用户名: 密码: 验证码:
东海典型赤潮藻种群动态的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,长江口及邻近海域富营养化问题日趋严重,赤潮的发生频率逐年增加,规模逐年增大。为了解长江口及邻近海域春季赤潮分布及优势种演替控制机理,本文针对两种东海典型赤潮藻分别建立生长机制模型,利用室内培养实验结果优化高灵敏度参数并完成了对模拟结果的验证。在此基础上,将该模型耦合到水动力模型中,对东海赤潮藻类种群动态进行了模拟,并探讨了光照、温度、盐度及营养盐在东海赤潮高发区春季赤潮生消过程中的作用。研究成果对于揭示东海赤潮发生过程中的控制因素具有重要意义。通过研究取得如下进展:
     一、以Eco3M为基础,建立了两个针对东海典型赤潮藻—中肋骨条藻与东海原甲藻的生长模型。采用室内实验数据,对模型参数进行校正。模型能够重现两种藻在不同光照、营养盐限制条件下的生长以及对营养盐的利用情况。
     二、结合两个单藻种模型,对共培养条件下东海原甲藻与中肋骨条藻的生长进行了模拟。结果表明,模型能够重现两种藻在共培养条件下的竞争结果及其对营养盐的竞争吸收情况,但不足以描述营养盐竞争外的藻间相互作用。
     三、将所建立的两个生长机制模型与物理模型相耦合,较好地重现了2005年温度、盐度以及表层流场,并成功重现了航次重点调查区域内的营养盐变化。通过与遥感图像的对比证明,模拟结果较好地重现了赤潮优势种由硅藻向甲藻的演替趋势以及Chl-a高值区的水平分布。
     四、分析了相关变量对赤潮藻生长率的影响及其时空变异。结果表明:对于中肋骨条藻,在长江冲淡水影响区域温度、盐度对生长率的影响最强,这种影响主要是由盐度决定的;光照决定了中肋骨条藻生长的内侧边界,而营养盐决定了其生长的外侧边界,其中P限制起主要作用;死亡率对净生长率的影响较小。对于东海原甲藻,N、P共同决定了其生长的外侧边界,其它各因素对生长的影响与中肋骨条藻相似。结果表明,P营养的分布在演替过程中起关键作用。
     五、数值模拟重现了东海原甲藻从次表层孕育上升到表层爆发赤潮的过程,并通过模拟结果分析了相关变量对生长率垂直分布的影响,结果表明:光照对表层东海原甲藻的生长率影响不大,深层生长率主要受光的限制;表层有一受P限制的低生长率区域,这一区域下方仍然保持着较高的生长率,这可能是东海原甲藻次表层孕育这一现象发生的原因。
In recent years, eutrophication has become an overwhelming phenomenon inthe Changjiang estuary and its adjacent area, and harmful algal blooms (HABs) areoccurring more frequently. To understand the mechanism of HABs in theChangjiang estuary and its adjacent area, two box models were built, using thephysiological features of P. donghaiense and S. costatum. The parameters werecalibrated carefully using experimental counterparts and several numericalsimulations were performed to compare the results with laboratory outcomes. Then,the two models were elaborated in ecosystem model focusing on the Changjiangestuary and its adjacent area to research the effects of irradiance, temperature,salinity, and nutrients on the process of blooms in spring. Many results wereobtained which can definitely provide valuable scientific evidence and theoreticalfoundation for revealing the occurrence mechanism of HABs in this area. The resultsare shown as followed:
     1. Base on the phytoplanktonic part of Eco3M, two box models for typical HABspecies (P. donghaiense and S. costatum) were built. After the calibration ofseveral sensitive parameters, models could reproduce the general characteristicsof algal growth and the use of nutrients under different irradiances andnutritional conditions.
     2. By coupling two mono-species models, we investigated the utility of mechanismmodels in the research of bi-algal cultures. The simulated results were consistentwith the laboratory findings, indicating that the models could reproduce theresults of nutrient competition between the two algae.The models were limited insimulating interactions besides nutrient competitiondel.
     3. By coupling the two box models with physical model, the model was in general capable of reproducing observed temperature, salinity, and current. The observedfield of nutrients in the key area was well reproduced. These comparisonsbetween simulated Chl-a and remote-sensing images suggested the model was ingeneral capable of reproducing the horizontal distribution of high concentrationChl-a area and the succession from diatom to dinoflagellate.
     4. By analyzing the effects of variables on the horizontal variation of growth rate,we find that: For S. costatum, the most influential area of temperature andsalinity is located at Changjiang Diluted Water, and is mainly governed bysalinity. The nearshore and offshore boundary of growth is governed byirradiance and nutrients, respectively. The influential area of nutrients is mainlygoverned by P-limited. The influence of mortality on net growth rate is weak.The influences of variables on dinoflagellate growth are similar with that on S.costatum. The distribution of P was the critical factor during the process ofsuccession.
     5. We proved the model’s ability to reproduce the process of P. donghaiense bloom,including the incubation at the subsurface layer and the bloom later at thesurface layer. By analyzing the effects of variables on the vertical distribution ofgrowth rate, we found that: For P. donghaiense, the influential area of irradianceis located at deeper water layer. There is an area with low growth rate, which isP-limited, located at the surface layer. However, the growth rate is relativehigher below this area. The simulated results proved this may lead to theincubation at the subsurface layer.
引文
Anning T, MacIntyre H L, Pratt S M, et al. Photoacclimation in the marine diatomSkeletonema costatum [J]. Limnology and Oceanography,2000,45:1807-1817.
    Baklouti M, Diaz F, Pinazo C, Faure V, Queguiner B. Investigation of mechanisticformulations depicting phytoplankton dynamics for models of marine pelagicecosystems and description of a new model [J]. Progress in Oceanography,2006a,71:1-33.
    Baklouti M, Faure V, Pawlowski L, Sciandra A. Investigation and sensitivity analysisof a mechanistic phytoplankton model implemented in a new modular numericaltool (Eco3M) dedicated to biogeochemical modelling [J]. Progress inOceanography,2006b,71:34-58.
    Balakrishnan S, Roy A, Ierapetritou MG, et al. A comparative assessment of efficientuncertainty analysis techniques for environmental fate and transport models:application to the FACT model [J]. Journal of Hydrology,2005,307:204-218.
    Benitez-Nelson C R. The biogeochemical cycling of phosphorus in marine systems[J]. Earth-Science Reviews,2000,591:109-135.
    Chapelle A, Labry C, Sourisseau M, et al. Alexandrium minutum growth controlled byphosphorus: An applied model [J]. Journal of Marine Systems,2010,83(3-4):181-191.
    Chen Yang, Yan Tian, Zhou Mingjiang. Effects of Prorocentrum donghaiense andAlexandrium catenella on the material transfer in a simulated marine food chain[J]. Acta Ecologica Sinica,2007,27(10):3964-3972.
    Chen Y L L, Chen H Y, Gong G C, et al. Phytoplankton production during a summercoastal upwelling in the East China Sea [J]. Continental Shelf Research,2004,24:1321-1338.
    Cloern J E, Cheng R T. Simulation model of Skeletonema costatum populationdynamics in northern San Francisco Bay, California [J]. Estuarine, Coastal andShelf Science,1981,12:83-100.
    Conway H L, Harrison P J, Davis C O. Marine diatoms grown in chemostats undersilicate or ammonium limitation.2. Transient response of Skeletonema costatumto a single addition of the limiting nutrient [J]. Marine Biology,1976,35:187-199.
    Conway H L, Harrison P J. Marine diatoms grown in chemostats under silicate orammonium limitation.4. Transient response of Chaetoceros debilis Skeletonemacostatum and Thalassiosira gravida to a single addition of the limiting nutrient [J].Marine Biology,1977,43:33-43.
    Di Lorenzo E. Seasonal dynamics of the surface circulation in the southernCalifornia Current System [J]. Deep-Sea Research, Part II,2003,50,2371-2388.
    Dinniman M S, Klinck J M, Smith Jr W O. Cross shelf exchange in a model of theRoss Sea circulation and biogeochemistry [J]. Deep-Sea Research, Part II,2003,50,3103-3120.
    Doherty J. PEST: Model Independent Parameter Estimation User Manual,5thed [M].Watermark Numerical Computing, Brisbane, Australia,2004.
    Droop M R. Vitamin B-12and marine ecology.4. the kinetics of uptake, growth andinhibition in monochrysis lutheri [J]. Journal of Marine Biology Association ofthe United Kingdom,1968,48:689-733.
    Druon J N, Le Fevre J. Sensitivity of a pelagic ecosystem model to variations ofprocess parameters within a realistic range [J]. Journal of Marine Systems,1999,19:1-26.
    Egge J K. Are diatoms poor competitors at low phosphate concentrations [J]?Journal of Marine Systems,1998,16,191-198.
    Eppley R W, Reid F M H, Strickland J D H. Estimates of phytoplankton crop size,growth rate, and primary production [J]. Bulletin, Scripps Institution ofOceanography,1970,17:33-42.
    Fang T H. Phosphorus speciation and budget of the East China Sea [J]. ContinentalShelf Research,2004,24:1285-1299.
    Fauchot J, Saucier F F, Levasseur M, et al. Wind-driven river plume dynamics andtoxic Alexandrium tamarense blooms in the St. Lawrence estuary (Canada): Amodeling study [J]. Harmful Algae,2008,7:214-227.
    Flynn K J, Marshall H, Geider R J. A comparison of two n-irradiance interactionmodels of phytoplankton growth [J]. Limnology and Oceanography,2001,46(7):1794-1802.
    Flynn K J. Modelling multi-nutrient interactions in phytoplankton; balancingsimplicity and realism [J]. Progress in Oceanography,2003,56:249-279.
    Flynn K J. Use, abuse, misconceptions and insights from quota models: the Droopcell-quota model40years on [J]. Oceanography and Marine Biology: An AnnualReview,2008,46:1-23.
    Fogg G E. The ecological significance of extracellular products of phytoplanktonphotosynthesis [J]. Botanica Marina,1983,26:3-14.
    Freeman N G, Hale A M, Danard M B. A modified sigma equations' approach to thenumerical modeling of great lake hydrodynamics [J]. Journal of GeophysicalResearch,1972,77:1050-1060.
    Geider R J, MacIntyre H L, Kana T M. A dynamic regulatory model ofphytoplanktonic acclimation to light, nutrients, and temperature [J]. Limnologyand Oceanography,1998,43(4):679-694.
    Griffin S L, Herzfeld M, Hamilton D P. Modelling the impact of zooplankton grazingon phytoplankton biomass during a dinoflagellate bloom in the Swan RiverEstuary, Western Australia [J]. Ecological Engineering,2001,16:373-394.
    Guan W, Gao K. Light histories influence the impacts of solar ultraviolet radiation onphotosynthesis and growth in a marine diatom, Skeletonema costatum [J].Journal of Photochemistry and Photobiology B: Biology,2008,91:151-156.
    Guillard R R L. Division rates [C]. In: Stein J R ed. Handbook of PhycologicalMethods. Culture Methods and Growth Measurements. Cambridge UniversityPress, Cambridge,1973, p.289-311.
    Han B P. A mechanistic model of algal photoinhibition induced by photodamage tophotosystem-II [J]. Journal of Theoretical Biology,2002,214:519-527.
    Han M S, Furuya K, Nemoto T. Species-specific productivity of Skeletonemacostatum (bacillariophyceae) in the inner part of Tokyo Bay [J]. Marine EcologyProgress Series,1992,79:267-273.
    Harrison P J, Conway H L, Dugdale R C. Marine diatoms grown in chemostats undersilicate or ammonium limitation.1. Cellular chemical composition andsteady-state growth kinetics of Skeletonema costatum [J]. Marine Biology,1976,35:177-186.
    Harrison P J, Hu M H, Yang Y P, et al. Phosphate limitation in estuarine and coastalwaters of China [J]. Journal of Experimental Marine Biology and Ecology,1990,140:79-87.
    He R Y and Dennis J. McGillicuddy Jr. Historic2005toxic bloom of Alexandriumfundyense in the west Gulf of Maine:1. In situ observations of coastalhydrography and circulation [J]. Journal of Geophysical Research,2008a,doi:10.1029/2007JC004601.
    He R Y and Dennis J. McGillicuddy Jr. Historic2005toxic bloom of Alexandriumfundyense in the west Gulf of Maine:2. Coupled biophysical numericalmodeling [J]. Journal of Geophysical Research,2008b,doi:10.1029/2007JC004602.
    Huang B Q, Ou L J, Hong H S, et al. Bioavailability of dissolved organicphosphorus compounds to typical harmful dinoflagellate Prorocentrumdonghaiense Lu [J]. Marine Pollution Bulletin,2005,51:838-844.
    Huang B Q, Ou L J, Hong H S, et al. Bioavailability of dissolved organic phosphoruscompounds to typical harmful dinoflagellate Prorocentrum donghaiense Lu [J].Marine Pollution Bulletin,2005,51:838-844.
    Huang B Q, Ou L J, Wang X, Huo W, Li R, Hong H, Zhu M. Alkaline phosphataseactivity of phytoplankton in East China Sea coastal waters with frequent harmfulalgal bloom occurrences [J]. Aquatic Microbial Ecology,2007,49:195-206.
    Jeong H J, Yoo Y D, Park J Y, Song J Y, Kim S T, Lee S H, Kim K Y, Yih W H.Feeding by phototrophic red-tide dinoflagellates: five species newly revealed andsix species previously known to be mixotrophic [J]. Aquatic Microbial Ecology,2005,40(2):133-150.
    Joassin P, Delille B, Soetaert K, et al. Carbon and nitrogen flows during a bloom ofthe coccolithophore Emiliania huxleyi: Modelling a mesocosm experiment [J].Journal of Marine Systems,2011,85,71-85.
    Karl D M, Yanagi K. Partial characterization of the dissolved organic phosphoruspool in the oligotrophic North Pacific Ocean [J]. Limnology and Oceanography,1997,42(6):1398-1405.
    Kent E, Woodruff S, Rayner N, et al. Advances in the use of historical marineclimate data [J]. Bulletin of the American Meteorological Society,2007,88(4):559-564.
    Kirchman D L. Microbial Ecology of the Oceans, second ed [M]. Wiley Series inEcological and Applied Microbiology, USA,2000.
    Kishi M J, Kashiwai M, Ware D M, et al. NEMURO-a lower trophic level model forthe North Pacific marine ecosystem [J]. Ecological Modelling,2007,202:12-25.
    Kornecki T S, Sabbagh G J, Storm D E. Evaluation of runoff, erosion and phosphorusmodeling system-SIMPLE [J]. Journal of the American Water ResourcesAssociation,1999,4:807-820.
    Lai J X, Yu Z M, Song X X, et al. Responses of the growth and biochemicalcomposition of Prorocentrum donghaiense to different nitrogen and phosphorusconcentrations [J]. Journal of Experimental Marine Biology and Ecology,2011,405:6-17.
    Langdon C. On the causes of interspecific differences in the growth-irradiancerelationship for phytoplankton. Part I. A comparative study of thegrowth-irradiance relationship of three marine phytoplankton species:Skeletonema costatum, Olisthodiscus luteus and Gonyaulax tamarensis [J].Journal of Plankton Research,1987,9:459-482.
    Lee J Y, Tett P, Kim K R.2003. Parameterising a microplankton model [J]. Journalof the Korean Society of Oceanography,2003,38:185-210.
    Lehman J T, Botkin D B, Likens G E. The assumptions and rationales of a computermodel of phytoplankton population dynamics [J]. Limnology and Oceanography,1975,20(3):343-364.
    Liu S, Wang W X. Feeding and reproductive responses of marine copepods in SouthChina Sea to toxic and nontoxic phytoplankton [J]. Marine Biology,2002,140:595-603.
    Li Y Z, H R Y, McGillicuddy Jr. D J, et al. Investigation of the2006Alexandriumfundyense bloom in the Gulf of Maine: In-situ observations and numericalmodeling [J]. Continental Shelf Research,2009,29:2069-2082.
    Lomas M W, Glibert P M. Comparisons of nitrate uptake, storage, and reduction inmarine diatoms and flagellates [J]. Journal of Phycology,2000,36:903-913.
    Mague T, Friberg E, Hugues D J, Morris I. Extracellular release of carbon by marinephytoplankton; a physiological approach [J]. Limnology and Oceanography,1980,25(2):262-279.
    Marchesiello P, McWilliams J C, Shchepetkin A F. Equilibrium structure anddynamics of the California Current System [J]. Journal ofPhysical Oceanography,2003,33:753-783.
    Marchesiello P, McWilliams J C, Shchepetkin A F. Open boundary conditions forlong-term integration of regional ocean models [J]. Ocean Modelling,2001,3:1-20.
    Miyata K, Hattori A, Ohtsuki A. Variation of cellular phosphorus composition ofSkeletonema costatum and Heterosigma akashiwo grown in chemostats [J].Marine Biology,1986,93:291-297.
    Nelson D M, Brzezinski M A. Kinetics of silicic acid uptake by natural diatomassemblages in two Gulf Stream warm-core rings [J]. Marine ecology progressseries,1990,62(3):283-292.
    Nogueira E, Woods J D, Harris C, et al. Phytoplankton co-existence: Results from anindividual-based simulation model [J]. Ecological Modelling,2006,198:1-22.
    Obernosterer I, Herndl G. Phytoplankton extracellular release and bacterial growth:dependence on the inorganic N:P ratio [J]. Marine Ecology Progress Series,1995,116:247-257.
    Oh S J, Kim D I, Sajima T, Shimasaki Y, Matsuyama Y, Oshima Y, Honjo T, Yang HS. Effects of irradiance of various wavelengths from light-emitting diodes on thegrowth of the harmful dinoflagellate Heterocapsa circularisquama and the diatomSkeletonema costatum [J]. Fisheries Science,2008,74:137-145.
    Ou L J, Wang D, Huang B Q, et al. Comparative study of phosphorus strategies ofthree typical harmful algae in Chinese coastal waters [J]. Journal of PlanktonResearch,2008,30(9):1007-1017.
    Pan S J, Shen Z L, Liu W P, et al. Nutrient compositions of cultured Skeletonemacostatum, Chaetoceros curvisetus, and Thalassiosira nordenski ldii [J]. ChineseJournal of Oceanology and Limnology,2010,28:1131-1138.
    Phillips N A. A coordinate system having some special advantages for numericalforecasting [J]. Journal of Meteorology,1957,14:184-185.
    Pisinaras V, Petalas C, Gikas G D, et al. Hydrological and water quality modeling ina medium-sized basin using the Soil and Water Assessment Tool (SWAT)[J].Desalination,2010,250:274-286.
    Raybaud V, Nival P, Prieur L. Short time-scale analysis of the NW Mediterraneanecosystem during summer-autumn transition: A1D modelling approach [J].Journal of Marine Systems,2011,84:1-17.
    Shaw P M, Jones G J, Smith J D, et al. Intraspecific variations in the fatty acids of thediatom Skeletonema costatum [J]. Phytochemistry,1989,28:811-815.
    Smith A L. Oxford dictionary of biochemistry and molecular biology [M]. OxfordUniversity Press, Oxford,1997.
    Soetaert K, Herman P M J, Middelburg J J, et al. Numerical modelling of the shelfbreak ecosystem: reproducing benthic and pelagic measurements [J]. Deep-SeaResearch II,2001,48:3141-3177.
    Song Y and Haidvogel D B. A semi-implicit ocean circulation model using ageneralized topography-following coordinate system [J]. Journal ofComputational Physics,1994,115(1):228-244.
    Sonneman J A and Hill D R A. A taxonomic survey of cyst producing dinoflagellatesfrom recent sediments of Victorian coastal waters, Australia [J]. Botanica Marina,1997,40:149-177.
    Su J. Circulation dynamics of the China Seas North of18°N [C]. In: Robinson A R,Brink K H (Eds.), The Sea, vol.11. Wiley, New York,1998, pp.483–505.
    Tang D L, Di B P, Wei G F, et al. Spatial, seasonal and species variations of harmfulalgal blooms in the South Yellow Sea and East China Sea [J]. Hydrobiologia,2006,568:245-253.
    Thornley J H M, Cannell M G R. Modelling the components of plant respiration:some guiding principles [J]. Annals of Botany,2000,85:45-54.
    Thornton D C O, Thake B. Effect of temperature on the aggregation of Skeletonemacostatum (bacillariophyceae) and the implication for carbon flux in coastalwaters [J]. Marine Ecology Progress Series,1998,174:223-231.
    Tomas C R. Identifying Marine Phytoplankton [M]. Academic Press, San Diego, CA,1997.
    Tsihrintzis V A, Hamid R. Runoff quality prediction from small urban catchmentsusing SWMM [J]. Hydrological Processes,1998,12:311-329.
    Tsihrintzis VA, Sidan C B. Modeling urban storm water runoff using the SantaBarbara Method [J]. Water Resources Management,1998,12:139-166.
    Velo-Suarez L, Reguera B, Gonzalez-Gil S, et al. Application of a3D Lagrangianmodel to explain the decline of a Dinophysis acuminata bloom in the Bay ofBiscay [J]. Journal of Marine Systems,2010,83:242-252.
    Wang B D, Wang X L, Zhan R. Nutrient conditions in the Yellow Sea and the EastChina Sea [J]. Estuarine, Coastal and Shelf Science,2003,58:127-136.
    Wang Z H, Liang Y, Kang W. Utilization of dissolved organic phosphorus bydifferent groups of phytoplankton taxa [J]. Harmful Algae,2011,12:113-118.
    Woerd H, Blauw A, Peperzak L, Pasterkamp R, Peters S. Analysis of the spatialevolution of the2003algal bloom in the Voordelta (North Sea)[J]. Journal of SeaResearch,2010,65:195-204.
    Wong G T F, Gong G C, Liu K K, et al.’Excess Nitrate’ in the East China Sea [J].Estuarine, Coastal and Shelf Science,1998,46:411-418.
    Xu N, Duan S S, Li A F, Zhan C W, Cai Z P, Hu Z X. Effects of temperature, salinityand irradiance on the growth of the harmful dinoflagellate Prorocentrumdonghaiense Lu [J]. Harmful Algae,2010,9:13-17.
    Yamamoto T, Inokuchi Y, Sugiyama T. Biogeochemical cycles during the speciessuccession from Skeletonema costatum to Alexandrium tamarense in northernHiroshima Bay [J]. Journal of Marine Systems,2004,52:15-32.
    Yamasaki Y, Ohmichi Y, Shikata T, Hirose M, Shimasaki Y, Oshima Y, Honjo T.Species-specific allelopathic effects of the diatom Skeletonema costatum [J].Thalassas,2010,27(1):21-32.
    Yang D Z, Yin B S, Liu Z L, et al. Numerical study of the ocean circulation on theEast China Sea Shelf and a Kuroshio bottom branch northeast of Taiwan insummer [J]. Journal of Geophysical Research,2011a,doi:10.1029/2010JC006777.
    Yang G, Li C, Sun J. Influence of salinity and nitrogen content on production ofdimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) by Skeletonemacostatum [J]. Chinese Journal of Oceanology and Limnology,2011b,29:378-386.
    Yoo Y D, Jeong H J, Kim M S, Kang N S, Song J Y, Shin W, Kim K Y, Lee K.Feeding by Phototrophic red-tide dinoflagellates on the ubiquitous marine diatomSkeletonema costatum [J]. Journal of Eukaryotic Microbiology,2009,56(5):413-420.
    Zhao Y F, Yu Z M, Song X X, et al. Biochemical compositions of two dominantbloom-forming species isolated from the Yangtze River Estuary in response todifferent nutrient conditions [J]. Journal of Experimental Marine Biology andEcology,2009,368:30-36.
    Zhou M J, Shen Z L, Yu R C. Responses of a coastal phytoplankton community toincreased nutrient input from the Changjiang (Yangtze) River [J]. ContinentalShelf Research,2008,28:1483-1489.
    Zhu M Y, Xu Z J, Li R X, et al. Interspecies competition for nutrients betweenProrocentrum donghaiense Lu and Skeletonema costatum (Grev.) Cleve inmesocosm experiments [J]. Acta Oceanologica Sinica,2009,28(1):72-82.
    陈国斌,李奶姜,戴红.福建闽东海域具齿原甲藻赤潮与生态因子关系的初步分析[J].台湾海峡,2003,22(4):431-436.
    陈翰林,吕颂辉,张传松,等.2004年东海原甲藻赤潮爆发的现场调查和分析[J].生态科学,2006,6(25):226-230.
    陈玫玫,赵卫红.东海原甲藻对中肋骨条藻的他感作用初探[J].海洋科学,2007,31(4):62-67.
    陈秀华,朱良生. COHERENS模式在长江口赤潮源推测中的应用[J].海洋通报,2007,26(3):3-11.
    邓光,耿亚洪,胡鸿钧,等.几种环境因子对高生物量赤潮甲藻-东海原甲藻光合作用的影响[J].海洋科学,2009,33(12):34-39.
    邓宁宁.无机溶解态营养盐组成对东海典型赤潮藻生长的影响[D].青岛:中国海洋大学,2004.
    国家海洋局.中国海洋环境质量公报[R].2000-2012.
    国家海洋局.中国海洋灾害公报[R].1989-2012.
    韩秀荣,王修林,孙霞,等.东海近海海域营养盐分布特征及其与赤潮发生关系的初步研究[J].应用生态学报,2003,14(7):1097-1101.
    侯继灵,张传松,石晓勇,等.磷酸盐对两种东海典型赤潮藻影响的围隔实验[J].中国海洋大学学报,2006,36(增刊):163-169.
    黄秀清,蒋晓山,王桂兰,等.长江口中肋骨条藻赤潮发生过程环境要素分析:水温、盐度、DO和pH特征[J].海洋通报,1994,13:35-40.
    姜加虎,王苏民.长江流域水资源、灾害及水环境状况初步分析[J].第四纪研究,2004,24(5):512-517.
    孔凡洲.长江口赤潮区浮游植物的粒级结构、种类组成和色素分析[D].青岛:中国科学院海洋研究所,2012.
    李慧.化感作用对中肋骨条藻和东海原甲藻种间竞争的影响[D].青岛:中国海洋大学,2011.
    李慧,王江涛.东海原甲藻与中肋骨条藻的种间竞争特征[J].生态学报,2012,32(4):1115-1123.
    李京.东海赤潮高发区营养盐结构及对浮游植物优势种演替的作用研究[D].青岛:中国海洋大学,2008.
    林军.长江口外海域浮游植物生态动力学模型研究[D].上海:华东师范大学,2011.
    李荣茂.福建省沿岸赤潮生物-东海原甲藻生态探讨[J].海洋环境科学,2009,28(1):65-69.
    李瑞香,朱明远,王宗灵,等.东海两种赤潮生物种间竞争的围隔实验[J].应用生态学报,2003,14(7):1049-1054.
    李铁,史致丽,仇赤斌.中肋骨条藻和新月菱形藻对营养盐的吸收速率及环境因素影响的研究[J].海洋与湖沼,1999,30:640-645.
    刘梦坛,李超伦,孙松.脂肪酸对中华哲水蚤摄食两种海洋微藻的指示作用[J].生态学报,2011,31(4):933-942.
    刘雪芹,韦路.舟山近岸海域赤潮优势种中肋骨条藻的生长模型[J].中国环境监测,2005,21(2):77-79.
    李雁宾.长江口及邻近海域季节性赤潮生消过程控制机理研究[D].青岛:中国海洋大学,2008.
    李英.东海原甲藻的磷营养生理生态研究[D].广州:暨南大学,2006.
    李英,吕颂辉,徐宁,等.东海原甲藻对不同磷源的利用特征[J].生态科学,2005,24(4):314-317.
    陆茸.东海围隔实验中营养盐对浮游植物生长的影响及其动力学研究[D].青岛:中国海洋大学,2005.
    吕颂辉,李英.我国东海4种赤潮藻的细胞氮磷营养储存能力对比[J].过程工程学报,2006,6(3):439-444.
    宁修仁,史君贤,蔡昱明,刘诚刚.长江口和杭州湾海域生物生产力锋面及其生态学效应[J].海洋学报,2004,26(6):96-106.
    海洋图集编委会.渤海、黄海、东海、海洋图集[M].北京,海洋出版社,1991.
    霍文毅,俞志明,邹景忠,等.胶州湾中肋骨条藻赤潮与环境因子的关系[J].海洋与湖沼,2001,32(3):311-318.
    欧林坚.典型赤潮藻对磷的生态生理响应[D].厦门:厦门大学,2006.
    蒲新明,吴玉霖,张永山.长江口区浮游植物营养限制因子的研究Ⅱ.春季的营养限制情况[J].海洋学报,2001,23(3):57-65.
    沈志良.长江氮的输送通量[J].水科学进展,2004,15(6):752-759.
    沈志良.三峡工程对长江口海区营养盐分布变化影响的研究[J].海洋与湖沼,1991,22(6):540-546.
    石岩峻.赤潮藻对营养盐的吸收及生长和相关特性研究[D].北京:北京化工大学,2004.
    孙百晔.长江口及邻近海域浮游植物生长的光照效应研究[D].青岛:中国海洋大学,2008.
    孙军,刘东艳,钱树本.浮游植物生物量研究-浮游植物生物量细胞体积转化法[J].海洋学报,1999,21:75-85.
    孙军,刘东艳,王宗灵,等.春季赤潮频发期东海微型浮游动物摄食研究[J].应用生态学报,2003,14(7):1073-1080.
    孙树刚.东海原甲藻对尿素的吸收与利用特征[D].广州:暨南大学,2010.
    孙岁寒,段舜山.东海原甲藻的光周期效应研究[J].生态环境,2006,15(3):461-464.
    孙霞.光照对东海赤潮高发区赤潮藻类生长的影响[D].青岛:中国海洋大学,2005.
    王爱军,王修林,韩秀荣,等.光照对东海赤潮高发区春季赤潮藻种生长和演替的影响[J].海洋环境科学,2008,27(2):144-148.
    王江涛,李慧,曹婧,等.化感作用对中肋骨条藻与东海原甲藻竞争演替的影响[J].海洋学报,2012,34(2):169-178.
    王金辉.长江口邻近水域的赤潮生物[J].海洋环境科学,2002,21(2):37-41.
    王金辉,黄秀清.具齿原甲藻的生态特征及赤潮成因浅析[J].应用生态学报,2003,14(7):1065-1069.
    王朝晖,齐雨藻.甲藻孢囊在长江口海域表层沉积物中的分布[J].应用生态学报,2003,14(7):1039-1043.
    王宗灵,李瑞香,朱明远,等.半连续培养下东海原甲藻和中肋骨条藻种群生长过程与种间竞争研究[J].海洋科学进展,2006,24(4):495-503.
    徐宁.中国沿海典型赤潮藻的生态位研究[D].广州:暨南大学,夏2006.
    徐兆礼,洪波,朱明远,等.东海赤潮高发区春季浮游动物生态特征的研究[J].应用生态学报,2003,14(7):1081-1085.
    杨德周.东海陆架黑潮入侵及生态响应数值模拟研究[D].青岛:中国科学院海洋研究所,2011.
    由希华.东海原甲藻和塔玛亚历山大藻生长对重要环境因子的响应及种间竞争研究[D].青岛:中国海洋大学,2006.
    余锦兰.中肋骨条藻光合作用和碳酸酐酶对环境因子的响应[D].广州:广州大学,2011.
    于萍.温度、光照及种间相互作用对东海典型浮游植物生长的影响[D].青岛:中国海洋大学,2005.
    张传松.长江口及其邻近海域赤潮生消过程特征及其营养盐效应分析[D].青岛:中国海洋大学,2008.
    赵保仁.长江冲淡水的转向机制问题[J].海洋学报,1991,13(5):600-610.
    赵水东.温度、盐度和营养盐对东海原甲藻生长的影响[D].广州:暨南大学,2006.
    赵卫红,陈玫玫.营养盐限制对中肋骨条藻产生化感作用的影响[J].海洋环境科学,2010,29(2):225-228.
    赵艳芳,俞志明,宋秀贤,等.营养盐对长江口2种主要赤潮原因藻光合色素和光合作用影响的比较研究[J].环境科学,2009a,30:700-706.
    赵艳芳,俞志明,宋秀贤,等.不同磷源形态对中肋骨条藻和东海原甲藻生长及磷酸酶活性的影响[J].环境科学,2009b,30:693-699.
    周名江,颜天,邹景忠.长江口邻近海域赤潮发生区基本特征初探[J].应用生态学报,2003,7(14):1031-1038.
    周名江,于仁成.有害赤潮的形成机制、危害效应与防治对策[J].自然杂志,2007,29(2):72-77.
    周名江,朱明远.“我国近海有害赤潮发生的生态学、海洋学机制及预测防治”研究进展[J].地球科学进展,2006,21(7):673-679.
    周名江,朱明远,张经.中国赤潮的发生趋势和研究进展[J].生命科学,2001,13(2):54-59.
    周伟华,霍文毅,袁翔城,等.东海赤潮高发区春季叶绿素a和初级生产力的分布特征[J].应用生态学报,2003,14(7):1055-1059.
    朱德弟,陆斗定,王云峰,等.2005年春初浙江近海的低温特征及其对大规模东海原甲藻赤潮发生的影响[J].海洋学报,2009,31(6),31-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700