论坛,2012,27(2):226-233.
    [6]探科.北极冻土层融化正释放大量碳全球变暖二十年后将不可逆转[J].丹东海工,2011,15:80.
    [7]Comiso J C, Parkinson C L, Gersten R, et al. Accelerated decline in the Arctic sea ice cover[J]. Geophysical Research Letter,2008,35(1):L01703.
    [8]Parkinson C L, Cavalieri D J. Arctic sea ice variability and trends,1979-2006[J]. Journal of Geophysical Research,2008,113:C07003.
    [9]Haas C, Pfaffling A, Hendricks S, et al. Reduced ice thickness in Arctic Transpolar Drift favors rapid ice retreat[J]. Geophysical Research Letter,2008,35:L17501.
    [10]Holland M M, Bitz C M, Tremblay B. Future abrupt reductions in the summer Arctic sea ice[J]. Geophysical Research Letter,2006,33(23):L23503.
    [11]颜其德.南极-全球气候变暖的“寒暑表”[J].自然杂志,2008,30(5):259-261.
    [12]Morison J, Aagaard K, Steele M. Recent environmental changes in the Arctic:A review[J]. Arctic, 2000,53(4):359-371.
    [13]Serreze M C, Walsh J E, Chapin F S, et al. Observational evidence of recent change in the northern high-latitude environment J]. Climatic Change,2000,46(1):159-207.
    [14]沈永平.全球冰川消融加剧使人类环境面临威胁[J].冰川冻土,2001,23(02):208-211.
    [15]唐述林,秦大河,任贾文,等.极地海冰的研究及其在气候变化中的作用[J].冰川冻土,2006,28(2):91-100.
    [16]康建成,唐述林,刘雷保.南极海冰与气候[J].地球科学进展,2005,20(7):786-793.
    [17]康建成,颜其德,孙波,等.北冰洋海冰气候系统及其对全球气候的影响[J].极地研究,1999,11(4):301-310.
    [18]Massom R A, Eicken H, Hass C, et al. Snow on Antarctic sea ice[J]. Reviews of Geophysics,2001, 39(3):413-445.
    [19]Perovich D K, Grenfell T C, Richter-Menge J A, et al. Thin and thinner:Sea ice mass balance measurements during SHEBA[J]. Journal of Geophysical Research,2003,108:8050.
    [20]Haas C. Evaluation of ship-based electromagnetic-inductive thickness measurements of summer sea-ice in the Bellingshausen and Amundsen Seas, Antarctica[J]. Cold Regions Science and Technology,1998,27(1):1-16.
    [21]Sun B, Wen J, He M, et al. Sea ice thickness measurement and its underside morphology analysis using radar penetration in the Arctic Ocean[J]. Science in China, Series D,2003,46(11):1151-1160.
    [22]Birch R, Fissel D, Melling H, et al. Ice-profiling sonar[J]. Sea Technology,2000,41(8):48-54.
    [23]Laxon S, Peacock N, Smith D. High interannual variability of sea ice thickness in the Arctic region[J]. Nature,2003,425(6961):947-950.
    [24]雷瑞波,李志军,秦建敏,等.定点冰厚观测新技术研究[J].水科学进展,2009,20(2):287-292.
    [25]卢鹏,李志军,董西路,等.基于遥感影像的北极海冰厚度和密集度分析方法[J].极地研究,2004,16(4):317-323.
    [26]Myrhaug D. Prediction of the Current Structure Under Drifting Pack Ice[J]. Journal of Offshore Mechanics and Arctic Engineering,1988,110(4):395-411.
    [27]Bryan K. A diagnostic ice-ocean model[J]. Journal of Physical Oceanography,1987,17:987-1015.
    [28]Bitz, C M, Lipscombz W H. An energy-conserving thermodynamic model of sea ice[J]. Journal of Geophysical Research,1999,104(C7):15,669-15,677.
    [29]Cheng B, Vihma T, Launiainen J. Modelling of the superimposed ice formation and sub-surface melting in the Baltic Sea[J]. Geophysica,2003,39(1-2):31-50.
    [30]Cheng B, Zhang Z, Vihma T, et al. Model experiments on snow and ice thermodynamics in the Arctic Ocean with CHINARE 2003 data[J]. Journal of Geophysical Research,2008,113:C09020.
    [31]程斌.一维海冰热力模式的守恒型差分格式和数值模拟[J].海洋通报,1996,15(4):8-16.
    [32]吴辉碇,白珊.海冰动力学过程的数值模拟[J].海洋学报,1998,20(2):1-13.
    [33]吴辉碇.海冰的动力-热力过程的数学处理[J].海洋与湖沼,1991,22(4):221-228.
    [34]刘钦政,白珊,黄嘉佑,等.一种冰-海洋模式的热力耦合方案[J].海洋学报,2004,26(6):13-21.
    [35]苏洁,吴辉碇,刘钦政,等.渤海冰-海洋耦合模式-Ⅰ.模式和参数研究[J].海洋学报,2005,27(1):19-26.
    [36]Bai Y, Zhao H, Zhang X, et al. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation[J]. Journal of Industrial and Management Optimization,2005,1(3):405-414.
    [37]Lv W, Feng E, Li Z. A coupled thermodynamic system of sea ice and its parameter identification[J]. Applied Mathematical Modelling,2008,32(7):1198-1207.
    [38]Yang Y, Li Z, Lepparanta M, et al. Ice Estimation of oceanic heat flux under landfast sea ice in Prydz Bay, East[J].20th IAHR International Symposium on Ice Lahti, Finland, June 14 to 18,2010.
    [39]方兴.瑞利判据的适用条件[J].保山师专学报,2007,26(5):35-36.
    [40]Arya S P S. A drag partition theory for determining the large-scale roughness parameter and wind stress on the Arctic pack ice[J]. Journal of Geophysical Research,1975,80(24):3447-3454.
    [41]Lu P, Li Z, Cheng B, et al. A parameterization of the ice-ocean drag coefficient[J]. Journal of Geophysical Research, American Geophysical Union,2011,116(C7):C07019.
    [42]Lepparanta M. The drift of sea ice[M]. Springer, Berlin,2011.
    [43]季顺迎.渤海海冰数值模拟及其工程应用[D].大连:大连理工大学,2001.
    [44]Hopkins M A, Hibler III W D, Flato G M. On the numerical simulation of the sea ice ridging process[J]. Journal of Geophysical Research,1991,96(C3):4809-4820.
    [45]Blondel P, Murton B J. Handbook of seafloor sonar imagery[M]. Wiley Chichester,, UK,1997.
    [46]Lepparanta M, Lensu M, Kosloff P, et al. The life story of a first-year sea ice ridge[J]. Cold regions science and technology,1995,23(3):279-290.
    [47]Doble M J, Skourup H, Wadhams P, et al. The relation between Arctic sea ice surface elevation and draft:A case study using co-incident AUV sonar and airborne scanning laser[J]. Journal of Geophysical Research,2011,116:COOEO3.
    [48]Hibler III W D, Weeks W F, Mock S J. Statistical aspects of sea-ice ridge distributions[J]. Journal of Geophysical Research,1972,77(30):5954-5970.
    [49]Lensu M. The evolution of ridged ice fields[J]. Helsinki University of Technology, Ship Laboratory, Finland, M-280,2003.
    [50]Bowen R G, Topham D R. A study of the morphology of a discontinuous section of a first year Arctic pressure ridge[J]. Cold regions science and technology,1996,24(1):83-100.
    [51]Wadhams P, Davy T. On the spacing and draft distributions for pressure ridge keels[J]. Journal of Geophysical Research,1986,91(C9):10,610-10,697.
    [52]Wadhams P. New predictions of extreme keel depths and scour frequencies for the beaufort sea using ice thickness statistics[J]. Cold Regions Science and Technology,2012,76-77:77-82.
    [53]Wadhams P. A comparison of sonar and laser profiles along corresponding tracks in the Arctic Ocean[J]. Sea ice processes and models, edited by R. S. Pritchard, Univ. of Washington Press, Seattle, Wash,1980:283-299.
    [54]Weeks W F, Ackley S F, Govoni J. Sea ice ridging in the Ross Sea, Antarctica, as compared with sites in the Arctic[J]. Journal of Geophysical Research,1989,94(C4):4984-4988.
    [55]Lytle V 1, Ackley S F. Sea ice ridging in the eastern Weddell Sea[J]. Journal of Geophysical Research, 1991,96(C10):18,411-18,418.
    [56]Dierking W. Laser profiling of the ice surface topography during the Winter Weddell Gyre Study 1992[J]. Journal of Geophysical Research,1995,100(C3):4807-4820.
    [57]Adolphs U. Roughness variability of sea ice and snow cover thickness profiles in the Ross, Amundsen, and Bellingshausen Seas[J]. Journal of geophysical research,1999,104(C6):13,577-13,591.
    [58]Granberg H B, Lepparanta M. Observations of sea ice ridging in the Weddell Sea[J]. Journal of geophysical research,1999,104(C11):25,725-25,735.
    [59]季顺迎,聂建新.渤海冰脊分析及其设计参数[J].中国海洋平台,2000,15(6):1-5.
    [60]Rothrock D A. The energetics of the plastic deformation of pack ice by ridging[J]. Journal of Geophysical Research,1975,80(33):4514-4519.
    [61]Arya S P S. Contribution of form drag on pressure ridges to the air stress on Arctic ice[J]. Journal of Geophysical Research,1973,78(30):7092-7099.
    [62]Joffre S M. Determining the form drag contribution to the total stress of the atmospheric flow over ridged sea ice[J]. Journal of geophysical research,1983,88(C7):4524-4530.
    [63]Mai S, Wamser C, Kottmeier C. Geometric and aerodynamic roughness of sea ice[J]. Boundary-Layer Meteorology,1996,77(3):233-248.
    [64]Garbrecht T, Lupkes C, Hartmann J, et al. Atmospheric drag coefficients over sea ice-validation of a parameterization concept[J]. Tellus A,2002,54(2):205-219.
    [65]Lupkes C, Birnbaum G. Surface drag in the Arctic marginal sea-ice zone:a comparison of different parameterization concepts[J]. Boundary-layer meteorology,2005,117(2):179-211.
    [66]Birnbaum G, Lupkes C. A new parameterization of surface drag in the marginal sea ice zone[J]. Tellus A,2002,54(1):107-123.
    [67]季顺迎,王瑞学,毕祥军,等.海冰拖曳系数的确定方法研究[J].冰川冻土,2003,25(2):299-303.
    [68]Lions J L. Optimal control of systems governed by partial differential equations[M]. Springer Berlin, 1971.
    [69]Ahmed N U, Teo K L. Optimal control of distributed parameter systems[M]. Elsevier Science Inc., 1981.
    [70]Ahmed N U. Optimization and identification of systems governed by evolution equations on Banach space[M]. Longman Scientific & Technical,1988.
    [71]Ahmed N U. A general result on measure solutions for semilinear evolution equations[J]. Nonlinear analysis,2000,42(8):1335-1349.
    [72]Ahmed N U. Measure solutions for semilinear and quasilinear evolution equations and their optimal control[J]. Nonlinear Analysis:Theory, Methods & Applications,2000,40(1-8):51-72.
    [73]Ahmed N U. Nonlinear Diffusion Governed by McKean--Vlasov Equation on Hilbert Space and Optimal Control[J]. SIAM Journal on Control and Optimization,2007,46:356-378.
    [74]Fattorini H. The maximum principle for nonlinear non-convex systems in infinite dimensional spaces[J]. Distributed Parameter Systems,1985,75:162-178.
    [75]Fattorini H O. Optimal control problems for distributed parameter systems in Banach spaces[J]. Applied mathematics & optimization,1993,28(3):225-257.
    [76]Fattorini H O. Infinite dimensional optimization and control theory[M]. Cambridge University Prress, Cambridge,1999.
    [77]Fattorini H O, Murphy T. Optimal control problems for nonlinear parabolic boundary control systems: The Dirichlet boundary condition[J]. Differential and Intergral Equations,1994,7:1367-1388.
    [78]Fattorini H O, Murphy T. Optimal problems for nonlinear parabolic boundary control systems[J]. SIAM Journal on Control and Optimization,1994,32:1577-1596.
    [79]Raymond J P, Zidani H. Hamiltonian Pontryagin's principles for control problems governed by semilinear parabolic equations[J]. Applied mathematics & optimization,1999,39(2):143-177.
    [80]李训经.关于分布参数系统最佳调节器的稳定裕度[J].控制理论与应用,1986,3(1):76-82.
    [81]李训经.抛物型系统边界控制的时间最优问题[J].数学年刊A辑(中文版),1980,1(3-4):453-458.
    [82]Li X, Yong J. Optimal control theory for infinite dimensional systems[M]. New York:Springer-verlag, 1994.
    [83]高夯.半线性抛物方程支配系统的最优性条件[J].数学学报,1991,42(4):705-714.
    [84]Yu W H. Necessary conditions for optimality in the identification of elliptic systems with parameter constraints[J]. Journal of optimization theory and applications,1996,88(3):725-742.
    [85]Yu W H. On the existence of an inverse problem[J]. Journal of mathematical analysis and applications, 1991,157(1):63-74.
    [86]Wang G, Wang L. The Bang-Bang principle of time optimal controls for the heat equation with internal controls[J]. Systems & Control Letters,2007,56(11-12):709-713.
    [87]Wang G. Pontryagin's maximum principle for optimal control of the stationary Navier-Stokes equations[J]. Nonlinear analysis,2003,52(8):1853-1866.
    [88]Wang G. Optimal control of parabolic variational inequality involving state constraint[J]. Nonlinear Analysis:Theory, Methods & Applications,2000,42(5):789-801.
    [89]Lou H. Analysis of the optimal relaxed control to an optimal control problem[J]. Applied Mathematics & Optimization,2009,59(1):75-97.
    [90]Lou H. Existence and non-existence results of an optimal control problem by using relaxed control[J]. SIAM journal on control and optimization,2007,46(6):1923-1941.
    [91]Lou H. Existence of optimal controls for semilinear parabolic equations without Cesari-type conditions [J]. Applied Mathematics and Optimization,2003,47(2):121-142.
    [92]Wang Q, Feng D, Cheng D. Parameter identification for a class of abstract nonlinear parabolic distributed parameter systems[J]. Computers & Mathematics with Applications,2004,48(12): 1847-1861.
    [93]冯恩民,王勇.三维地史数值模拟及其系统辨识[J].高校应用数学学报,2003,18(2):171-178.
    [94]李春发,冯恩民,刘金旺.一类弱耦合动力系统的参数识别问题[J].高校应用数学学报,2002,17(4):425-432.
    [95]李春发,冯恩民.一类热传导方程非线性源项识别问题[J].大连理工大学学报,2002,42(4):391-395.
    [96]伍卓群,尹景学,王春朋.椭圆与抛物型方程引论[M].科学出版社,2005.
    [97]王耀东.偏微分方程的L2理论[M].北京大学出版社,1989.
    [98]刘炳初.泛函分析[M].科学出版社,2004.
    [99]陈宝林.最优化理论与算法[M].清华大学出版社,2005.
    [100]王康宁.最优控制的数学理论[M].国防工业出版社,1995.
    [101]王康宁.分布参数控制系统丛书[M].科学出版社,1986.
    [102]Pritchard R S, Li G, Davis R O. A Deterministic-Statistical Sea Ice Drift Forecast Model[J]. Cold Regions Science and Technology,2012,76-77:52-62.
    [103]Maykut G A, Untersteiner N. Some results from a time-dependent thermodynamic model of sea ice[J]. Journal of Geophysical Research,1971,76(6):1550-1575.
    [104]Semtner J A J. A model for the thermodynamic growth of sea ice in numerical investigations of climate[J]. Journal of Physical Oceanography,1976,6(3):379-389.
    [105]Parkinson C L, Washington W M. A large-scale numerical model of sea ice[J]. Journal of Geophysical Research,1979,84(C1):311-337.
    [106]Hibler W D. A dynamic thermodynamic sea ice model[J]. Journal of Physical Oceanography,1979,9: 815-846.
    [107]Salas Melia D. A global coupled sea ice-ocean model[J]. Ocean Modelling,2002,4(2):137-172.
    [108]Reid T, Crout N. A thermodynamic model of freshwater Antarctic lake ice[J]. Ecological Modelling, 2008,210(3):231-241.
    [109]Shidfar A, Karamali G R. Numerical solution of inverse heat conduction problem with nonstationary measurements[J]. Applied mathematics and computation,2005,168(1):540-548.
    [110]Gabison R. A thermodynamic model of the formation, growth, and decay of first-year sea ice[J]. Journal of Glaciology,1987,33(113):105-119.
    [111]Cox G F N, Weeks W F. Salinity variations in sea ice[J]. Journal of Glaciology,1974,13(67): 109-120.
    [112]Weeks W F, Ackley S F. The growth, structure, and properties of sea ice[R].1982.
    [113]陆金甫.偏微分方程差分方法[M].高等教育出版社,1988.
    [114]Tin T, Jeffries M O. Morphology of deformed first-year sea ice features in the Southern Ocean[J]. Cold regions science and technology,2003,36(1-3):141-163.
    [115]Haas C, Liu Q, Martin T. Retrieval of Antarctic sea-ice pressure ridge frequencies from ERS SAR imagery by means of in situ laser profiling and usage of a neural network[J]. International Journal of Remote Sensing,1999,20(15-16):3111-3123.
    [116]Wadhams P, Tucker III W B, Krabill W B, et al. Relationship between sea ice freeboard and draft in the Arctic Basin, and implications for ice thickness monitoring[J]. Journal of geophysical research, American Geophysical Union,1992,97(C12):20,320-20,325.
    [117]Ketchum Jr R D. Airborne laser profiling of the Arctic pack ice[J]. Remote Sensing of Environment, Elsevier,1973,2:41-52.
    [118]Haas C, Nicolaus M, Willmes S, et al. Sea ice and snow thickness and physical properties of an ice floe in the western Weddell Sea and their changes during spring warming[J]. Deep Sea Research Part Ⅱ,2008,55(8):963-974.
    [119]Haas C, Lobach J, Hendricks S, et al. Helicopter-borne measurements of sea ice thickness, using a small and lightweight, digital EM system[J]. Journal of Applied Geophysics,2009,67(3):234-241.
    [120]Bashmachnikov I, Machin F, Mendonca A, et al. In situ and remote sensing signature of meddies east of the mid-Atlantic ridge[J]. Journal of Geophysical Research,2009,114:C05018.
    [121]Lowry R T, Wadhams P. On the statistical distribution of pressure ridges in sea ice[J]. Journal of Geophysical Research,1979,84(C5):2487-2494.
    [122]Peterson I K, Prinsenberg S J, Holladay J S. Observations of sea ice thickness, surface roughness and ice motion in Amundsen Gulf[J]. Journal of Geophysical Research,2008,113:C06016.
    [123]Hibler III W D. Removal of aircraft altitude variation from laser profiles of the Arctic ice pack[J]. Journal of Geophysical Research,1972,77(36):7190-7195.
    [124]李丽,牛奔.粒子群优化算法[M].冶金工业出版社,2009.
    [125]Shi Y, Eberhart R. A modified particle swarm optimizer[C]. Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence,1998:69-73.
    [126]Hibler III W D, Mock S J, Tucker III W B. Classification and variation of sea ice ridging in the western Arctic Basin[J]. Journal of Geophysical Research,1974,79(18):2735-2743.
    [127]Kurtz N T, Markus T, Cavalieri D J, et al. Estimation of sea ice thickness distributions through the combination of snow depth and satellite laser altimetry data[J]. Journal of Geophysical Research, 2009,114(C10):C10007.
    [128]Farrell S L, Kurtz N, Connor L N, et al. A first assessment of IceBridge snow and ice thickness data over Arctic sea ice[J]. Geoscience and Remote Sensing,2012,50(6):2098-2111.
    [129]Kwok R, Cunningham G F, Zwally H J, et al. Ice, Cloud, and land Elevation Satellite (ICESat) over Arctic sea ice:Retrieval of freeboard[J]. Journal of Geophysical Research,2007,112:C12013.
    [130]Rabenstein L, Hendricks S, Martin T, et al. Thickness and surface-properties of different sea-ice regimes within the Arctic Trans Polar Drift:data from summers 2001,2004 and 2007[J]. Journal of Geophysical Research,2010,115(C12):C12059.
    [131]Steiner N, Harder M, Lemke P. Sea-ice roughness and drag coefficients in a dynamic-thermodynamic sea-ice model for the Arctic[J]. Tellus A,1999,51(5):964-978.
    [132]Guest P S, Davidson K L. The aerodynamic roughness of different types of sea ice[J]. Journal of Geophysical Research,1991,96(C3):4709-4721.
    [133]Andreas E L, Lange M A, Ackley S F, et al. Roughness of Weddell Sea ice and estimates of the air-ice drag coefficient[J]. Journal of geophysical research,1993,98:12,439-12,452.
    [134]Martinson D G, Wamser C. Ice drift and momentum exchange in winter Antarctic pack ice[J]. Journal of Geophysical Research, American Geophysical Union,1990,95(C2):1741-1755.
    [135]岳前进,张希.辽东湾海水漂移的动力要素分析[J].海洋环境科学,2001,20(4):34-39.
    [136]Hanssen-Bauer I, Gjessing Y T. Observations and model calculations of aerodynamic drag on sea ice in the Fram Strait[J]. Tellus A,1988,40(2):151-161.
    [137]Andreas E L, Claffey K J. Air-ice drag coefficients in the western Weddell Sea 1. Values deduced from profile measurements [J]. Journal of Geophysical Research,1995,100(C7):4821-4831.
    [138]Timco G W, Burden R P. An analysis of the shapes of sea ice ridges[J]. Cold Regions Science and Technology,1997,25(1):65-77.
    [139]Mock S J, Hartwell A D, Hibler III W D. Spatial aspects of pressure ridge statistics[J]. Journal of Geophysical Research,1972,77(30):5945-5953.
    [140]Banke E G, Smith S D, Anderson R J. Drag coefficients at AIDJEX from sonic anemometer measurements[J]. Sea Ice Processes and Models, Seattle:University of Washington Press, University of Washington Press,1980:430-442.
    [141]Wamser C, Martinson D G. Drag coefficients for winter Antarctic pack ice[J]. Journal of geophysical research,1993,98(C7):12,412-12,431.
    [142]Seifert W J, Langleben M P. Air drag coefficient and roughness length of a cover of sea ice[J]. Journal of Geophysical Research,1972,77(15):2708-2713.
    [143]Banke E G, Smith S D. Wind stress on Arctic sea ice[J]. Journal of Geophysical Research,1973, 78(33):7871-7883.
    [144]Guest P S, Davidson K L. The effect of observed ice conditions on the drag coefficient in the summer East Greenland Sea marginal ice zone[J]. Journal of Geophysical Research,1987,92(C7): 6943-6954.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700