用户名: 密码: 验证码:
渭河盆地深部地壳结构探测与盆地构造研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渭河断陷的成因机理、复杂隆升与沉降、秦岭造山的大陆动力学问题、鄂尔多斯周缘的活动断裂系以及华北地台如何与秦岭微地块乃至与扬子板块的拼合及接触关系,其在地壳深部的岩石圈分层,岩石流变和莫霍面的最新构造形态等研究方面还存在许多关键问题没有解决?针对上述问题,本文在渭河盆地开展了深地震反射探测,在盆地及邻区包括秦岭褶皱系和鄂尔多斯地台区域开展了深地震宽角反射/折射和高分辨地震折射联合探测研究。通过深地震探测联合剖面研究,首次查明了渭河断陷盆地及邻近地区主要活动断层在地壳深部的延伸情况;地壳深部的速度结构,地壳精细结构,地壳介质特性和深、浅部的构造关系等,为进一步研究渭河盆地构造特征与大陆动力学以及深部孕震构造背景,判明渭河断陷盆地未来中强地震的发震构造提供依据。
     深地震反射测线布设在渭河盆地的长安区与礼泉县之间,测线方向为北西—南东向。南东端(0m桩号)位于长安区太乙宫镇沙场村附近,北西端位于礼泉县骏马镇付官寨附近,测线全长69km,观测点间距为40m,炮点间距为120m。
     地震宽角反射/折射测线布设在河南西峡县与陕西长武县之间,测线方向也为北西—南东向。地震宽角反射/折射测线的东南段为秦岭—华山山地,中段为渭河盆地,西北段为鄂尔多斯盆地南缘,全长约360km。此外,在地震宽角反射/折射测线的蓝田至淳化区段之间,还布设了为高分辨地震折射测线,高分辨地震折射的测线的长度为120km。
     高分辨地震折射测线布设观测点156个,观测点距平均0.77km,炮点9个(其中和地震宽角反射/折射剖面共用炮点2个),平均炮距12km,构成了较为完整的多重追逐相遇观测系统。地震宽角反射/折射测线在高分辨地震折射剖面之外,布设仪器220台套,平均观测点距1.4km,炮点5个,平均炮距约50km。
     取得的主要学术成果如下:
     1.蓝田—西安—淳化高分辨地震折射探测的结果表明,区内基底与盖层的结构具有典型的分区特性。大致以测线的桩号241km和341km为界,可分为三个不同的区块。其中,桩号241km以南是秦岭褶皱带区,桩号241km—341km之间是渭河断陷盆地,桩号341km以北则是鄂尔多斯地台区,三个分区的边界均为大断裂带或强速度梯度带。秦岭褶皱区和鄂尔多斯地台区的盖层薄,P波速度相对高,基底埋深浅,结构相对简单与完整,秦岭褶皱区的基底出露于地表;而渭河断陷盆地的沉积盖层厚,盖层最深可达6km左右,P波速度非常低,基底埋藏深,断陷盆地的结构甚为复杂。
     2.西峡—西安—长武地震宽角反射/折射探测剖面的P波速度结构、构造图像所反映的区内地壳、上地幔也具有明显的分区特性,分区的情况与高分辨地震折射的结果相一致。秦岭褶皱带的地壳厚度约37~38km,地壳的结构相对简单,结晶基底埋藏浅,以至出露于地表。鄂尔多斯地台的地壳厚度较大,约为42—43km,地壳的结构也相对简单,结晶基底埋藏浅。渭河断陷盆地的地壳厚度约为32~33km,渭河断陷盆地的莫霍界面相对两侧的鄂尔多斯地台和秦岭褶皱带明显产生了上隆现象。
     3.根据渭河断陷盆地的深、浅部速度结构、构造图象推测,渭河断裂、临潼—长安断裂和华山山前断裂可能延伸到了中地壳的底部,深度约为22km左右。在测线桩号310~330km之间,存在莫霍界面被错断的情况。沿着莫霍界面被错断的薄弱面,上地幔的高密度热物质侵入到下地壳中。
     4.结合渭河断陷盆地的石油钻井资料,长安—礼泉深地震反射探测剖面反映了第四系底面TQ、上第三系底面TN2,中第三系底面TN1,下第三系底面TE,结晶基底顶面Tg,C界面,RB界面,Moho界面的反射波组以及倾斜反射事件RA。据深地震反射探测剖面的解译,渭河断陷盆地的上部地壳被一系列穿透深度不等的正断层所切割,形成大地堑镶嵌小地堑或梯状断阶的构造格局;与断陷盆地的中心相对应,还存在一条切穿莫霍界面的深断裂。
     5.渭河断陷盆地存在发生中强地震的深部构造条件,莫霍界面相对鄂尔多斯地块突变隆起和上地幔高速物质侵位于下地壳,是该区中强性地震发生的深部构造背景;渭河断裂、临潼—长安断裂以及深地震反射剖面揭示的F6断裂很可能是未来中强性地震的重要孕震构造,也是控制渭河断陷盆地中心的断裂构造,这几条断裂具有切割深、规模大的突出特点。乾县—富平断裂切割比较浅,应不具备发生强烈地震的条件。
About the formation mechanism, complex uplift and subsidence of Weihe faultdepression, the Qinling orogenic continental dynamics, the peripheral active fault system inOrdos and mosaic and contact relationships of North China platform and Qinling micro-blockeven and the Yangtze plate in the crustdeep, delamination&rheological of lithospheric, and theresearch of Moho fine structural form under Weihe basin, etc, there are still many key issuesremain unresolved. In response to these issues, this paper carried out deep seismic reflection,deep seismic wide-angle reflection/refraction and high resolution seismic refraction jointexploration and studies. Through the study of the combined profile of deep seismicexploration, attempts to identify active faults in the deep crust extension, the deep crust speedstructure, crustal fine structure, crust medium characteristics and deep, the shallow tectonicrelations, etc. of the Weihe Basin and adjacent areas, to provide a basis for the further study ofthe structural characteristics and continental dynamics and deep seismogenic tectonic setting,identify the seismogenic structure of the strong earthquake in the Weihe Basin.
     Deep seismic reflection survey lines laid between Chang'an District and Liquan Countyin the Weihe basin, the direction of the measuring line for the North West-South East. Southeastern end (0m Stake) of survey line is located in near Taiyigong Town, Chang'an District;north western end located in near Junma Town, Liquan County, the survey line length of69km, the observation point spacing of40m and shot spacing120m.
     Wide-angle seismic reflection/refraction survey line was laid between Xixia County,Henan and Changwu County, Shaanxi, the North West-South East direction of the measuringline. The southeast section of Wide-angle seismic reflection/refraction seismic line is theQinling-Huashan Mountain; the middle section of its is the Weihe basin; the northwest sectionof its is the southern margin of the Ordos Basin and the total length is about360km. Inaddition, between Lantian to Chunhua, the seismic line of the wide-angle seismicreflection/refraction laid for the high-resolution seismic refraction survey lines, its length is120km.
     High-resolution seismic refraction survey lines laid observation point156, average distance0.77km of the observation points,9shots (which seismic wide anglereflection/refraction profile sharing2shots), average distance12km of shots, to constitute amore complete multi-chase encounter Observing System. Wide-angle seismicreflection/refraction survey lines outside the high-resolution seismic refraction profile, laid220sets of instrument, with an average observation distance1.4km,5shots, average shotdistance about50km.
     Achieved academic achievements are as follows:
     1. Results of Lantian-Xi'an-Chunhua high-resolution seismic refraction survey showthat the structure of the local basement and cover possess the typical characteristics of thepartition. Profile on survey line stake number241km and341km can be divided into threedifferent blocks. Among them, the Qinling fold belt is in the south of the Stake number241km; Weihe Basin is between Stake number241km and341km; Ordos is in the north ofStake number341km. The boundaries of the three partitions are large fault zone or strongvelocity gradient zone. In Qinling fold zone and the Ordos platform, with the thin areacaprock, relatively high P-wave velocity, shallow basement, the structure is relatively simpleand complete. While in Weihe fault depression basin, with the thick sedimentary cover, mostup to6km or so, very low P wave velocity and deep buried basement, the rift basin is acomplex structure.
     2. P wave velocity structure of Xixia-Xi'an-Changwu Wide-angle seismicreflection/refraction sounding profiles, tectonic image reflected partition properties of thecrust and upper mantle in the region where the partition was consistent with the results of highresolution seismic refraction. The crustal thickness of Qinling fold belt is about37~38kmand the structure of the crust is relatively simple, crystalline basement buried shallow, evenexposed on the surface. The crustal thickness under Ordos platform is about42-43km and thestructure of the crust is relatively simple, crystalline basement buried shallow. Weihe Basincrustal thickness is about32~33km and the Moho under Weihe Basin on both sides of theOrdos platform and Qinling fold belt possess uplift phenomenon.
     3. It is speculated that Weihe fault, Lintong-Chang'an fault and Huashan piedmont faultmay extend to the bottom of the crust, the depth of about22km or so according to the deep,shallow velocity structure and the tectonic image of Weihe Basin. Stake310~330km of survey lines, there may be Moho dislocation. Along the Moho dislocation weak-surface,high-density upper mantle hot material penetrated into the lower crust.
     4. Combination of the Weihe fault basin oil drilling data, Changan-liquan deep seismicreflection sounding profiles reflect the bottom of Quaternary (TQ), the bottom of UpperTertiary (TN2), the bottom of Middle Tertiary (TN1), the bottom of Lower Tertiary (TE), thetop of crystalline basement (Tg), C interface, RB interface, Moho reflected wave group andthe tilt reflection events RA. According to the interpretation of deep seismic reflectionsounding profiles, the upper crust of Weihe fault depression basin is cut by a series of normalfaults of different penetration depth, forming the tectonic framework of the earth cuttingmosaic small graben or ladder-off bands; rift basin corresponds to the center, there is a cut towear a deep fault of the Moho.
     5. There are structural conditions of the strong earthquakes occurrence in the deep ofWeihe Basin where Moho of the relative Ordos block mutations uplift and upper mantlehigh-speed material emplaced in the lower crust are deep tectonic background of strongearthquakes occurred in the area. What Weihe fault, Lintong-Changan fault and F6faultrevealed by the deep seismic reflection profiles have cutting deep, large-scale features arelikely important seismogenic tectonic of strong earthquakes in the future, but also controlcenter fault structure of Weihe fault depression basin. Qianxian-Fuping fault, cuttingrelatively shallow, generally do not have the conditions of strong earthquakes occurred.
引文
[1]董树文,李廷栋,高锐等.地球深部探测国际发展与我国现状综述[J].地质学报,2010,84(6):743~770
    [2]滕吉文.中国大陆地壳与上地幔精细结构探测十条第一剖面和其作用与科学意义[J].地球物理学进展,2008,23(5):1341~1354
    [3] Mats V D. The structure and development of the Baikal rift depression.[J]. Earth Science Review,1993,34:81-118.
    [4]杨巍然,孙继源, МацВД,等.大陆裂谷对比[M].武汉:中国地质大学出版社,1995.
    [5]国家地震局“鄂尔多斯周缘活动断裂系”课题组.1988.鄂尔多斯周缘活动断裂系[M].北京:地震出版社.
    [6]韩恒悦,张毅,袁志祥,等.渭河断陷盆地带的形成演化及断块运动[J].地震研究,2002,25(4):363-368.
    [7]张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学[M].北京:科学出版社,2001,(in Chinese).
    [8]严阵.1965.渭河谷地第四纪旋转大断裂[J].中国第四纪研究,4(2):117-118.
    [9]李永善.1992.西安地裂及渭河盆地活断层研究[M].北京:地震出版社.152-168.
    [10]张少泉等.中国西部地区门源-平凉-渭南地震测深剖面资料的分析解释,地球物理学报,1985,28(5):460-472.
    [11]丁韫玉等.渭河断陷地壳三维S波速度结构和VP/VS分布图像,地球物理学报,2000,43(2):194-202.
    [12]彭建兵.1992.渭河断裂带的构造演化与地震活动[J].地震地质,14(2):113-120.
    [13]冯希杰.2000.渭河断裂古水断层剖面[J].地震地质,22(2):209-230.
    [14]王海燕,高锐,卢占武等.深地震反射剖面揭露大陆岩石圈精细结构[J].地质学报,2010,84(6):818~839
    [15]丁韫玉等.1987.随县—西安剖面地壳结构的初步研究[J].地球物理学报,30(1):31-38.
    [16]任纪舜,姜春发,张正坤,秦德余.1980.中国大地构造及其演化.北京:科学出版社.
    [17]陕西省地质矿产局.1989.陕西省区域地质志.北京:地质出版社.
    [18]中国科学院古脊椎动物与古人类研究所.1966.陕西蓝田新生界现场会议文集.北京:科学出版社.
    [19]中国科学院地理研究所.1983.渭河中下游地貌[M].北京:科学出版社.
    [20]邓起东,王克鲁,汪一鹏.唐汉军,吴裕文,丁梦麟.1973.山西隆起区断陷地震带地震地质条件及发展趋势概述[J].地质科学.1期.
    [21]邓起东,尤惠川,1985.鄂尔多斯周缘断陷盆地带的构造活动特征及形成机制[M].现代地壳运动研究(1).北京:地震出版社.
    [22]阎廉泉.1963.东秦岭及邻侧地区地质构造的基本特征[J].地质学报,43卷,2期.
    [23]张国伟,孟庆任,于在平,孙勇,周鼎武,郭安林.1996.秦岭造山带的造山过程及其动力学特征[J].中国科学,D辑.
    [24]刘东生等.1985.黄土与环境[M].北京:科学出版社.
    [25]阎廉泉.1963.东秦岭及邻侧地区地质构造的基本特征[J].地质学报,43卷,2期.
    [26]张伯声.1964.在断块构造的基础上说明秦岭两侧河流的发育[J].地质学报,4期.
    [27]陕西省地震局.2005.陕西省地震目录[M].北京:地震出版社.
    [28]陕西省地震局.1996.秦岭北缘活动断裂带[M].北京:地震出版社.
    [29]孙建中.2005.黄土学[M].香港:香港考古学会出版.
    [30]杨巍然,孙继源,纪克诚,等著.大陆裂谷对比—汾渭裂谷系与贝加尔裂谷系例析[M].北京:中国地质大学出版社,1995
    [31]易明初.新构造运动及渭延裂谷构造[M].北京:地震出版社,1993
    [32]宋立胜,等编著.陕西省志·地震志[M].北京:地震出版社,1989
    [33]西安市地震局.西安市地震志[M].北京:地震出版社,1991
    [34]杨建军.关中地区地震活动规律及其与构造活动的关系研究[D].西安:西北大学,2006
    [35]方永安.陕西地震活动规律与活动断裂的关系[J].陕西地质,1997,15(1):78-80
    [36]王景明,常丕兴.汾渭地裂缝与现代地震活动[J].地震学报,1989,11(1):56-67
    [37]朱良峰,殷坤龙.地质灾害风险分析与GIS技术应用研究[J].地理学与国土研究,2002,18(4):10-13
    [38]韩恒悦,米丰收,刘海云.渭河盆地带地貌结构与新构造运动[J].地震研究,2001,24(3):251-257
    [39]彭建兵,李新生,孙渊,等.汾渭盆地典型地区地裂缝地面沉降监测与防治工作项目专题研究报告-专题3:西安地裂缝形成背景、分布规律与成因机理[R].西安:长安大学,2009
    [40]国家地震局《中国岩石圈动力学地图集》编委会.中国岩石圈动力学地图集,北京:中国地图出版社,53,1989.
    [41]张少泉等,陕西省关中盆地地质构造与地震活动关系研究报告[R].1980,陕西省地震综合队.
    [42]国家地震局科技监测司.中国西部门源—平凉—渭南地震测深剖面的分析解释,见:中国大陆深部构造的研究与进展[M],北京:地质出版社,61—88,1988.
    [43]傅承义,陈运泰,祁贵仲,地球物理学基础[M],北京:科学出版社,1985.
    [44]陆涵行等,唐山震区深地震反射剖面分析[J],地球物理学报,31,1,27—36,1988.
    [45]杨宝俊等,满洲里—绥芬河地学断面域内莫霍面的基本特征(详细摘要).长春科技大学学报,28,1,111—113,1994.
    [46]王椿镛等,用深地震反射方法研究邢台地震区地壳细结构[J],地球物理学报,36,410—415,1993.
    [47]王春镛,林中洋,陈学波.1995.青海门源至福建宁德地学断面综合地球物理研究[J].地球物理学报,38(5):590-598.
    [48]张先康等,延庆—怀来地区地壳细结构——利用深地震反射剖面[J],地球物理学报,39,3,356—364,1996.
    [49]邓起东,陈立春,冉勇康.2004.活动构造定量研究与应用[J].地学前缘,11(4):383~392.
    [50]邓起东,于贵华,叶文华,等.1992.地震地表破裂参数与震级关系的研究[J].活动断裂研究(2).北京:地震出版社,247-264.
    [51]邓起东,张培震,冉勇康,等.2002.中国活动构造基本特征[J].中国科学(D辑),32(12):1020-131.
    [52]瞿伟,张勤,王庆良,等.基于GPS速度场采用RELSM模型分析关中地区现今地壳形变特征[J].测绘科学,2010,35(5):28-30
    [53]瞿伟,张勤,王庆良,等.渭河盆地现今地壳水平运动及应变特征[J].大地测量与地球动力学,2009,8(4):34-37
    [54]瞿伟,张勤,王庆良,等.基于GPS分析渭河盆地地壳水平运动及应变特征[A].中国地球物理2009[C].合肥:中国科学技术大学出版社,2009
    [55]严学文,刘继红,董军.基于GPS的关中地区现今地壳水平运动特征分析[J].测绘科学,2008,33(4):135-137
    [56]戴王强,王庆良,冯希杰,等.用GPS资料分析渭河盆地及邻近地区地壳运动特征[J].地震,2003,23(4):32-36
    [57]陈靖,李天文,冯丽丽,等.基于GPS的关中地区地壳水平运动研究[J].测绘科学,2009,34(3):49-51
    [58]戴王强,王军儒,赵小茂,等.陕西中部地区跨断层垂直形变与水平应变相关性分析[J].地震,2007,27(1):63-69
    [59]赵小茂,李永辉,戴王强.2001~2004年陕西关中地区地壳运动及应变分析[J].地震地磁观测与研究,2005,26(3):41-45
    [60]戴王强,任隽,赵小茂,等. GPS初步揭示的渭河盆地及边邻地区地壳水平运动特征[J].地震学报,2004,26(3):256-260
    [61]高好林,祝意青,韩美涛,等.渭河盆地地形变特征研究[J].大地测量与地球动力学,2009,29(3):60-66
    [62]瞿伟,张勤,张东菊,等.基于GPS速度场采用RELSM模型分析青藏块体东北缘的形变—应变特征[J].地球物理学进展,2009,24(1):67-74
    [63]王兴.渭河盆地地热资源赋存与开发[M].西安:陕西科学技术出版社,2005
    [64]高文学,马瑾,1993,北京地震地质环境与地震灾害[M],地震出版社.
    [65]高文学,马瑾.1993.西安地震地质环境与地震灾害[M].北京:地震出版社.
    [66]国家地震局,1990.中国地震烈度区划图(1990)概论[M],北京:地震出版社.
    [67]国家地震局科技监测司,1998,中国大陆深部构造的研究与进展[M],北京:地震出版社,1-362.
    [68]韩露,尉晓玮,张贵宾,2004.有限元等数值模拟方法在我国岩石圈构造研究中的应用与发展[J].地球物理学进展,19(4):953-960.
    [69]胡聿贤,1999,地震安全性评价技术教程[M],北京:地震出版社.
    [70]李钦祖等,1980,华北地壳应力场的基本特征[J],地球物理学报,23(4).
    [71]刘洁,2000,北京未来(10-50年)强震地点和震级上限的预测[R],北京市地震局.
    [72]刘金朝,陆诗阔,许鹤华等,2002.三维弹性LDDA方法及其在地学中的初步应用[J].地震学报,24(3):325-332.
    [73]陆诗阔,蔡永恩,2004.青藏高原动力学数值模拟方法与研究进展[J].地震学报,26(5):547-559.
    [74]卢演俦,高维明,陈国星等.2001.新构造与环境[M],北京:地震出版社,1-453.
    [75]罗焕炎,徐煜坚,宋惠珍,等.青藏高原近代隆起原因及其与地震关系的有限元分析[J].地震地质,1982,4(1):31~37.
    [76]马瑾.1987.构造物理学概论[M].北京:地震出版社.
    [77]马杏垣.1987.中国岩石圈动力学纲要,1:400万中国及邻近海域岩石圈动力学图说明书[M].北京:地质出版社,76.
    [78]马文涛等,2006,北京市“十五”重点攻关项目(H03063090191):北京市及附近地区未来3至10年中长期中强震发震地段和震级上限模型预测子题工作报告[R],北京市地震局.
    [79]马宗晋.1993.山西临汾地震研究与系统减灾[M],北京:地震出版社,1-602.
    [80]煤炭科学研究总院西安分院,2007,西安市活断层探测与地震危险性评价-浅层人工地震详细探测工程[R],陕西省地震局.
    [81]陕西省工程地震勘察研究院,2007,西安市活断层探测与地震危险性评价-目标区活动断层分布图(1/50000)编图报告[R],陕西省地震局.
    [82]陕西省工程地震勘察研究院,2007,西安市活断层探测与地震危险性评价-测区内小震重新定位
    [R],陕西省地震局.
    [83]陕西省工程地震勘察研究院,2007,西安市活断层探测与地震危险性评价-地震地质调查专题报告[R],陕西省地震局.
    [84]陕西省工程地震勘察研究院,2007,西安市活断层探测与地震危险性评价-利用多源遥感数据对西安市城市活断层进行初步定位[R],陕西省地震局.
    [85]陕西省工程地震勘察研究院,2007,西安市活断层探测与地震危险性评价-关中盆地地层[R],陕西省地震局.
    [86]陕西省工程地震勘察研究院,2007,西安市活断层探测与地震危险性评价-活断层鉴定与古地震研究专题报告[R],陕西省地震局.
    [87]陕西省工程地震勘察研究院,2007,西安市活断层探测与地震危险性评价-钻孔地质剖面[R],陕西省地震局.
    [88]陕西省工程地震勘察研究院,2007,西安市活断层探测与地震危险性评价-显微构造分析[R],陕西省地震局.
    [89]中国地震局地质研究所,2007,西安市活断层探测与地震危险性评价-标准钻孔探测与晚第四纪地层剖面的建立[R],陕西省地震局.
    [90]中国地震局地震灾害防御中心,2007,西安市活断层探测与地震危险性评价-临潼-长安断裂地质地貌填图[R],陕西省地震局.
    [91]宋惠珍,黄立人,华祥文,1990,地应力场综合研究[M],石油工业出版社.
    [92]宋惠珍,兰即刚,徐鹏飞等,1995,1303年洪洞8级地震震源过程研究[J],地震地质,17:13-24.
    [93]宋惠珍,刘洁,蓝印刚,1993,位错模型的有限单元公式[J],西北地震学报,15(2),6~12.
    [94]孙君秀,刘五洲,车用太,2000,地下水对震源应力、应变场的影响[J],地震地质,22卷,179-186.
    [95]孙荀英,刘激扬,王仁,1994,1976年唐山地震震时和震后变形的模拟[J],地球物理学报,37卷,46-55页.
    [96]孙枢、钟大赉、李荫櫆主编,1988,断块构造理论及其应用[M],西安:科学出版社,1-220.
    [97]王培德,田玉红,李春来,等.1997.怀来盆地的地震活动与活动断裂[J].地震学报,19(5):551~554.
    [98]王仁,何国其,殷有泉,1980.邻区地震迁移规律的数学模拟[J].地震学报,2(1):32-42.
    [99]李永善等.1992.西安地裂及渭河盆地活断层研究[M].北京:地震出版社.
    [100]汪素云,陈培善,1980.中国及其邻区现代构造应力场的数值模拟[J].地球物理学报,23(1):35-45.
    [101]朱金芳等,福州市活断层探测与地震危险性评价[M],北京:科学出版社.
    [102]吴子荣,袁宝印,孙建中,等.1979.延怀盆地新构造与地震[J].地震地质,1(2):46~56.
    [103]徐锡伟,程国良,马杏垣等.1994.华北及其邻区块体转动模式和动力来源[J].地球科学—中国地质大学学报,19(2):129~138.
    [104]徐锡伟,吴卫民,张先康等.2002.首都圈地区地壳最新变动与地震[M].北京:科学出版社,1~376.
    [105]徐煜坚,罗焕炎,虢顺民等.1985.华北北部地区地质模型与强震迁移[M].北京:地震出版社.
    [106]薛广盈,丁韫玉,袁志祥,1997,渭河断陷盆地地壳速度的层析成像研究[J],地震学报,19(3):283-290.
    [107]杨理华,李钦祖.1980.邻区地壳应力场[M],北京:地震出版社,1-132.
    [108]杨卓欣,赵金仁,张先康,等.2000.华北莫霍面构造形态—深地震测深资料的三维反演[J],地震地质,22(1):74~80.
    [109]尹祥础,1985,固体力学[M],北京:地震出版社.
    [110]张诚,曹新玲,曲克信,等.1990.中国地震震源机制[M].北京:学术书刊出版社.
    [111]张东宁,许忠怀,1999.中国大陆岩石层动力学数值模型的边界条件[J].地震学报,21(2):133-139.
    [112]张家茹,邵学钟,等.1993.深部构造背景和强震的深部孕震环境.见:高文学,马瑾主编,西安地震地质环境与地震灾害[M].北京:地震出版社.65~75.
    [113]张培震,邓起东,张国民,等,2003,中国大陆的强震活动与活动地块[J],中国科学(D辑),33(增刊):12~20.
    [114]张文佑等.1980.华北断块区的形成与发展[M].北京:科学出版社.
    [115]张友南,孙君秀.1998.华北地壳岩石速度类型及其地质意义[J].地震地质,20(1):74~80.
    [116]中国地震局,2005,中国地震活动断层探测技术系统技术规程[M],北京:地震出版社.
    [117]中国地震局防御司预报管理处,2006,中国强地震目录(公元前23世纪—公元2006年)[R].中国地震局..
    [118] Hole J. A. Nonlinear High_Resolution Three_Dimensional Seismic Travel Time Tomography.[J] JGeophys Res,135,2002
    [119] Zelt C. A. and Smith R. B. Seismic traveltime inversion for2-D crustal velocity structure[J]. GeophysJ Int,108:16-34.1992
    [120] Comte I, Gjoystal H, Dahle A, et al. Improving modeling and inversion in refraction Seismic with afirst-order Eikonal solver[J]. Geophysical Prospecting,48,2000.
    [121] Podvin P, Lecomte I. Finite difference computation of travel times in vary contrasted velocity models:a massively parallel approach and its associated tools[J]. Geophys, Jour Int.105:1991.
    [122] Michel B,Hirn A. Velocity-depth estimation from wide angle seismic reflection arrivals[J]. Annalesde Geophysique,1980,36(1).
    [123] Sandmeier and Wenzel,Synthetic seismograms for a complex crustal model. Geophys[J]. Res. Lett.,13,22—25,1986.
    [124] Improta. L, Zollo. A, Herrero. A et al. Seismic imaging of Complex structures by non-lineartraveltime inversion of dense wide-angle data application to a thrust belt[J]. Geophys J. Int.151,2002.
    [125] William J. Lutter, Gray S Fuis, Clifford H. Thurber et al. Tomographic images of the upper crustfrom the Los Angeles basin to the Mojave Desert, California: Results from the los Angeles Region SeismicExperiment[J]. J Geophys Res,104(B11):1999.
    [126] Allmendinger R W, Hauge TA,C. Hauser,et al.1987. Tectonic heredity and the layered lower crust inthe Basin and Range Province, western United States. Continental Extensional Tectonics[J], GeologicalSociety Special Publication28:223~246.
    [127] Carter N L,TsennM C.1987. Flow properties of continental lithosphere[J], Tectonophys.136:27~63.
    [128] Chen P, chen H.1989. Scaling law and its applications to earthquake statical relations[J].Teconphysics,166:53~72.
    [129] Christensen N I, Mooney W D.1995. Seismic velocity structure and composition of the continentalcrust: a global view[J], Jour Geophys Res,100(B7):9761~9788.
    [130] Crone A J, Haller K M,1991, Segmentation and seismic behaviour of basin and range normal faults:Examples from east central Idaho and southwestern Montana[J], USA, J Struct Geol,13(2):151-164.
    [131] England, P., McKenzie, D.,1982. A thin viscous sheet model for continental deformation[J]. Geophys.J. R. astr. Soc.70,295-321.
    [132] Hanks T C, Kanamori H.1979. A moment magnitude scale[J]. Jour Geophys Res,84:2348~2350.
    [133] Liu, Mian and Yang, Youqing,2003. Extensional collapse of the Tibetan Plateau: Results ofthree-dimension finite element modeling[J]. J. Geophys. Res.,108(B8):2361, ETG2-1~15,doi:10.1029/2002JB002248.
    [134] Melosh H J, Raefsky A,1981, A simple and efficient method for introducing faults into finite elementcomputations[J], Bull. Seismo. Soc. Am., Vol.71, P1391-1400.
    [135] Melosh H J, Raefsky A.1981. A simple and efficient method for introducing faults into finite elementcomputations[J], Bull. Seismol. Soc. Am.,71,1391~1400.
    [136] Molnar P.&Tapponnier P.,1978, Cenozoic tectonics of Asia: effects of a continental collision[J].Science,189:419-426.
    [137] Scholz H C.1990. The mechanics of earthquakes and faulting[M], Cambridge: Cambridge UniversityPress,73~96.
    [138] Schwartz D P, K J Coppersmith.1984. Fault behaviour and characteristic earthquakes: examples fromthe Wasatch and San Andreas fault zones[J], J. Geophys Res.,90,5681~5698.
    [139] Sibson R H.1977. Fault rocks and fault mechanisms[M]. J. geol. Soc. London133:191~214.
    [140] Wells D L, Coppersmith K J.1994. New empirical relationships among magnitude, rupture length,rupture width, rupture area, and surface displacement[J]. B.S.S.A,84:974~1002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700