用户名: 密码: 验证码:
冰单轴压缩强度与影响因素试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冰荷载是寒冷区域水工和海洋结构物设计的控制荷载之一,也是冰管理中不可或缺的冰参数之一,其中冰的单轴压缩强度则是冰荷载计算的关键参数。但由于冰是一种受水文、气象等地理和环境条件所控制的性质较复杂的天然复合材料,所以其物理和力学性质也各有差异,并且科学工作者们试验所选取的冰样存在地域差异和试验研究方法的不同致使获得的结果也各不相同,所以采用人工冻结的方法来模拟天然冰是获取不同冰试样的有效手段;进一步开展冰单轴压缩强度以及不同因素对压缩强度的影响实验研究来充实已有的试验研究和理论研究是非常有必要的;研究不同类型冰的单轴压缩强度及其与影响因素之间的关系也是非常有意义的。
     利用低温环境实验室和动态水体冰生消模拟水槽,通过逐步控制降温幅度的冻结方法进行人工制备淡水冰。使用配置了高精度低温恒温试验箱的冰压力试验机,分别对人工冻结冰、现场取样的水库冰和海冰进行了单轴压缩强度试验研究。通过制备水平和垂直晶体薄片分析确定三种冰的晶体结构。同时采用等效圆直径的方法计算出相应的平均粒径尺寸,并得到了冰内气泡分布情况和随深度变化的气泡含量变化曲线,以及海冰盐度随深度呈现“C”型的变化趋势。
     利用试验数据,分别得到人工冻结冰、水库冰和海冰的应力-应变曲线,对应冰试样不同的变形形态,并给出冰破坏应力与破坏时间的关系曲线。通过试验观测发现冰试样主要存在鼓胀、剪切和劈裂的破坏形式,且对应的冰试样破坏现象各有差异。
     选取不同的温度和大范围内的应变速率作为条件进行试验,重点分析了应变速率、温度、平均粒径尺寸等不同因素对冰单轴压缩强度的影响。试验结果表明:人工冻结冰、水库冰和海冰均表现了明显的应变速率敏感性,存在着韧性区、韧脆过渡区和脆性区;冰单轴压缩强度与温度有着密切的关系,在相同的应变速率下,冰单轴压缩强度值随着冰温的降低而一直增大,且随着温度的降低,韧脆过渡区向低应变速率方向偏移。同时采用非线性方法拟合峰值压缩强度和温度的关系式,使其更符合冰温度接近冰点时,其强度接近零的物理事实。探讨了在试样尺寸相同的条件下,平均粒径尺寸变化对冰单轴压缩强度的影响,引入参数平均粒径尺寸/试样尺寸比(D/A),相同试样尺寸不同平均粒径尺寸下冰单轴压缩强度变化表明,在D/A<1.5的情况下,随着比值的减小,冰的单轴压缩强度增大。针对水库冰,在水平和垂直两种加载方向条件下,上层冰单轴压缩强度相同,体现了粒状冰各向同性的特性;下层冰由于同时存在粒状冰和柱状冰结构,加载方向对冰单轴压缩强度的影响表现不明显。将试验结果进行拟合,对于淡水冰,建立了单轴压缩强度与大范围应变速率和温度三者之间的统计关系式;对于海冰,建立了单轴压缩强度和大范围应变速率及与孔隙率之间的定量关系表达式。
     探讨了冰单轴压缩强度在工程中的应用。水库冰和海冰的峰值压缩强度结果分别与同区域的历史研究结果在同一范围内,因而在工程设计中,仍可取实测冰强度的峰值作为设计强度参考依据。在海冰管理中,利用已定型的渤海气象预报、海冰厚度预报和海冰漂移预报模式,在获得气温、水温、冰厚以及冰速等参数值的基础上,将单轴压缩强度的应用范围扩展到冰工程管理中,基于获得的冰单轴压缩强度与大范围应变速率和孔隙率之间的定量关系,建立了海冰荷载计算流程,并采用冰荷载预警指标反映出结构物所受的实时冰力的状态,为结构物的安全状态、正常生产作业及人员感受提供警示,为冰区结构物的安全运营的预警系统提供科学指导。
In cold region, ice load is regarded as a control load in the design of hydraulic and offshore structures, and the compressive strength is a key parameter of ice load calculation. As a natural composite material, the properties of ice are very complicated by the influence of hydrological and meteorological conditions and environmental factor, so physical and mechanical properties of ice are also different. At the same time, due to regional differences of the tested objects and different testing methods, different research results, have acquired by scientists Therefore, artificial freezing method is an effective experimental means to simulate natural ice; it is essential that experiment studies of the uniaxial compressive strength and the effect of many factors on uniaxial compressive strength were conduced to enrich result and theory study; it is very significant to further study the relationship of compressive strength and influence factors for different type ice.
     In the low temperature laboratory, freshwater ice was prepared through the freezing method of decreasing temperature step by step in a dynamic water tank of ice growth and decay. A series of tests was conducted on artificial freshwater ice, reservoir ice and sea ice under uniaxial compression by an electronic universal machine equipped with a low temperature cabinet with high precision. Reservoir ice and sea ice were collected from the Hongqipao reservoir in the Heilongjiang Province and the Liaodong Bay respectively. The crystal structures for the artificial freshwater ice, reservoir ice and sea ice were analyzed through horizontal and vertical crystal thin sections of the ice. The corresponding average grain size was calculated by the method of the equivalent circle diameter; the bubble distribution in ice and bubble content curves with depth change were given; salinity of sea ice with different depth presented nearly "C" type change tendency.
     The stress-strain curves of the artificial freezing ice, reservoir ice and sea ice were respectively described through analysis of test data, and the different curves showed that the ice samples had the different deformation pattern. The corresponding damage stress and damage time relationship curve was presented, and the ice samples had mainly bulge failure, shear failure and split failure through the test observation. The corresponding failure phenomenon of the ice samples was different.
     Choosing different temperatures and wide range of strain rates as test conditions, and the effect of some factors such as temperature, strain rate, loading direction and average grain size of ice on the uniaxial compressive strength were analyzed. The test results show that:the artificial ice, reservoir ice and sea ice have significant strain rate sensitivity; there are ductile region, ductile to the brittle transition region and brittle region. Ice uniaxial compression strength and temperature have close relations, the uniaxial compression strength value of the ice decreases with increasing temperature under the same strain rate, and ductile to brittle transition region change with decreasing temperature. The relationship between the method peak compression strength and temperature was fitted using the nonlinear method, which meets more physical fact that ice strength is almost zero when the temperature of ice closes to freezing. The effect of average grain size on the uniaxial compressive strength is discussed under the same sample size condition, and ratio of average grain size and sample size (D/A) is introduced, the uniaxial compressive strength of ice increases with the decrease of (D/A) when D/A is less than1.5. For the reservoir ice, the uniaxial compressive of the upper layer ice is not influenced by the loading direction, which shows the isotropy property of granular ice; the effect of loading direction on the uniaxial compressive strength of the lower layer ice is not obvious due to existing simultaneously of granular ice and columnar ice. For freshwater ice, the statistical relationship between the uniaxial compressive, strain rate and temperature is established by fitted test data; for sea ice, the curved-surface relationship between the uniaxial compressive strength and porosity within a wide range of strain rate is described quantitatively.
     The application of the compressive strength of ice in engineering design is discussed, and the peak compressive strength of reservoir ice and sea ice and historical research results in the same areas is being within the same limit respectively. Therefore, the peak compressive strength is regarded as the design strength in engineering design. In ice management, uniaxial compressive strength of ice is introduced on the basis of acquired ice parameters including atmospheric temperature, water temperature, ice depth, ice speed and so on through established meteorological forecast, numerical study modes on sea ice depth and drift in Bohai Sea. Forecasting process of ice load for sea ice is established through the quantitative relationship among the uniaxial compressive strength, strain rate in wide range and porosity, and the alarming index of ice load is set to reflect the structure state under the action of ice load and to provide the alert for worked feeling, normal operation and safe operation of structures, and scientific guidance is provided for alariming system for safety operation of structures in ice region.
引文
[1]史庆增.海冰的动力作用和冰力谱[J].海洋学报,1994,16(5):106-111.
    [2]史庆增,宋安.海冰静力作用的特点及几种典型结构的冰力模型试验[J].海洋学报,1994,16(6):133-141.
    [3]史庆增,徐继祖,宋安.海冰作用力的模拟实验[J].海洋工程,1991,9(1):16-22.
    [4]Lindholm J E, Makela K, Zheng C B. Structure-ice interaxtion for a Bohai Bay oil production project[C]. Proceedings of the 3rd International Offshore and Polar Engineering Conference, GOLDEN, CO (USA),1993.
    [5]Week W F, Assur A. The mechanical properties of sea ice[C]. In Conference on Ice Pressures Against Structures, Laval, Quebec,1966.
    [6]Michel B. Ice mechanics[M]. Laval, Quebec:Les Presses de L' Universite Laval,1978.
    [7]Lainey L, Tinawi R. The mechanical properties of sea ice—A compilation of available data[J]. Canadian Journal of Civil Engineering,1984,11 (4):884-923,10.
    [8]Richter Menge J A. US research in ice mechanics:1987-1990[J]. Cold Regions Science and Technology,1992,20(3):231-246.
    [9]Moslet P 0. Field testing of uniaxial compression strength of columnar sea ice[J]. Cold Regions Science and Technology,2007,48(1):1-14.
    [10]李世山,袁业立,翁学传,等.海冰物理特征值及其对桩柱作用力的测量[J].海洋与湖沼,1983(6):560-564.
    [11]沈梧,林树枝.渤海东部一年冰单轴压缩强度的应变速率敏感性[J].大连工学院学报,1984(4):45-50.
    [12]李福成,孟广琳,张明远,等.渤海海冰的抗压强度试验研究[J].海洋学报(中文版),1987(2):255-261.
    [13]黄茂恒,刘宗香.黄河上游冰强度试验研究[C].中国地理学会冰川冻土学术会议论文选集(冰川学),1982:146-151.
    [14]李志军,孟广琳,隋吉学.辽东湾海冰单轴压缩长期强度的初步分析[J].海洋学报(中文版),1991(4):571-575.
    [15]张明元,孟广琳,隋吉学,等.渤海湾海冰和黄河口河冰物理力学性质的测定和研究[J].海洋工程,1993(3):39-45.
    [16]严德成,孟广琳,张明远,等.黄河口低盐度海冰与黄河冰的抗压强度[J].海洋环境科学,1994(3):72-80.
    [17]茅泽育,吴剑疆,张磊,等.天然河道冰塞演变发展的数值模拟[J].水科学进展,2003,14(6):700-705.
    [18]王军.冰塞形成机理与冰盖下速度场和冰粒两相流模拟分析[D].合肥工业大学,2007.
    [19]张学成,可素娟,潘启民,等.黄河冰盖厚度演变数学模型[J].冰川冻土,2002(2):203-205.
    [20]杨开林,刘之平,李桂芬,等.河道冰塞的模拟[J].水利水电技术,2002(10):40-47.
    [21]王涛,杨开林,郭永鑫,等.神经网络理论在黄河宁蒙河段冰情预报中的应用[J].水利学报,2005(10):1204-1208.
    [22]陈守煜,冀鸿兰,张道军.系统非线性组合预测方法及在黄河凌汛预测中应用[J].大连理工大学学报,2006(6):901-904.
    [23]肖建民,金龙海,谢永刚,等.寒区水库冰盖形成与消融机理分析[J].水利学报,2004(6):80-85.
    [24]白乙拉,李志军,冯恩民.水库天然冰温度场数值模拟[J].黑龙江大学自然科学学报,2006(3):331-335.
    [25]倪汉根,徐福生,金生.水库冰盖厚度及弧门自开启原因的研究[J].水利学报,1998(12):2-7.
    [26]蔡琳,卢杜田.水库防凌调度数学模型的研制与开发[J].水利学报,2002(6):67-71.
    [27]韩艳,陆钦年.流冰作用下松花江公路大桥位移响应分析[J].哈尔滨工业大学学报,2003(11):1372-1374.
    [28]何春英.龙凤山水库坝坡引滑防冰害措施[J].黑龙江水专学报,2005(1):110-111.
    [29]宋安,范晓雷,史庆增,等.闸墩冰荷载及过冰能力的模型试验研究[J].水利学报,2005(9):1121-1126.
    [30]王军.河冰水力学研究进展[J].水利水电技术,2004(5):111-113.
    [31]Gold L W. Some observations on the dependence of strain on stress for ice[J]. Canadian Journal of Physics,1958,36(10):1265-1275.
    [32]Sinha N K. Rate sensitivity of compressive strength of columnar-grained ice[J]. Experimental Mechanics,1981,21 (6):209-218.
    [33]Timco G W, Frederking R M W. Comparative strengths of fresh water ice[J]. Cold Regions Science and Technology,1982,6(1):21-27.
    [34]Sinha N K. Constant strain and stress-rate compressive strength of columnar-grained ice[J]. Journal of Materials Science,1982,17(3):785-802.
    [35]Hawkes I, Mellor M. Deformation and fracture of ice under uniaxial stress[J]. Journal of Glaciology,1972,11:103-131.
    [36]Cole D M. Strain-rate and grain-size effects in ice[J]. Journal of Glaciology, 1987,33(115):274-280.
    [37]Dutta P K, Cole D M, Schulson E M, et al. A fracture study of ice under high strain rate loading[J]. International Journal of Offshore and Polar Engineering, 2004,14:182-188.
    [38]Hooke R L, Mellor M, Budd W F, et al. Mechanical properties of polycrystalline ice: an assessment of current knowledge and priorities for research[J]. Cold Regions Science and Technology,1980,3(4):263-275.
    [39]Mellor M, Cole D M. Deformation and failure of ice under constant stress or constant strain-rate[J]. Cold Regions Science and Technology,1982,5(3):201-219.
    [40]Kuehn G A, Schulson E M, Jones D E, et al. The compressive strength of ice cubes of different sizes[J]. Journal of Offshore Mechanics and Arctic Engineering, 1993,115:142.
    [41]Jones S J. High strain-rate compression tests on ice[J]. The Journal of Physical Chemistry B,1997,101(32):6099-6101.
    [42]Schulson E M, Buck S E. The ductile-to-brittle transition and ductile failure envelopes of orthotropic ice under biaxial compression[J]. Acta Metallurgica et Materialia,1995,43(10):3661-3668.
    [43]沈乐天,赵士达,卢锡年,等.天然淡水冰单轴压缩强度及其温度和应变率效应[J].冰川冻土,1990(2):141-146.
    [44]于天来,王金峰,杜峰,等.呼玛河冰灾害试验研究[J]. 自然灾害学报,2007(4):43-48.
    [45]王金峰,于天来,黄美兰.河冰单轴无侧限抗压强度的试验研究[J].低温建筑技术,2007(1):11-13.
    [46]Cole D M. The microstructure of ice and its influence on mechanical properties [J]. Engineering Fracture Mechanics,2001,68(17-18):1797-1822.
    [47]Haynes F D. Temperature effect on the uni-axial strength of ice[C]. Proc. POAC 79, Trondheim, Norway,1974:667-681.
    [48]Traetteberg A, Gold L W, Frederking R. The strain rate and temperature dependence of Young's modulus of ice[C]. Proceedings, IAHR Third International Symposium on Ice Problems, Hanover, New Hampshire,1975:479-486.
    [49]Richter J A, Cox G. A preliminary examination of the effect of structure on the compressive strength of ice samples from multi-year pressure ridges[C]. 1984:140-144.
    [50]Nadreau J P, Nawwar A M, Wang Y S. Triaxial testing of freshwater ice at low confining pressures. [J]. Transactions of the ASME. Journal of Offshore Mechanics and Arctic, 1991,113(3):260-265.
    [51]Kuehn G A, Schulson E M. The mechanical properties of saline ice under uniaxial compression[C]. IGS International Symposium on Applied Ice and Snow Research, Rovanieml, Finland,1993:18-23.
    [52]Sinha N K, Zhan C, Evgin E. Uniaxial constant compressive stress creep tests on sea ice[J]. Journal of Offshore Mechanics and Arctic Engineering,1995,117:283.
    [53]Barrette P D, Jordaan I J. Pressure-temperature effects on the compressive behavior of laboratory-grown and iceberg ice[J]. Cold Regions Science and Technology, 2003,36(1-3):25-36.
    [54]Jones S J. A review of the strength of iceberg and other freshwater ice and the effect of temperature [J]. Cold Regions Science and Technology,2007,47(3):256-262.
    [55]Assur A. Composition of sea ice and its tensil strength[C]. Arctic Sea Ice, National Academy of Sciences---National Reaearch Council, Washington D C,1958:148-152.
    [56]Eicken H, Lange M A. Development and properties of sea ice in the coastal regime of the southeastern Weddell Sea[J]. Journal of Geophysical Research, 1989,94 (C6):8193-8206.
    [57]Michel B. The strength of polycrystalline ice[J]. Canadian Journal of Civil Engineering,1978,5 (3):285-300.
    [58]Currier J H. A study on the tensile strength of ice as a function of grain size[R].DTIC Document,1983.
    [59]Pishvanov N A. The influence of grain size on the creep rate of polycrystalline ice[J]. Cold Regions Science and Technology,1980,5(3):183-199.
    [60]Jones S J, Chew H. Effect of sample and grain size on the compressive strength of ice[J]. Annals Of Glaciology,1983,4:129-132.
    [61]Cole D M. Effect of grain size on the internal fracturing of polycrystalline ice[R].DTIC Document,1986.
    [62]Schulson E M. The brittle compressive fracture of ice[J]. Acta Metallurgica et Materialia,1990,38 (10):1963-1976.
    [63]Weiss J, Schulson E M. The failure of fresh-water granular ice under multiaxial compressive loading[J]. Acta Metallurgica et Materialia,1995,43(6):2303-2315.
    [64]彭万巍,朱元林,张家懿.多晶冰抗压强度的粒径效应[J].力学与实践,1998(4):37-39.
    [65]Kubo T, Durham W B, Stern L A, et al. Grain size-sensitive creep in ice II[J]. Science, 2006,311(5765):1267.
    [66]Peyton H R. Sea ice strength. [R]. Final Report of Naval Research Arctic Project for Period 1958-1965,1966.
    [67]Sinha N K. Field test 1 of compressive strength of first-year sea ice[J]. Annals of Glaciology,1983,4:253-259.
    [68]Frederking R M W, Timco G W. Compressive behaviour of Beaufort sea ice under vertical and horizontal loading[C]. Proceedings of the 3rd International Symposium on Offshore Mechanics and Arctic Technology, New Orleans, U.S.A.,1984:145-149.
    [69]Kuehn G A, Schulson E M. The mechanical properties of saline ice under uniaxial compression[C].1995:144A.
    [70]Bjerk Aa S M. Compressive behaviour of Norwegian Arctic sea ice under vertical and horizontal loading[J]. UNIS AT-208 Students Report Spring 2003,2003.
    [71]H(?)yand K V, Bjerkas M, Vernyayev S. Mechanical properties of ice ridges and level ice, in-situ and laboratory testing 2003[C].2004:69-75.
    [72]孟广琳,张明远,李志军,等.渤海平整冰单轴抗压强度的研究[J].冰川冻土,1987,4.
    [73]张明元,孟广琳,隋吉学,等.黄河北部庄河附近海域海冰物理力学特性[J].海洋通报,1995,14(4):11-18.
    [74]Sinha N K, Frederking R M W. Effect of test system stiffness on strength of ice[C]. Proceedings of the Fifth International Conference on Port and Ocean Engineering under Arctic Conditions, Norwegian Institute of Technology,1979.
    [75]Sinha N K. Uniaxial compressive strength of first-year and multi-year sea ice[J]. Canadian Journal of Civil Engineering,1984,11(1):82-91.
    [76]Timco G W, Frederking R M W. A procedure to account for machine stiffness in uni-axial compression tests[C]. Proceedings of the 7th International Symposium on Ice, Hamburg, Germany,1984:39-47.
    [77]Sinha N K. Comparative study of ice strength data[C]. Proceedings of IAHR International Symposium on Ice, Quebec City, Canada,1981:581-595.
    [78]Frederking R M W, Timco G W. Uni-axial compressive strength and deformation of Beaufort sea ice[C]. Proceedings of the International Conference on Port and Ocean Engineering under Arctic Conditions, Helsinki, Finland,1983:89-98.
    [79]Shi Q Z, Song A, Huang Y. An experimental study of several special issues regarding the ice force on conical structures[J]. China Ocean Engineering, 2002,16(4):561-568.
    [80]岳前进,毕祥军,常成,等.冰力学实验变形测量与试验机系统刚度影响[J].冰川冻土,1995,17(增刊):140-146.
    [81]Mellor M. Mechanical properties of polycrystalline ice[J]. Physics and Mechanics of Ice,1979:217-245.
    [82]Reich A D, Scavuzzo R J, Chu M L. Survey of mechanical properties of impact ice[C]. 32nd Aerospace Sciences Meeting & Exhibit,1994:1-7.
    [83]Petrovic J J. Review mechanical properties of ice and snow[J]. Journal of Materials Science,2003,38(1):1-6.
    [84]李志军,韩明,秦建敏,等.冰厚变化的现场监测现状和研究进展[J].水科学进展,2005(5):753-757.
    [85]Schwarz J, Frederking R, Gavrillo V, et al. Standardized testing methods for measuring mechanical properties of ice[J]. Cold Regions Science and Technology, 1981,4(3):245-253.
    [86]岳前进,任晓辉,陈巨斌.海冰韧脆转变实验与机理研究[J].应用基础与工程科学学报,2005(1):35-42.
    [87]李志军,贾青,黄文峰,等.水库淡水冰的晶体和气泡及密度特征分析[J].水利学报,2009,40(11):1333-1338.
    [88]Langway C C. Ice fabrics and the universal stage[M]. Dept. of Defense, Dept. of the Army, Corps of Engineers, Snow Ice and Permafrost Research Establishment,1959.
    [89]Iliescu D, Baker I. The structure and mechanical properties of river and lake ice[J]. Cold Regions Science and Technology,2007,48(3):202-217.
    [90]李志军,康建成,蒲毅彬.渤海和北极海冰组构及晶体结构特征分析[J].海洋学报(中文版),2003,25(6):48-53.
    [91]李志军,孟广琳,张涛.辽东湾暖冬海冰特征分析[J].海洋环境科学,1992,11(2):74-78.
    [92]丁德文等著.工程海冰学概论[M].海洋出版社,1999.
    [93]李福成,孟广琳,张明元.应力率对海冰单轴抗压强度的影响[J].海洋学报(中文版),1986(5):619-625.
    [94]Shen W, Lin S Z. The strain-rate sensitivity of strength of Bohai Bay one-year sea ice under uniaxial compression[J]. China Ocean Engineering,1988,2(1):43-50.
    [95]沈梧,李洪升,张小朋,等.渤海冰尺寸效应的实验研究[J].大连工学院学报,1988(2):9-16.
    [96]林树枝,沈梧.冰块尺寸效应的分析和实验研究[J].力学与实践,1988(1):34-37.
    [97]Hobbs P V. Ice physics[M].London:Oxford University Press,1974.
    [98]Mellor M, Testa R. Effect of temperature on the creep of ice[J]. Journal of Glaciology,1969,22(8):131-145.
    [99]Ramseier R C, Dichins D F. New approach to filed and laboratory tests of tensile, compressive and flexural strength of polycyrstalline, fresh water ice[C]. In IAHR, 1972:143-147.
    [100]张明元,邵春才,严德成,等.我国海冰物理力学性质的初步研究[J].海洋环境科学, 1983,2(1):65-71.
    [101]于天来,袁正国,黄美兰.河冰力学性能试验研究[J].辽宁工程技术大学学报(自然科学版),2009,28(6):937-940.
    [102]Butkovich T R. On the mechanical properties of sea ice[J]. SIPRE Report RR54,1959.
    [103]Butiagin I P. Strength of ice and ice cover[M].1966.
    [104]张大长,刘明源,包涛.淡水冰单轴受压力学特性的试验研究[J].工程力学,2011,28(7):238-244.
    [105]Glen J W. The creep of polycrystalline ice[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1955,228(1175):519-538.
    [106]Barnes P, Tabor D, Walker J. The friction and creep of polycrystalline ice[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1971,324(1557):127.
    [107]Anderson D L, Weeks W F. A theoretical analysis of sea ice strength [J]. Trans. Am. Geophys. Union,1958,39(4):632-640.
    [108]Schwerdtfeger P. The thermal properties of sea ice[J]. Journal of Glaciology, 1963,4(36):789-807.
    [109]Frankenstein G, Garner R. Equations for determining the brine volune of sea ice from -0.5℃ to -22.9℃[J]. Journal of Glaciology,1967,6(48):943-944.
    [110]Cox G, Weeks W F. Equations for determining the gas and brine volumes in sea ice samples[J]. Journal of Glaciology,1983,29(102):306-316.
    [111]Lepparanta M, Manninen T. The brine and gas content of sea ice with attention to low salinities and high temperatures[R]. Finnish Institute of Marine Research, Internal Report,1988.
    [112]Timco G W, Frederking R. Compressive strength of sea ice sheets[J]. Cold Regions Science and Technology,1990,17(3):227-240.
    [113]Kovacs A. Estimating the full-scale flexural and compressive strength of first-year sea ice[J]. Journal of Geophysical Research,1997,102 (C4):8681-8689.
    [114]Michel B, Toussaint N. Mechanisms and theory of indentation of ice plates[J]. Journal of Glaciology,1977,19(81):285-300.
    [115]Li Z J, Lu P, Devinder S S. Zones of Bohai for ice engineering projects based on physical and mechanical parameters of ice[C]. Proceedings of 18th International Conference on Port and Ocean Engineering under Arctic Conditions, Potsdam, 2005:873-882.
    [116]Zhijun L, Ziwang W. On the application of ice porosity in the analysis of ice compressive strength[C]. Proceedings of the 13th International Symposium on Ice (IAHR), Beijing, China,1996:80-85.
    [117]孟广琳,李志军,李福成,等.渤海北部平整冰抗压强度设计标淮研究[J].海洋工程,1989,7(3):65-73.
    [118]张效忠,白若阳,江爱民.海冰的本构关系及其抗压强度研究[J].力学与实践,2009,31(6):50-52,45.
    [119]Timco G W, Weeks W F. A review of the engineering properties of sea ice[J]. Cold Regions Science and Technology,2010,60(2):107-129.
    [120]顾慰慈,滕庭熊译.水工建筑物设计手册[M].北京:水利水电出版社,1992.
    [121]SAPI2A Group. Planning, designing and construct ing fixed offshore platform's SAPI2A, Eleventh Edition[R].1980.
    [122]陆钦年,段忠东,欧进萍,等.河冰对桥墩作用的冰荷载计算方法(Ⅱ)—冰压力计算公式[J].自然灾害学报,2002,11(4):112-118.
    [123]孟广琳.渤海平整冰抗压强度设计标准的划区分析[J].海洋环境科学,1994(2):75-80.
    [124]张明元,杨国金.辽东湾北岸海冰物理力学性质[J].中国海上油气.工程,1999,11(4):14-20.
    [125]李志军,王永学.渤海海冰工程设计特征参数[J].海洋工程,2000,18(1):61-64.
    [126]Liu D F. Probabilistic analysis of sea ice in North Bohai Bay[C].OMAE, Houston, 1987:387-391.
    [127]国巧真,顾卫,李宁,等.渤海海冰面积信息提取系统的建立及其应用研究[J].海洋通报,2007,26(3):105-111.
    [128]黄润恒,王强,金振刚.模板匹配法在遥感海冰位移上的应用[J].海洋学报(中文版),1993(1):119-124.
    [129]吴龙涛,吴辉碇,李万彪,等.渤海冰漂移对海面风场、潮流场的响应[J].海洋学报(中文版),2005,27(5):15-21.
    [130]王仁树,刘旭世,张立锟.渤海海冰的数值试验[J].海洋学报(中文版),1984,6(4):572-580.
    [131]吴辉碇.海冰的动力-热力过程的数学处理[J].海洋与湖沼,1991,22(4):321-328.
    [132]苏洁,吴辉碇,刘钦政,等.渤海冰-海洋耦合模式Ⅰ.模式和参数研究[J].海洋学报(中文版),2005,27(1):19-26.
    [133]苏洁,吴辉碇,白珊,等.渤海冰-海洋耦合模式Ⅱ.个例试验[J].海洋学报(中文版),2005,27(2):18-28.
    [134]Flato G M. A particle-in-cell sea-ice model[J]. Atmosphere-Ocean, 1993,31 (3):339-358.
    [135]Huang Z J, Savage S B. Particle-in-cell and finite difference approaches for the study of marginal ice zone problems[J]. Cold regions science and technology, 1998,28(1):1-28.
    [136]Lucy L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomical Journal,1977,82:1013-1024.
    [137]Ji S H, Wang A L, Li H, et al. Mechanical and numerical models for sea ice dynamics on small-meso scale[J]. Chinese Journal Of Polar Science,2008,19(2):237-248.
    [138]季顺迎.渤海海冰数值模拟及其工程应用[D].大连理工大学,2001.
    [139]Timco G W. Indentation and penetration of edge-loaded fresh water ice sheets in the brittle range[C]. Proceedings of the Fifth International Offshor Mechanics and Arctic Engineering Symposium, ASME,1986.
    [140]李志军,吴紫汪,高树刚,等.渤海连续冰层关键力学参数预报模式[J].大连理工大学学报,2003,43(2):238-242.
    [141]李志军,隋吉学,董须瑜,等.辽东湾海冰设计要素的初步统计[J].海洋工程,1992(2):72-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700