用户名: 密码: 验证码:
井下鼠笼式选择性煤矸分离装备关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矸石是煤炭开采的伴生物,其在地面大量堆积形成矸石山,对人体健康和矿区环境均造成不利影响。如从根源上消除矸石排放和堆集造成的危害,其理想方法是在井下实现煤和矸石的分离,并进行矸石的井下填充。根据煤和矸石的物理机械特性差异并结合已有井下煤矸分选设备的结构特点,提出一种新的井下煤矸分离设备—井下鼠笼式选择性煤矸分离装备。该设备对于煤和矸石的井下选择性破碎分离,实现煤矿的绿色开采具有重要意义。为此,本论文采用理论分析、仿真与实验研究相结合的方法,对井下鼠笼式选择性煤矸分离装备的关键技术进行研究。
     针对鼠笼式选择性煤矸分离装备的结构特点和破碎过程,基于赫兹理论和铁摩辛柯理论,建立了煤矸颗粒之间、煤矸颗粒与破碎杆及煤矸颗粒与筒壁的接触碰撞动力学模型,以此为基础,推导出煤矸颗粒冲击破碎速度的理论表达式。该表达式为分离装备结构参数及运动参数的选取提供了理论指导。
     采用离散单元法进行了单颗粒煤岩材料的冲击破碎行为仿真研究,建立了单颗粒煤岩材料冲击破碎的离散元仿真模型,并通过实验验证了模型的正确性;采用有限元和离散元相结合的方法对煤岩颗粒冲击破碎机理进行了研究,分析了冲击速度对煤岩破碎形态的影响规律;利用单颗粒煤岩材料冲击破碎离散元模型研究了煤岩特性参数、破碎杆截面形状参数对煤岩冲击破碎行为的影响规律。研究结果表明:煤岩冲击破碎速度与材料抗压强度、弹性模量和密度均成幂函数关系,仿真结果与理论结果具有较好的一致性,由此证明冲击破碎速度理论公式的正确性;破碎杆截面形状及参数对煤岩冲击破碎速度及冲击载荷也有较显著的影响,对于三角形破碎杆,煤岩冲击破碎速度随破碎杆截面角度的增加而减小,冲击载荷随截面角度的增加而增大;对于圆柱形破碎杆,煤岩冲击破碎速度随圆柱半径的增大而减小,冲击载荷随圆柱半径的增大而增大。
     开展了选择性煤矸分离的实验研究,揭示了滚筒数量、煤矸性质、滚筒结构参数、滚筒运动参数及落料高度等因素对煤和矸石选择性破碎效果的影响规律。研究表明,三滚筒结构形式的分离装备能较好的满足煤和矸石的选择性破碎分选要求;不同硬度煤和矸石具有不同的最佳转速,煤矸破碎率与自身所占比例成二次函数变化关系;在滚筒结构参数中,破碎杆杆径对煤矸破碎效果影响较小,破碎杆数目对煤矸破碎率影响较显著;煤矸破碎率与滚筒转速成线性关系,其受落料高度的影响较小。
     利用离散单元法开展了分离装备内颗粒群的动力行为研究。建立了煤岩颗粒与破碎杆的接触数学模型,并通过正交实验法对影响煤矸破碎率的相关因素进行了显著性分析。分析表明,单颗粒煤岩冲击破碎杆时,滚筒转速、破碎杆间距和入料口位置对破碎率的影响较为显著。采用离散元法研究了在不同滚筒、破碎杆间距及入料口位置情况下,滚筒内颗粒群的动力学行为及煤矸破碎率,研究发现:颗粒在分离装备中的碰撞行为主要发生在破碎滚筒与分离装备壳体之间的区域;中间滚筒冲击颗粒产生的速度幅值较小,而上滚筒和下滚筒冲击颗粒产生的速度幅值则较大;当滚筒拥有六根破碎杆时,煤和矸石的选择性破碎效果最佳。
     对分离装备滚筒上破碎杆的可靠性开展了仿真研究,分析了破碎杆杆径、杆长等几何参数对破碎杆的固有频率、动态应力等动力学特性的影响规律,为破碎杆结构的设计和改进提供了参考。
Gangue, the accompanying mineral of coal mining, is always transported to theground and accumulated as hillock, and the human health and the mining environment areall influenced by it. Achieving separation for coal and gangue underground and backfillinggangue in situ is the method that can radically solve the environmental problems producedby discharge and accumulation of gangue. According to the differences in physical andmechanical properties of coal and gangue and combined with the structural characteristicsof the existing separation equipment for coal and gangue underground, put forward a newseparation equipment for coal and gangue underground—the Squirrelcage SelectivitySeparation Equipment for coal and gangue Underground.It has great significance on theselectivity separation for coal and gangue and the realizability of the coal green mining.Therefore, the theoretical analysis, numerical simulation and experiments are combined toinvestigate the key technology of the Squirrelcage Selectivity Separation Equipment forcoal and gangue Underground.
     According to the structure character and the crushing process of the SquirrelcageSelectivity Separation Equipment for coal and gangue, the mechanics models of the impactbetween the particles for coal and gangue, the particles and the crashing rod, the particlesand the drum wall were built, which based on the the Hertz Theory and the TimoshenkoTheory. And the theoretical formula of the impact velocity of the coal and gangue wasdeduced, which provides the theoretical guidance for the selectivity of the structureparameters and motion parameters of the equipment.
     The simulation of the impact crushing of single coal particle was done by discreteelement method, and the simulation model was proved by experiment. The influence of theimpact velocity to the crushing model of single coal particle was analyzed, which utilizesthe finite element and the discrete element methods. And the influence of the characteristicparameters of the coal and section style of the impact rod to the coal crushing was acquiredby researching on the single coal particle crushing. The results indicate that: therelationships among the impact velocity and the compressive strength, the elasticity, thecoal density are all power exponent. And the simulation results and the theoretical resultshave good uniformity, which proves the theoretical formula of impact velocity is correct.The influence of the section style and parameters of the crashing rods to the impactvelocity and the impact load of the coal is remarkable. The impact velocity of the coaldecreases with the increases of the section angle of the crashing rod, the impact load increases along with the section angle when the section of crashing rod is triangle; theimpact velocity decreases along with the radial of crashing rod increases, while the impactload increases along with the rod radial increases when the rod section is cylindrical.
     The influence rules of the drum numbers, the characteristics of coal, the drumstructure parameters, the drum mechanical parameters and the blanking height to thecrashing effect of the coal and gangue were researched based on the experiments. Theresults indicate that: the separating equipment with three drums is better to satisfy therequirement of the selective crashing separation of the coal and gangue. The best crashingrotary speed of different compressive strength for coal and gangue is different; In thestructure parameters of the drum, the influence of the radial of the crashing rod to thecrashing effect is small, the numbers of the crashing rod is remarkable; and the relationshipbetween the crashing ratio and the drum rotary speed is linearly, which influenced by theblanking height is small.
     Dynamic characteristic of the particle group in the separation equipment wasresearched by utilizing the discrete element method. The contact model of the coal particleand crashing rod was built, and the significance tests were done on the influenced factorsof the coal crushing rate by orthogonal experiment. The tests indicate that: the influence ofthe drum rotary speed, the rod space, the coal feed position on the crushing rate isremarkable. The discrete element method was used to research on the dynamiccharacteristic of the particle in the drum and the crushing rate of the coal and gangue werestudied under the condition of different drum, different rod space and different materialfeed position. The results indicate that: the crashing behavior happens between the drumand the shell of the equipment; the velocity amplitude caused by the impact between themiddle drum and the particles is small, while the velocity amplitude caused by up drumand down drum are bigger; and the crashing effect is best when the drum with six rods.
     The simulation was done on the reliability of the crashing rod, the natural frequencyand the dynamic stress of the crashing rod were analyzed for different rod diameter anddifferent rod length, which provides the design parameters for the improvement of thecrashing rod.
引文
[1]2009-2012年中国煤矸石工业投资分析及前景预测报告[R].中国:中投顾问,2009.
    [2] Y. Z. Sun, J.S. Fan, P. Qin, et al. Pollution extents of organic substances from a coal gangue dump ofJiulong Coal Mine, China[J]. Environ Geochem Health,2009,31:81~89.
    [3]张宏敏,李树伟,胡斌.煤矸石对矿山生态环境的破坏及其资源化[J].采矿技术,2008,8(5):62~64.
    [4]王国平.辽宁阜新煤矸石资源化研究[D].成都:成都理工大学,2005.
    [5]郭建刚.浅谈煤矸石的危害与综合利用[J].科技情报开发与技术,2008,18(17):221~222.
    [6]王小辉,张俊,李永峰.煤矸石资源的综合利用及合理分布[J].煤炭加工与综合利用,2008,3:47~50.
    [7]裴晓东,张人伟,杜高举等.煤矸石的综合利用技术探讨[J].煤矿安全,2008,9:99~101.
    [8]钱鸣高,许家林,缪协兴.煤矿绿色开采技术[J].中国矿业大学学报,2003,32(4):343~348.
    [9]钱鸣高,缪协兴,许家林.资源与环境协调(绿色)开采[J].煤炭学报,2007,32(1):1~7.
    [10]缪协兴,钱鸣高.中国煤炭资源绿色开采研究现状与展望[J].采矿与安全工程学报,2009,26(1):1~14.
    [11]李伯衡.半煤岩巷道矸石处理方法探讨[J].山东煤炭科技,2002,6:38~39.
    [12]张文海,张吉雄,赵计生等.矸石充填采煤工艺及配套设备研究[J].采矿与安全工程学报,2007,24(1):79~83.
    [13]缪协兴,张吉雄.矸石充填采煤中的矿压显现规律分析[J].采矿与安全工程学报,2007,24(4):379~382.
    [14]刘春明,王恒.矸石井下处置绿色开采技术[J].煤矿开采,2008,13(6):30~32,45.
    [15]王有俊.矸石直接充填及其效益分析[J].辽宁工程技术大学学报,2003,22(增刊):70~71.
    [16]冯振忠.井下巷道矸石充填输送机的研制及应用[J].矿山机械,2006,34(11):86~88.
    [17]张魁武,李金洲.掘进矸石在井下的处理[J].华北科技学院学报,2005,2(2):46~47.
    [18]孙希奎,李学华.利用矸石充填置换开采条带煤柱的新技术[J].煤炭学报,2008,33(3):259~263.
    [19]刘瑜.井下冲撞式煤矸分离中颗粒动力学行为研究[D].中国矿业大学,2011.6.
    [20] Evans I. The force required to cut coal with blunt wedges [J]. International Journal of RockMechanics and Mining Science,1965,2:1-12.
    [21] Evans I. A theory of the cutting force for point-attack picks [J]. International Journal of RockMechanics and Mining Science,1984,2(1):67-71.
    [22] Y.Nishimatsu. The mechanics of rock cutting [J]. International Journal of Rock Mechanics andMining Science,1972,9:261-270.
    [23]别隆,А.И.等著,王兴祚译.煤炭切削原理[M].北京:中国工业出版社,1965
    [24] Е.З.保晋等著,王庆康,门迎春译.采煤机破煤理论[M].北京:煤炭工业出版社,1992.
    [25]牛东民.刀具切削破煤机理研究[J].煤炭学报,1993,18(5):49-54.
    [26]牛东民.煤炭切削力学模型的研究[J].煤炭学报,1994,19(5):526-529.
    [27]赵正军.煤岩冲击破碎过程的力学行为分析[D].太原:太原理工大学,2002.
    [28] H. Y. Liu, S. Q. Kou, P.–A. Lindqvist. Numerical studies on the inter-particle breakage of aconfined particle assembly in rock crushing[J]. Mechanics of Materials,2005,37:935~954.
    [29] B. Kekec, M. Unal, C. Sensogut. Effect of the textural properties of rocks on their crushing andgrinding features[J]. Journal of University of Science and Technology Beijing,2006,13(5):385~392.
    [30] M. S. Guimaraes, J. R. Valdes, A. M. Palomino, et al. Aggregate production: Fines generationduring rock crushing[J]. International Journal of Mineral Processing,2007,81:237~247.
    [31]郭学彬,肖正学,史瑾瑾等.石灰岩冲击损伤实验与破碎特性研究[J].爆炸与冲击,2007,27(5):438~444.
    [32] A. Refahi, B. Rezai, J. Aghazadeh Mohandesi. Use of rock mechanical properties to predict theBond crushing index[J]. Minerals Engineering,2007,20:662~669.
    [33] Mats Lindqvist. Energy considerations in compressive and impact crushing of rock[J]. MineralsEngineering,2008,21:631~641.
    [34] Li Fang-wei, Li Yan-huan, Xu Zhen-liang, et al. Numerical simulation on the impacting andcomminuting of coal based on LS-DYNA[J]. Journal of Coal Science and Engineering (China),2008,14(4):644~647.
    [35] G. R. Mcdowell, M. D. Bolton, D. Robertson. The fractal crushing of granular materials[J]. Journalof the Mechanics and Physics of Solids,1996,44(12):2079~2102.
    [36] W. Schubert, M. Khanal, J. Tomas. Impact crushing of particle-particle compounds-experiment andsimulation[J]. International Journal of Mineral Processing,2005,75:41~52.
    [37]张柱,杨云川,晋艳娟.单颗粒破碎机理分析[J].太原科技大学学报,2005,26(4):306~308.
    [38] G. Marketos, M. D. Bolton. Quantifying the extent of crushing in granular materials: A probability-based predictive method[J]. Journal of the Mechanics and Physics of Solids,2007,55:2142~2156.
    [39] L. M. Tavares, Patricia B. das Neves. Microstructure of quarry rocks and relationships to particlebreakage and crushing[J]. International Journal of Mineral Processing,2008,87:28~41.
    [40] G. Unland, Y. Al-Khasawneh. The influence of particle shape on parameters of impact crushing[J].Minerals Engineering,2009,22:220~228.
    [41]李微,刘欣,沈玉国等.层合板低速冲击响应的动力接触分析方法[J].机械强度,1997,19(4):67~69.
    [42]杜忠华,赵国志,钟延光.冲击载荷作用下陶瓷面板破碎机理的研究[J].弹箭与制导学报,2006,26(4):140~142.
    [43] C. Czarnota, N. Jacques, S. Mercier, et al. Modelling of dynamic ductile fracture and application tothe simulation of plate impact tests on tantalum[J]. Journal of the Mechanics and Physics of Solids,2008,56:1624~1650.
    [44] A. V. Loktev. The dynamic contact of an impactor and an elastic orthotropic plate when there arepropagating thermoelastic waves[J]. Journal of Applied Mathematics and Mechanics,2008,72:475~480.
    [45] G.T. Camacho, M. Ortiz. Computational modeling of impact damage in brittle matierials[J].International Journal of Solids and Structures,1996,33(20-22):2899~2938.
    [46] L.M. Tavares, R.P. King. Single-particle fracture under impact loading[J]. International Journal ofMineral Processing,1998,54:1~28.
    [47] M.M. Chaudhri. Impact breakage of semi-brittle spheres[J]. Power Technology,2004,143-144:31~40.
    [48] W. Schubert, M. Khanal, J. Tomas. Impact crushing of particle-particle compounds-experiment andsimulation[J]. International Journal of Mineral Processing,2005,75:41~52.
    [49] G. Unland, Y. Al-Khasawneh. The influence of particle shape on parameters of impact crushing[J].Minerals Engineering,2009,22(3):220~228.
    [50] S. Antonyuk, S. Palis, S. Heinrich. Breakage behaviour of agglomerates and crystals by staticloading and impact[J]. Powder Technology,2011,206(1-2):88~98.
    [51] K.T. Chau, X.X. Wei, R.H.C. Wong, et al. Fragmentation of brittle spheres under static anddynamic compressions: experiments and analyses[J]. Mechanics of Materials,2000,32:543~554.
    [52]张占一,杨云川.简单冲击粉碎实验装置设计及实验结果分析[J].沈阳理工大学学报,2005,24(3):73~75.
    [53]秦志英,赵月静,侯书军.物料冲击破碎过程的一种非线性力模型[J].振动与冲击,2006,25(2):35~37.
    [54]张柱,杨云川,黄德武等.模拟冲击破碎的MCA方法[J].太原科技大学学报,2007,28(3):237~241.
    [55]周风华,王永刚.影响冲击载荷下脆性材料碎片尺度的因素[J].爆炸与冲击,2008,28(4):298~303.
    [56] L. Liu, K.D. Kafui, C. Thornton. Impact breakage of spherical, cuboidal and cylindricalagglomerates[J]. Powder Technology,2010,199(2):189~196.
    [57]《选煤手册》编委会.选煤手册—工艺与设备[M].北京:煤炭工业出版社,1993.
    [58]王章国,匡亚莉,林喆等.基于粒子群算法的重介质分选产品结构优化[J].煤炭学报,2010,35(6):998~1001.
    [59] E.J. Meyer, I.K. Craig. The development of dynamic models for a dense medium separation circuitin coal beneficiation[J]. Minerals Engineering,2010,23(10):791~805.
    [60] T.J. Napier. Modelling and simulating dense medium separation processes-A progress report[J].Minerals Engineering,1991,4(3~4):329~346.
    [61] A.K. Mukherjee, B.K. Mishra. An integral assessment of the role of critical process parameters onjigging[J]. International Journal of Mineral Processing,2006,81(3):187~200.
    [62]匡亚莉,解京选,戈军等.跳汰过程中25和13mm颗粒运动的数学模型[J].中国矿业大学学报,2010,39(6):837~842.
    [63]赵玉清,王学东,史红军.跳汰选煤中模糊PID控制方法试验研究[J].煤炭科学技术,2010,38(7):89~91.
    [64]王祖瑞.风力选煤在我国的应用前景[J].选煤技术,1996,4:7~11.
    [65]周淑艳,李桂莉.梁家煤矿风选系统的研究与改造[J].山东煤炭科技,2006,1:19~21.
    [66]程勇,王勉华.选煤系统中的模糊模式识别方法[J].工况自动化,2006,4:25~27.
    [67]宋晓茹.基于ARM和CPLD的煤矸石在线自动分选系统研究[D].西安:西安科技大学,2006.
    [68] K. S. Klempner, A. I. Smirnov, E. D. Umanets. Optimal thresholds in radiometric coal separation[J].Plenum Publishing Corporation,1983,6:550~553.
    [69]邢伟,宁玉伟.基于γ射线探测技术的煤矸石分选系统的设计[J].河南农业大学学报,2007,41(4):455~457.
    [70]孔力,李红,徐恕宏等.双能γ射线透射法煤矸石在线识别与分选系统[J].华中理工大学学报,1997,25(10):107~108,112.
    [71]赵维义,邹畹珍,李庆国.煤矸石在线自动分选技术及其技术修正问题分析[J].核电子学与探测技术,1997,17(2):144~149.
    [72]郭世名,张光华,张增贵.选煤厂原煤选矸工艺的探讨[J].煤炭技术,2002,21(9):37.
    [73]伍福德,陈安华,刘霞光.滚筒碎选机设计参数的最优选择[J].湘潭矿业学院学报,1991,6(1):57~63.
    [74]丰建荣.煤和矸石井下破碎分选理论及实验研究[D].太原:太原理工大学,2006.
    [75]孔力,李红,徐恕宏,徐琦.双能r射线透射法煤矸石在线识别与分选系统[J].华中理工大学学报,1997(10),107-108,112.
    [76]孔力,郑朝阳,钟志平等.煤矸石双能法动态识别模型研究[J].选煤技术,2001(2),9-12.
    [77]刘文中,孔力.基于双能r射线的煤矸石在线识别模型研究[J].工业仪表与自动化装置,2000(2),53-55.
    [78]刘富强,钱建生,王新红,宋金铃.基于图像处理与识别技术的煤矿矸石自动分选[J].煤炭学报,2000(5),534-537.
    [79]李志宏.煤矸混合物料选择性破碎分选的研究[D].山西:太原理工大学,2003.4.
    [80]张献梅.光电分选机测控系统的设计与实现[D].大连:大连理工大学,2006:4-8
    [81]盛楠.光电分选机分选系统的设计与实现[D].大连:大连理工大学,2006:4-7
    [82]黄鸽.光电分选机检测系统的设计与实现[D].大连:大连理工大学,2005:6-9
    [83]刘飞.井下冲击破碎式煤矸分选机设计与研究[D].中国矿业大学,2009.6.
    [84]房树鹏.顶水式井下煤矸分选机理的研究[D].中国矿业大学,2009.6.
    [85]刘瑜.井下弹力式煤矸分选机理的试验研究[D].中国矿业大学,2009.6.
    [86] Cundall P A,Strack O D L.A discrete numerical model for granular assemblies. Geotechnique,1979,29(1):47-65.
    [87] Xu B H,Yu A B.Numerical simulation of the gas-solid flow in a fluidized bed by comutationalfluid dynamics.Chemical Engineering Science,1997,52(16),2789-2809.
    [88]黄松元.散体力学[M].北京:机械工业出版社,1993.
    [89] Cundall P.A.A computer model for simulating progressive large scale movements in blockysystem.In:Muller Led.Proceedings of Symposium of the International Society of Rock Mechanics,Rotterdam:A.A.Balkema,1971(1):8-12
    [90] Cundall P.A.The measurement and analysis of acceleration in rock slopes.Ph.D.Dissertation,University of London,Imperial college of Science andTechnology,1971
    [91] Maini T,Cundall P.A.Computer modeling of jointed rock mass,(AD-AO61658),1978.
    [92] Cundall P.A.UDEC-A Generalized distinct element program for modeling jointed rock.ReportPCAR-1-80Peter Cundall Associates,European Research Office,U.S.Army,March1980.
    [93] Strack O D L,Cundall P A.The distinct element method as a tool for research in granularmedia.PartⅠ[R]Minnesota:University of Minnesota,1978.
    [94] Cundall P A,Strack O D L.The distinct element method as a tool for research in granularmedia.PartⅡ[R]Minnesota:University of Minnesota,1979.
    [95] Cundall P A,Strack O D L.A discrete numerical model for granular assembles.Geotechnique,1979,29(1):47-65.
    [96]孙其诚,王光谦.颗粒物质力学导论[M].北京:科学出版社,2009.
    [97]孙其诚,王光谦.颗粒流动力学及其离散模型评述[J].力学进展,2008,38(1):87-100.
    [98] P. J. Woytowitz, R. H. Richman. Modeling of damage from multiple impacts by sphericalparticles[J]. Wear,1999,233-235:120-133.
    [99] Francesco Paolo Di Maio, Alberto Di Renzo. Analytical solution for the problem of frictional-elastic collisions of spherical particles using the linear model[J]. Chemical Engineering Science,2004,59:3461-3475.
    [100]赵海波,郑楚光,陈胤密.考虑颗粒碰撞的多重Monte Carlo算法[J].力学学报,2005,37(5):564-572.
    [101] Chin-hung Hsu, Keh-chin Chang. A Lagrangian modeling approach with the direct simulationMonte-Carlo method for inter-particle collisions in turbulent flow[J]. Advanced Powder Technology,2007,18(4):395-426.
    [102]刘红娟,邹春,田智威等.撞击流中单颗粒运动行为的数值模拟[J].华中科技大学学报(自然科学版),2008,36(5):106-109.
    [103] Kruggel-Emden H, Wirtz S, Scherer V. A study on tangential force laws applicable to the discreteelementmethod(DEM) for materials with viscoelastic or plastic behavior[J]. Chemical EngineeringScience,2008,63(6):1523-1541.
    [104]刘石,何玉荣,赵云华等.离散单元法模拟颗粒在斜板上运动及分离过程[J].哈尔滨工业大学学报,2010,42(9):1491-1494.
    [105]李晓光,徐德龙,范海宏.大颗粒流化床中颗粒受力的数值模拟[J].西安交通大学学报,2006,40(7):836-840.
    [106] A. M. Ardekani, S. Dabiri, R. H. Rangel. Collision of multi-particle and general shape objects in aviscous fluid[J]. Journal of Computational Physics,2008,227:10094-10107.
    [107]张勇,金保升,钟文琪.基于颗粒尺度DEM直接数值模拟的喷动流化床颗粒运动特性[J].东南大学学报(自然科学版),2008,38(1):110-115.
    [108]赵永志,程易.水平滚筒内二元颗粒体系径向分离模式的数值模拟研究[J].物理学报,2008,57(1):322-328.
    [109] Cleary P W. DEM prediction of industrial and geophysical particle flows[J].Particuology,2010,8(2):106-118.
    [110] Price M, Morrison G. Estimating3D particle motion from high-speed video for simulationvalidation[J].Engineering Computations,2009,26(6):658-672.
    [111] Campbell C S,Brennen C E.Computer simulation of granular shear flows.J FluidMech.1985.151:167-188.
    [112] Campbell C S,Brennen C E.Chute flows of granular materials: some computer simulations. JAppl Mech.198552:172-178
    [113] Hersir Sigurgeirsson, Andrew Stuart, Wing-Lok Wan. Algorithms for particle-field simulationswith collisions[J]. Journal of Computational Physics,2001,172:766-807.
    [114]刘阳,陆慧林,刘文铁等.气固流化床的离散颗粒运动-碰撞解耦模型与模拟[J].燃烧科学与技术,2003,9(6):551-555.
    [115]闫洁,罗坤,樊建人等.稀疏两相射流中颗粒碰撞的数值研究[J].化工学报,2008,59(4):866-874.
    [116] R.E. Stratton, C.M. Wensrich. Modelling of multiple intra-time step collisions in the hard-spherediscrete element method[J]. Powder Technology,2010,199(2):120-130.
    [117] D.C. Richardson, K.J. Walsh, N. Murdoch, et al. Numerical simulations of granular dynamics: I.Hard-sphere discrete element method and tests[J]. Icarus,2011,212(1):427-437.
    [118]李瑞霞,柳朝晖,贺铸等.各向同性湍流内颗粒碰撞率的直接模拟研究[J].力学学报,2006,38(1):25-32.
    [119] Kishino Y. Disc model analysis of the granular media. In: Micro mechanics of granular materials,Satake M,Jenkins JT(Eds):1988,143-152.
    [120] Kishino Y. Computer analysis of dissipation mechanism in granular media. In: Powders AndGrain. Biarez&Gourves (Eds)1984:323-330.
    [121] Thornton C.Interparticle sliding in the presence of adhesion.J Phys D:Appl Phys.1991,24:1942-1946
    [122] Thornton C.Yin K K Impact of elastic spheres with and without adhesion.PowderTechnology,1991,65:153-166.
    [123] Thornton C.On the relationship between the modulus of particulate media and surface energy ofthe constituent particles.J Phys D:Appl Phys,1993,26:1587-1591
    [124] Thornton C, Ning Z.A theoretical model for the stick/bounce behaviour of adhesive,elastic-plastic spheres. Powder Technotlogy,1998,99:154-162
    [125] Thornton C.Coefficient of restitution for collinear collisions of elastic—perfectly plastic spheres.J Appl Mech,1998,64:383-386.
    [126] Itasea Consulting Group, Ine. UDEC(Universal Distinct Element Code), Version3.1.Minneapolis: ICG,2000.
    [127] Itasea Consulting Group, Ine.3DEC(3Dimensional Distinct Element Code), Version2.0.MinneaPolis: ICG,1998.
    [128] Itasea Consulting Group, Ine.PFC2D(Particle Flow Code in2Dimensions), Version3.0.Minneapolis:ICG,2002
    [129] Itasea Consulting Group, Ine.PFC3D(Particle Flow Code in3Dimensions), Version2.0.Minneapolis:ICG,1999
    [130] Campbell C S. Granular material flows—an overview[J].Powder Technology,2006,162(3):208-229.
    [131] Cleary P W. Large scale industrial DEM modeling[J].Engineering Computations,2004,21(2-4):169–204.
    [132] Anandarajah A, Lavoie D. Numerical simulation of the microstructure and compression behaviourof Eckernf rde Bay sediments[J].Marine Geology,2002,182(1-2):3-27.
    [133] Kopf A, Brown K M. Friction experiments on saturated sediments and their implications for thestress state of the Nankai and Barbados subduction thrusts[J].Marine Geology,2003,202(3-4):193-210.
    [134] Herbst J, Potapov A, Hambidge G, et al. Modeling of diamond liberation and damage forDebswana kimberlitic ores[J].Minerals Engineering,2008,21(11):766-769.
    [135] Polojarvi A, Tuhkuri J.3D discrete numerical modeling of ridge keel punch through tests[J].ColdRegions Science and Technology,2009,56(1):18-29.
    [136] Price M, Morrison G. Estimating3D particle motion from high-speed video for simulationvalidation[J].Engineering Computations,2009,26(6):658-672.
    [137] Rougier E, Munjiza A, Lathama J P. Shape selection menu for grand scale discontinua systems[J].Engineering Computations,2004,21(2):343-359.
    [138] Taylor M A, Garboczi E J, Erdogan S T, et al. Some properties of irregular3-D particles[J].Powder Technology,2006,162(1):1-15.
    [139] Wang L, Park J Y, Fu Y. Representation of real particles for DEM simulation using X-raytomography[J].Construction and Building Materials,2007,21(2):338-346.
    [140] Kruggel-Emden H, Simsek E, Wirtz S, et al. Modeling of granular fow and combined heattransfer in hoppers by the discrete element method (DEM)[J].Journal of Pressure VesselTechnology,2006,128(3):439-444.
    [141] Nakamura H, Tokuda T, Iwasaki T, et al. Numerical analysis of particle mixing in a rotatingfuidized bed[J].Chemical Engineering Science,2007,62(11):3043-3056.
    [142] Kruggel-Emden H, Simsek E, Wirtz S, et al. A comparative numerical study of particle mixingon different grate designs through the discrete element method[J]. Journal of Pressure VesselTechnology,2007,129(4):593-600.
    [143] Zhong W Q, Xiong Y Q, Yuan Z L, et al. DEM simulation of gas–solid fow behaviors inspout-fuid bed[J].Chemical Engineering Science,2006,61(5):1571-1584.
    [144] Moysey P A, Thompson M R. Modeling the solids in fow and solids conveying of single-screwextruders using the discrete element method[J].Powder Technology,2005,153(2):95-107.
    [145] Kruggel-Emden H, Wirtz S, Scherer V. An analytical solution of different confgurations of thelinear viscoelastic normal and frictional–elastic tangential contact model[J].Chemical EngineeringScience,2007,62(23):6914-6926.
    [146] Ji S Y, Shen H H. Effect of contact force models on granular fow dynamics[J].Journal ofEngineering Mechanics-ASCE,2006,132(11):1252-1259.
    [147] Cleary P W. The effect of particle shape on single shear flows[J].Powder Technology,2008,179(3):144-163.
    [148] Kock I, Huhn K. Influence of particle shape on the frictional strength of sediments—Anumerical case study[J].Sedimentary Geology,2007,196(1-4):217-233.
    [149] Latham J P, Munjiza A, Garcia X, et al. Three-dimensional particle shape acquisition and use ofshape library for DEM and FEM/DEM simulation[J].Minerals Engineering,2008,21(11):797-805.
    [150] Kruggel-Emden H, Rickelt S, Wirtz S. A study on the validity of the multi-sphere DiscreteElement Method[J].Powder Technology,2008,188(2):153-165.
    [151] Limtrakul S, Rotjanavijit W, Vatanatham T. Lagrangian modeling and simulation of effect ofvibration on cohesive particle movement in a fluidized bed[J].Chemical Engineering Science,2007,62(1-2):232-245.
    [152] Kruggel-Emden H, Wirtz S, Scherer V. A study on tangential force laws applicable to the discreteelementmethod(DEM) for materials with viscoelastic or plastic behavior[J]. Chemical EngineeringScience,2008,63(6):1523-1541.
    [153] Murase K, Mochida T, Sagawa Y, et al. Estimation on the strength of a liquid bridge adhered tothree spheres[J].Advanced Powder Technology,2008,19(4):349-367.
    [154] Buttlar W.G.,and You Z.2001.Discrete Element Modeling of Asphalt Concrete:A Micro-FabricApproach,J.Trans.Res.Record,National Research Council, Washington, D.C.,No.1757,Geomaterials2001,111-118.
    [155] Buttlar W.G.,Wagoner M.,You Z.,and Brovold,S.T.2004.Development of HollowCylinder Testerin the Fundamental Property Test of Pavement Mixture, J.Assoc.Asphalt PavingTech.(AAPT),73,367-400.
    [156] You Z.and Buttlar W.G.2002.Stiffness Prediction of Hot Mixture Asphalt(HMA) Based uponMicrofabric Discrete Element Modeling(MDEM),Proc.of the4thInternational Conference on Road&Airfield Pavement Technology,Vol.1, pp.409-417,People's Communications Publishing House,China.
    [157] You Z.and Buttlar W.G.2004.Discrete Element Modeling to Predict the Modulus of AsphaltConcrete Mixtures[J].Journal of Materials in Civil Engineering, ASCE, Vol.16, Issue2,pp.140-146.
    [158] You Z.and Buttlar W.G.2005.Application of Discrete Element Modeling Techniques to Predictthe Complex Modulus of Asphalt–Aggregate Hollow Cylinders Subjected to InternalPressure[J].Journal of the Transportation Research Board,National ResearchCouncil,No.1929,pp.218-226.Washington,D.C.
    [159] You Z.and Buttlar W.G.2006.Micromechanical Modeling Approach to Predict CompressiveDynamic Moduli of Asphalt Mixture Using the Distinct Element Method[J].Journal of theTransportation Research Board, National Research Council, Washington, D.C.,Accepted for publication
    [160] Zhou Y C,Xu B H,Yu A B,et a1.An experiment and numerical study of the angle of repose ofcoarse spheres[J]. Powder Technology,2002,125:45-54.
    [161] D.O.Potyondya,P.A.Cundallb.Abonded-particle model for rock.[J].International Journal of RockMechanics&Mining Sciences41(2004):1329–1364.
    [162] Manuel J.Melis Maynar,Luis E.Medina Rodriguez. Discrete Numerical Mode for Analysis ofEarth Pressure Balance Tunnel Excavation[J].journal of geotechnical and geoenvir on mentalengineering,2005,31(10):1234-1242
    [163] T. Funatsu,T. Hoshino,H. Sawae,N. Shimizu. Numerical analysis to better Understand themechanism of the effects of ground supports and reinforcement on the stability of tunnels using thedistinct element method[J].Tunnelling and Underground Space Technology,2008(23):561-573.
    [164]蒋景彩,能野一美,山上拓男.滚石离散元数值模拟的参数反演[J].岩石力学与工程学报,2008,27(12):2418-2430.
    [165]李艳洁,徐泳.用离散元模拟颗粒堆积问题[J].农机化研究。2005,2:57-59.
    [166] Li Y J,Xu Y,Thornton C.A comparison of discrete element simulations and experiments for“sand piles” composed of spherical particles[J].Power Technology,2005,160:219-228.
    [167]魏龙海,王明年.碎石土隧道自稳性的三维离散元分析[J].岩土力学,2008,29(7):1853-1860.
    [168]邹猛,李建桥,贾阳等.月壤静力学特性的离散元模拟[J].吉林大学学报(工学版),2008,38(2):384-387.
    [169]张洪武,秦建敏.基于接触价键的颗粒材料微观临界状态[J].岩土力学,2008,29(4):865-870.
    [170]周健,王家全,曾远,张姣.土坡稳定分析的颗粒流模拟[J].岩土力学,2009,30(1):86-90.
    [171]樊赘赘,王思敬,王恩志.障碍物的设置对颗粒流动过程的影响[J].土木建与环境工程,2010,32(5):35-40.
    [172]张明鸣,徐卫亚,夏玉斌,周先齐.抛石挤淤机理及其颗粒流数值模拟研究[J].中南大学学报(自然科学版),2010,41(1):310-315.
    [173] Zhao Xue liang,Analysis of using granular assembly deformation discrete element method[J].Journal of Southeast University(English Edition),2010,26(4):608-613.
    [174]蒋明镜,王富周,朱合华.单粒组密砂剪切带的直剪试验离散元数值分析[J].岩土力学,2010,31(1):253-298.
    [175] Mishra B K, Mehrotra S P. A jig model based on the discrete element method and its experimentalvalidation[J]. Mineral processing,2001,63(4):177-189.
    [176] Asmar B N, Langston P A, Matchett A J, et al. Validation tests on a distinct element model ofvibrating cohesive particle systems[J].Computers and Chemical Engineering,2002,26(6):785-802.
    [177] Cleary P W, Sawley M L. DEM modelling of industrial granular fows:3D case studies and theeffect of particle shape on hopper discharge[J].Applied Mathematical Modelling,2002,26(2):89-111.
    [178] P.A. Moysey, M.R. Thompson. Modelling the solids inflow and solids conveying of single-screwextruders using the discrete element method[J]. Powder Technology,2005,153:95-107.
    [179] Ketterhagen W R, Curtis J S, Wassgren C R, et al. Granular segregation in discharging cylindricalhoppers: A discrete element and experimental study[J].Chemical Engineering Science,2007,62(22):6423-6439.
    [180] Ketterhagen W R, Curtis J S, Wassgren C R.Modeling granular segregation in flow fromquasi-three-dimensional, wedge-shaped hoppers[J].Powder Technology,2008,179(3):126-143.
    [181] Jerzy Rojek. Discrete element modelling of rock cutting [J] computer methods in materialsscience,2007,7(2):224-230.
    [182] Jerzy Rojek, Carlos Labra, Eugenio O ate. Discrete element simulation of rock cuttingprocesses.Vilnius, Lithuania: The10th International Conference,1040-1044.
    [183] Mukherjee A K, Mishra B K. Experimental and simulation studies on the role of fluid velocityduring particle separation in a liquid–solid fluidized bed[J]. International Journal of Mineral Processing,2007,82(4):211-221.
    [184] P.J. Owen,P.W. Cleary.Prediction of screw conveyor performance using the Discrete ElementMethod (DEM)[J].Powder Technology,2009,193:274-288.
    [185] W. McBride,P.W. Cleary.An investigation and optimization of the ‘OLDS’ elevator usingDiscrete Element Modeling[J].Powder Technology,2009,193:216-234.
    [186] D.B. Hastie,P.W. Wypych.Experimental validation of particle flow through conveyor transferhoods via continuum and discrete element methods[J].Mechanics of Materials,2010,42:383-394.
    [187] Okan Su, Nuri Ali Akcin. Numerical simulation of rock cutting using the discrete element method[J]. International Journal of Rock Mechanics&Mining Sciences (2010), doi:10.1016/j.ijrmms.2010.08.012
    [188] Justin W. Fernandez, Paul W. Cleary, William McBride. Effect of screw design on hopperdrawdown of spherical particles in a horizontal screw feeder[J].Chemical Engineering Science,2011,66:5585-5601.
    [189]武锦涛,陈纪忠,阳永荣.移动床中颗粒运动的微观分析[J].浙江大学学报(工学版),2006,40(5):864-892.
    [190]张锐,李建桥,许述财,李因武.推土板切土角对干土壤动态行为[J].吉林大学学报(工学版),2007,37(4):822-827.
    [191]张锐,李建桥,周长海,许述财.推土板表面形态对土壤动态行为影响的离散元模拟[J].农业工程学报,2007,23(9):13-19.
    [192]黄昕,刘义伦,金晓宏.冲击载荷下炭素糊料的位移特性研究[J].振动与冲击,2008,27(3):145-159.
    [193]李海燕.基于EDEM的垂直螺旋输送机性能参数仿真研究[D].太原科技大学,2008.
    [194]魏群.散体单元法的基本原理数值方法及程序.北京:科学出版社,1991.
    [195]周德义等。散粒农业物料孔口出流成拱的离散单元仿真。农业工程学报,1996,12(2):186-190.
    [196]杨洋.水泥熟料多点卸料的离散元法模拟[D]同济大学.2007.3.
    [197] P.A. Langston,U. Tuzun. Continuous Potential discrete Particle simulations of stress velocityfields in hopper: transition from fluid to granular flow. Chemical Engineering,1994,49(8):1529-1275.
    [198] P.A. Langston,U. Tuzun, D.M. Heyes. Discrete element simulation of granular flow and hoppers:dependence of discharge rate and wall stress on Particle interactions. ChemicalEngineering,1995,50(9):967-987.
    [199] D. Gavrilov,O.G. Vinogradov. Micro instabilities in a system of Particles in silos during fillingProcess. Computational Mechanics,24(1999):166-174.
    [200] D. Hirshfeld,D.C. Rapaporta. Granular flow from a silo: discrete-particle simulations in Threedimensions.Eur.Phys.J.E.2001,4:193-199.
    [201] Shie-Chen Yang, Shu-San Hsiau. The simulation and experimental study of granular materialsdischarged from a silo with the placement of inserts. Powder Technology,120(2001):244-255.
    [202] Li J, Webb C, Pandiella S S, et al. A numerical simulation of separation of crop seeds byscreening effect of particle bed depth[J].Food and Bioproducts Processing: Transactions in ChemicalEngineering,2002,80(2):109-117.
    [203] Li J, Webb C, Pandiella S S, et al. Discrete particle motion on sieves—a numerical study usingthe DEM simulation[J].Powder Technology,2003,133(1-3):190-202.
    [204] Cleary P W. Industrial particle flow modeling using discrete element method[J]. EngineeringComputations,2009,26(6):698-743.
    [205] Dong J K, Yu A B, Brake I. DEM simulation of particle flow on a multi deck bananascreen[J].Minerals Engineering,2009,22(11):910-920.
    [206] Cleary P W, Sinnott M D, Morrison R D. Separation performance of double deck bananascreens–Part1: Flow and separation for different accelerations[J]. Minerals Engineering,2009,22(14):1218-1229.
    [207] Cleary P W, Sinnott M D, Morrison R D. Separation performance of double deck banana screensPart2:Quantitative predictions[J].Minerals Engineering,2009,22(14):1230-1244.
    [208] Cleary P W. DEM prediction of industrial and geophysical particle flows[J]. Particuology,2010,8(2):106-118.
    [209]赵跃民,焦红光,王全强,等.筛面配置对分离粒度及筛分效率影响的离散元模拟[C].中国颗粒学会2006年年会暨海峡两岸颗粒技术研讨会,北京:中国颗粒学会,2006,8:120-123.
    [210]赵跃民,张曙光,焦红光,等.振动平面上粒群运动的离散元模拟[J].中国矿业大学学报,2006,35(5):586-590.
    [211]焦红光,赵跃民.用颗粒离散元法模拟筛分过程[J].中国矿业大学学报,2007,36(2):232-236.
    [212] Jiao H G, Zhao Y M, Wang Q Q. Numerical study of collision and penetration behavior betweenparticles and screen plate[J]. Journal of China University of Mining&Technology,2006,16(2):137-146.
    [213] Chen Y H, Tong X. Application of the DEM to screening process: a3D simulation[J]. MiningScience and Technology,2009,19(4):493-497.
    [214]李昌熙,沈立山,高荣.采煤机[M].北京:煤炭工业出版社,1988.
    [215]陶驰东.采掘机械[M].北京:煤炭工业出版社,1993.
    [216]东兆星,单仁亮.岩石在动载作用下破坏模式与强度特性研究[J].爆破器材,2000(2),1-5.
    [217]刘宝琛,张家生,杜奇中等.岩石抗压强度的尺寸效应[J].岩石力学与工程学报,1998,17(6),611-614.
    [218]徐高巍.岩石力学参数取值研究及数据库系统的完善[D].武汉:中国科学院武汉岩土力学研究所,2006.5.
    [219]李启衡.粉碎理论概要[M].北京:冶金工业出版社,1993(2).
    [220]段希祥.碎矿与磨矿[M].北京:冶金工业出版社,2006.
    [221]徐小荷.岩石破碎学[M].北京:北京工业出版社,1984.
    [222]俞茂宏.强度理论新体系[M].西安:西安交通大学出版社,1992.
    [223]吴黎辉.岩石经验强度准则研究[D].中国优秀硕士学位论文,2004.
    [224]李启衡.粉碎理论概要[M]..北京:冶金工业出版社,
    [225]赵敏,卢亚平,潘英民.粉碎理论与粉碎设备发展评述[J].矿冶,2001,(6):36-41.
    [226]徐锋.反击式破碎机破碎腔关键部件结构计算及优化分析[D].南京:南京理工大学,2007.6.
    [227]陈天虎,庆承松.山东某矿煤矸石选择性破碎分选[J].合肥工业大学学报,1995(1),182-185.
    [228] Crawford J W, Sleeman B D, Young I M. On the relation between number-size distributions andthe fractal dimension of aggregates[J].Soil Sci.,1993,44:555-565.
    [229]王礼立.高应变率下材料动态力学性能[J].力学与实践,1982,4(1),9-19.
    [230]陶振宇.岩石力学的理论与实践[M].北京,水利出版社,1981.
    [231]刘大安.高级计算机辅助测试技术与岩石断裂力学研究[D]中南大学,1991.
    [232] J.A.Zukas著,张志云,丁世用,魏传忠译.碰撞动力学[M].北京:兵器工业出版社,1989.
    [233]铁摩辛柯,古地尔.碰撞动力学[M].北京:高等教育出版社,1964.
    [234]黄炎.工程弹性力学[M].北京:清华大学出版社,1982.
    [235]曾洪茂,周恩浦.冲击破碎机冲击速度、冲击时间和破碎力的确定[J]矿山机械,1994,1:2-6.
    [236]徐泳,孙其诚,张凌等.颗粒离散元法研究进展[J].力学进展,2003,,3(2):251-260.
    [237] Cundall P A. PFC2D user’s manual: Version3.1[R].Minnes ota: Itasca Consulting Group Inc,1999.
    [238]王端宜,赵熙.沥青混合料单轴压缩试验的离散元仿真[J].华南理工大学学报(自然科学版).2009,37(7):37-40.
    [239]陈绍杰.煤岩强度与变形特征实验研究及其在条带煤柱设计中的应用[D].青岛:山东科技大学,2005.
    [240]刘宝琛,张家生,杜奇中等.岩石抗压强度的尺寸效应[J].岩石力学与工程学报,1998,17(6):611-614.
    [241]黄日恒.悬臂式掘进机.江苏徐州:中国矿业大学出版社.1996.
    [242]孙其诚,王光谦.颗粒流动力学及其离散元模型评述[J].力学进展,2008,38(1):87-100.
    [243] Walton O R. Particle dynamics modeling of geological material[R].1980,Lawrence LivermoreLab.
    [244] Moakher M,Shinbrot T,Muzzio F J. Experimental validated computations of flow, mixing andsegregation of non-cohesive grains in3D tumbling blenders.Powder Technology,2000,109(1-3):58~71
    [245]仇轶,由长福,祁海鹰,徐旭常.用DEM软球模型研究颗粒间的接触力[J].工程热物理学报,2002,23(6):197-200.
    [246]李裕春. ANSYS11.0/LS-DYNA基础理论与工程实践[M].北京:水利水电出版社,2008.
    [247]郝好山,胡仁喜,康士廷.ANSYS12.0LS-DYNA非线性有限元分析实例指导教程[J].北京:机械工业出版社,2010.
    [248]董海东,葛正浩.基于ANSYS/LS-DYNA的产品跌落仿真[J].洛阳理工学院学报(自然科学版),2010,20(3):35-39.
    [249]郑伏惠,宋德朝,罗军.应用ANSYS/LS_DYNA对锤式废钢破碎机锤头冲击的研究[J].现代制造工程,2009,4:60-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700