用户名: 密码: 验证码:
薯蓣皂素清洁生产关键技术及盾叶薯蓣资源化利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薯蓣皂素是合成皮质激素、肾上腺激素、蛋白质同化激素的基础原料,被誉为“20世纪医药工业的第二大发现”。Rothrok法以其工艺简单,设备投资少,成本低而备受生产企业的青睐。近年来,随着环境的不断恶化,Rothrok法造成的污染问题引起人们的极大关注,其工艺受到挑战。本论文以盾叶薯蓣为研究对象,围绕薯蓣皂素生产过程中的污染及薯蓣皂素生产成本,就薯蓣皂素清洁生产关键技术及盾叶薯蓣资源化利用进行研究,主要研究内容如下:
     1采用各类分析方法,测定了盾叶薯蓣中的淀粉、纤维素、半纤维素、木质素、薯蓣皂苷、薯蓣皂素的含量,为资源化利用盾叶薯蓣奠定了基础。
     2以盾叶薯蓣为原料,以乙醇为萃取剂,以薯蓣皂苷、薯蓣皂素得率为评价指标,采用单因素实验法、正交试验法优化了超声波辅助乙醇萃取薯蓣皂苷的条件。结果表明,当乙醇体积分数为75v/v,料(盾叶薯蓣)液(萃取剂)比为1:5,超声波频率为35.74KHz,超声时间为30min,盾叶薯蓣被连续萃取3次时,薯蓣皂苷、薯蓣皂素的得率为14.49%及3.29%,分别为传统常温浸提法的1.36倍及1.13倍,萃取效率为传统常温浸提法的48倍。
     3在超声条件(频率、时间)一定的情况下,研究了表面活性剂类型、结构、亲水亲油平衡值(HLB)、临界胶团浓度(cmc)等对薯蓣皂苷得率的影响。在此基础上,研究了以表面活性剂对薯蓣皂苷摩尔增溶率(MSR)作为薯蓣皂苷萃取时表面活性剂选择标准的可行性,为其它天然产物有效成分萃取时表面活性剂的选择提供理论依据。
     4研究了絮凝剂种类、加量、絮凝温度、絮凝时间等对薯蓣皂苷分离因数的影响,确定了薯蓣皂苷最佳絮凝条件,为以絮凝薯蓣皂苷法替代传统热富集薯蓣皂苷法提供理论依据。研究了硫酸加量、硫酸浓度、硫酸回用次数,薯蓣皂苷水解温度、水解时间、薯蓣皂素萃取时间等对薯蓣皂素得率的影响。
     5在实验室小试的基础上,以50Kg盾叶薯蓣为原料,进行5次放大实验,对薯蓣皂素生产的原料成本、废水排放量、废水性质进行综合评价,结果表明,该方法能够达到控制污染,降低成本的目标。
     6采用现代生物技术,优化了以萃取薯蓣皂苷后的盾叶薯蓣废渣为原料发酵乙醇的条件。在此基础上,以30Kg萃取薯蓣皂苷后的盾叶薯蓣废渣为原料,进行放大实验,此发酵醪的酒精度为10.5v/v,淀粉利用率为90.6%。该技术可资源化地利用盾叶薯蓣中的淀粉资源,进一步地降低了薯蓣皂素的生产成本,符合低碳、环保的发展要求。
     本论文的创新之处:
     1系统研究了以表面活性剂增溶方法、薯蓣皂苷絮凝方法为核心的薯蓣皂素清洁生产工艺。在实验室小试的基础上,研究了该工艺生产过程中废水排放及废水性质,比较了采用该工艺与传统工艺生产薯蓣皂素时的原料成本,进一步证实该工艺能够达到控制污染,降低成本,实现薯蓣皂素清洁生产的目的。
     2采用多种方法研究了表面活性剂结构对薯蓣皂苷萃取的影响,为薯蓣皂苷萃取时科学选择表面活性剂奠定了基础。测试了各表面活性剂对薯蓣皂苷摩尔增溶率(MSR)的大小,在此基础上,分析了超声条件下,以MSR值作为薯蓣皂苷萃取时表面活性剂选择的可行性。
     3比较了以盾叶薯蓣、盾叶薯蓣废渣为原料进行乙醇发酵时发酵醪的酒精度、淀粉利用率及酒糟的扫描电镜图(SEM),发现萃取薯蓣皂苷后的盾叶薯蓣废渣更适合乙醇发酵,该技术符合循环经济的发展模式,为其它含淀粉类植物的综合利用奠定了基础。
Diosgenin is the basic raw material of synthesising ofcorticosteroids, the adrenal hormones, protein anabolic hormones,which is known as "the second discovery of the20thcentury inpharmaceutical industry". Rothrok's method process was simple, lessinvestment in equipment, low cost, which drew enterprises's attention ofall ages. In recent years, however, with the worsening of theenvironment, the pollution problems of Rothrok method cause a greatconcern and the process was being challenged. In this paper, withDioscorea Zingiberensis as research object, for the purpose of reducingpollution and cost, key technologies of diosgenin clean production andresources utilization of Dioscorea Zingiberensis were studied, which were described as below:
     1All kinds of methods were applied to determine the content ofstarch, cellulose, hemicellulose, lignin, diosgenin in DioscoreaZingiberensis, and laid the foundations for Dioscorea Zingiberensisresources utilization.
     2With Dioscorea Zingiberensis as the raw material, ethanol asextraction agent, the yield of dioscin and diosgenin as the evaluationindexes, the single factor and the orthogonal experiment methods wereused to optimize the conditions of ultrasonic extraction of dioscin.When ethanol volume fraction was75v/v, the ration of solid (DioscoreaZingiberensis) to liquid (extractant) was1:5, the ultrasonic frequencywas35.74KHz, ultrasonic time was30min, Dioscorea Zingiberensiswas continuously extracted for3times, the yield of the dioscin anddiosgenin can reach to14.49%and3.2907%, which were1.36times,1.13times of the extraction at room temperature (traditional extractionmethod), respectively. The extraction efficiency was32times of the traditional extraction method.
     3Under certain circumstances of ultrasound conditions (frequency,time), the influence of surfactant type, structure, hydrophilic lipophilicbalance (HLB) value, the critical micelle concentration (cmc) ondioscin yield were researched. The feasibility of surfactant selectionprinciple at dioscin extration was studied according to the influence ofsurfactant on dioscin molar solubilizatoin ratio (MSR), serving as atheoretical basis for the choice of surfactant in dioscin extraction.
     4The investigation on the influence of flocculant types, dosage,flocculation temperature, flocculation time on the dioscin separationfactor help to determine the optimum flocculation conditions of dioscin,along with the study of the influence of the sulfuric acid dosage, theconcentration of sulfuric acid, the number of times sulfuric acid reuseand hydrolysis temperature of dioscin, hydrolysis time, diosgeninextraction time on the yield of diosgenin.
     5On the basis of laboratory experiment, pilot-scale experiments were conducted for5times with50Kg Dioscorea Zingiberensis as rawmaterials. A comprehensive evaluation of production costs of rawmaterials, waste water emissions and properties of waste water weremade, and considered that the process could be achieved the aim ofpollution control and costs reduction in the production of diosgenin.
     6Modern biotechnology is adopted to optimize the conditions ofalcoholic fermentation with Dioscorea Zingiberensis residue after theextraction of dioscin as a raw material. With30Kg above-mentionedraw material, pilot-scale experiments demonstrate that alcohol contentof the fermented mash is up to10.5v/v, starch utilization90.6%. Thistechnology makes resource utilization starch in the DioscoreaZingiberensis feasible, and further reduces the cost of production ofdiosgenin in line with the requirements of low-carbon, environmentalfriendly development.
     The innovation of this paper.
     1The technology of diosgenin clean production was research systematically, With surfactant extraction technology and flocculationtechnology as the core. On the basis of laboratory experiments,wastewater discharge and wastewater properties in the process ofdiosgenin clean production are studied. The costs of raw materials arecompared in the process of diosgenin clean production and thetraditional process. It is found that the clean process helps to controlpollution and reduce costs.
     2The effect of surfactant structure on dioscin extraction is studiedin several ways, which paves the way for the scientific surfactantselection principle at dioscin extraction. Besides the test of surfactantson dioscin molar solubilizatoin ratio (MSR), verified feasibility ofsurfactant selection principle at dioscin extraction with the effect ofsurfactant on molar solubilization rate.
     3The content of alcohol in fermenting mash, the utilization rate ofstarch and the SEM of distillers' grains are compared with DioscoreaZingiberensis and Dioscorea Zingiberensis residue as raw materials. This technology is in line with the development of recycling economymode, laying the foundation for comprehensive utilization of otherstarch-containing plants.
引文
[1]宋发军.甾体药物源植物薯蓣植物中薯蓣皂苷元研究及生产状况[J].中成药,2003,25(3):232-234.
    [2] Benghuzzi H., Tueci M., Eekie R., etal. The effects of sustaineddelivery of Diosgenin on the adrenal gland of female rats [J].Biological and Biomedical Sciences.2003,39:335-340.
    [3] Tueei M., Benghuzzi H.. Structural changes in the kidney associatedwithovariectomy and diosgenin replacement therapy in adult female rats[J]. Biomedieal Sciences Instrumentation,2003,39:341-346.
    [4] Roman I. D., Thewles A., Coleman R. Fractionation of liversfollowing diosgenin treatment to elevate biliary cholesterol [J].Biochimica et Biophysica Acta (BBA)/Biomembranes,1995,1255(l):77-82.
    [5] Tian W S, Xu Q H, Chen L, etal. Synthesis of Pennogenin utilizingthe intact skeleton of diosgenin [J]. Science in China, Series B:Chemistry,2004,47(2):142-144.
    [6] Lahmann M., Gyback H., Garegg Per J., etal. A facile approach todiosgenin and furostan type saponins bearing a3β-chacotriosemoiety [J]. Carbohydrate Researeh,2002,337(21-23):2153-2159.
    [7] KutneyJ.P., Milanova R.K.. Process for the microbial conversion ofphytosterol to androstenedione and androstadienedione [P]. USPatent:2000:6071714,2000-12-1.
    [8]安丽平.黄姜皂素废水资源化利用及皂素洁净生产工艺研究[D].西安:西北大学,2006.
    [9]刘大银,毕亚凡,李庆新,等.皂素生产废水综合治理技术研究[J].武汉化工学院学报,2003,25(4):33-36.
    [10]孙欣,邓良伟,吴力斌.皂素生产废水污染特点及治理现状[J].中国沼气,2005,23(1):25-28.
    [11]陈俊英,韩志慧,刘国际,等.无污染提取薯蓣皂素的热分解处理研究[J].中国农业科学2010,43(18):3824-3830.
    [12] Zhu Y L, Huang W, Ni J R. A promising clean process forproduction of diosgenin from dioscorea zingiberensis C.H.Wright[J]. Journal of cleaner production,2010,18:242-247.
    [13]陈俊英.薯预皂素提取新工艺及相关基础研究[D].郑州:郑州大学,2007.
    [14]韩枫.黄姜资源化综合利用工艺、机理及应用研究[D].西安:西北大学,2008.
    [15]宋立伟.黄姜皂素清洁生产工艺试验研究[J].中国水运,2007,7(8):50-51.
    [16]杨铖,毛楠,籍国东.黄姜渣提取淀粉的成分及颗粒结构分析[J].安徽农业科学,2011,39(6):3655-3656,3683.
    [17]郑辉,张帅,马轩凯.水洗淀粉法在黄姜皂素生产中的应用[J].石家庄职业技术学院学报,2007,19(6):12-14.
    [18]李祥,张辉,王佳佳.黄姜皂素生物提取方法[P].中国专利:200510042680.4,2007-1-28.
    [19]楚德强,马晓建,陈俊英.盾叶薯蓣发酵生产酒精的研究[J].酿酒科技,2007,2:25-28.
    [20]陈俊英,楚德强,马晓建,等.以黄姜为原料发酵酒精的液化糖化条件的初步研究[J].农业工程学报,2007,23(11):269-273.
    [21]王湘源,王喆,刘德立,等.皂素清洁生产工艺的研究(Ⅰ)[J].环境科学与技术,2007,30(3):94-97.
    [22]朱余玲,黄文,刘葳,等.复合微生物发酵法从黄姜中提取皂素研究[J].南水北调与水利科技,2009,7(6):442-446.
    [23]徐升运,赵文娟,陈卫锋.应用生物酶法提取黄姜皂素的清洁工艺研究[J].环境科学与技术,2011,34(2):162-164.
    [24] Wang Y X, Liu H, Bao J G, et al. The saccharification-membraneretrieval-hydrolysis (SMRH) process: A novel approach forcleaner production of diosgenin derived from DioscoreaZingiberensis[J]. Journal of cleaner production,2008,16:1133-1137.
    [25]杨春澍.药用植物学[M].上海:上海科学技术出版社,2006.120-156.
    [26]李祥,马建中,史云东.盾叶薯蓣、薯蓣皂素研究进展及展望[J].林产化学与工业,2010,30(2):107-112.
    [27]徐成基.中国薯蓣资源[M].成都:四川科学技术出版社,2000.15-56.
    [28]黄春洪,杭悦宇,周义锋,等.我国盾叶薯蓣居群遗传结构分析[J].云南植物研究,2003,25(6):641-647.
    [29]朱廷钧,杨立华,张国才.武当山盾叶薯蓣生态环境及其分布规律[J].资源开发与市场,1998,14(3):124-126.
    [30]赵猛,朱洪梅.盾叶薯蓣种质资源研究进展[J].陕西农业科学,2009,1:71-73.
    [31]丁志遵,秦慧珍.甾体激素药源植物[M].北京:科学出版社,1983.25-242.
    [32]袁晓颖,祖元刚,于景华.野生盾叶薯蓣(Dioscoreazingiberensis C.H.Wrigh)资源储量精度估算[J].植物研究,2003,23(1):103-10.
    [33]秦松云,丁季春,舒抒,等.中国盾叶薯蓣资源现状及保护对策[J].资源开发与市场,2004,20(4):263-265.
    [34]四川生物研究所.盾叶薯蓣引种栽培试验[J].植物学杂志,1974,1:10-20.
    [35]周雪林,郭可跃.盾叶薯蓣引种栽培研究[J].中草药,1989,20(10):35-37.
    [36]赵庆云,寸湘琴,杨燕,等.云南高原几个盾叶薯蓣种质特征特性及栽培要点[J].种子,2003,1:41-42.
    [37]李向民,乔振杰,陈刚.安姜1、2、3号三个黄姜新品种生产性能试验初报[J].西北农业学报,2007,16(1):193-196.
    [38]蒋超球,龚山华,王培秋.安黄姜3号的选育及高产栽培技术[J].湖南农业科学,2005,2:19-20.
    [39]王志安,王日照.运用组织培养技术筛选盾叶薯蓣新品种[J].中草药,2002,33(4):361-363.
    [40]李光明,刘文海.盾叶薯蓣同源四倍体的诱导和鉴定[J].西北农业学报,2006,15(1):189-192.
    [41]张友德,张君芝,秦天才,等.黄姜有性繁殖研究[J].华中农业大学学报,1999,18(1):8-11.
    [42]刘湘林,望开平,付艳华,等.黄姜大棚有性繁殖规模化育苗技术[J].作物杂志,2004,1:26-27.
    [43]曹玉芳,胡正海.盾叶薯蓣实生苗根状茎的形态发生及薯蓣皂苷积累的研究[J].西北植物学报,2003,23(7):1154.
    [44]曹玉芳,林如.盾叶薯蓣根状茎的发育解剖学和组织化学研究[J].武汉植物学研究,2003,21(4):288-291.
    [45]曹玉芳,林如.盾叶薯蓣根状茎的发育解剖学研究[J].西北植物学报,2003,23(2):297.
    [46]郭永兵,张友德.盾叶薯蓣根茎中薯蓣皂苷元的分布[J].湖北农业科学,2002,5:106-109.
    [47]陈战国,耿征,刘谦光.薯蓣皂苷元的分光光度法测定[J].分析化学,1996,24(2):227-229.
    [48]王俊,杨克迪,陈钧.分光光度法测定薯蓣皂苷元[J].分析试验室,2004,23(1):73-75.
    [49]谢如刚,鲁宁莉,刘菁,等.薯蓣皂苷元渣料成分的分离及薯蓣皂苷元的薄层光密度测定法[J].四川大学学报,1989,26(2):208-211.
    [50] John C, Knight. Analysis of Fenugreek Spaogenins by Gas-liquldChromatogrpahy[J]. Jounral of Chromatogrpahy,1997,133:222-225.
    [51]钟世安,华怀杰,贺国文,等.反相高效液相色谱法测定盾叶薯蓣中薯蓣皂甙元[J].光谱实验室,2006,23(5):898-901.
    [52]贾林,张皋,刘红妮,等. ASE-HPLC法测定黄姜中薯蓣皂甙元的含量[J].分析化学计量,2007,16(4):18-20.
    [53]杨红艳.薯蓣皂苷元酶联免疫吸附(ELISA)定量分析方法的初步研究[D].南京:南京工业大学,2005.
    [54] Sanjay P. Mishra, Vilas G. Gaikar. Recovery of diosgenin fromdioscorea rhizomes using aqueous hydrotropic solutions of sodiumcumene sulfonate [J]. Industrial and Engineering ChemistryResearch,2004,43:5339-5346.
    [55]李谦,高向涛,任玉珍.表面活性剂强化提取黄姜中薯蓣皂苷的研究[J].精细化工,2009,26(2):122-125,141.
    [56]鲁鑫焱,赵怀清.薯蓣皂苷元的提取与分离分析方法[J].沈阳药科大学学报,2003,20(6):465-468.
    [57] Raman G, Caikar V. G.. Extraction of piperibre from piper nigrum(black peper) by hydrotropic solubilization[J]. Industrial andEngineering Chemistry Research,2002,41:2966-30001.
    [58] Cheng P, Zhao H Z, Zhao B, et al. Pilot treatment of wastewaterfrom Dioscorea Zingiberensis C.H.Wright production by anaerobicdigestion combined with a biological aerated filter [J].Bioresource technology,2009,12:2918-2925.
    [59] Li X, Ma J Z, Xia J. A Study on the Critical Technology during theCleaner Production Process of Diosgenin [C]. Asian-EuropeanEnvironmental Technology and Knowlegedge Transfer,2008:525~531.
    [60]赵书申,柳卫莉.盾叶薯蓣的黑曲霉发酵和薯蓣皂苷配基的结构[J].武汉大学学报(自然科学版),1988,2:93-97.
    [61]景星,吴胜举,胡耀军,等.超声-环流提取盾叶薯蓣皂苷的研究[J].陕西师范大学学报(自然科学版,2011,39(2):27-30,34.
    [62]刘树兴,侯屹,李祥.超声波-表面活性剂协同提取盾叶薯蓣总皂苷[J].精细化工,2010,27(6):562-566.
    [63]杨转萍,罗仓学,李祥.超声波-表面活性剂协同萃取黄姜中薯蓣皂苷的工艺研究[J].食品科学,2010,31(22):46-49
    [64]高彬.近红外激光断裂薯蓣皂苷苷键的研究[D].西安:西北大学,2008.
    [65]朱宪,王振武,郭晓亚.近临界水中薯蓣皂苷水解生产薯蓣皂苷元的工艺研究[J].高校化学工程学报,2007,21(1):122-125.
    [67] GB20425-2006,皂素工业水污染物排放标准[S].北京:中国标准出版社,2006.
    [68] Fernandes P, Cruz A, Angelova B, et al. Microbial transformationof steroid compounds: recent developments[J]. Enzyme MicrobiolTechnology,2003,32:688-705.
    [69] Wang Z, Zhao F, Hao X, et al. Microbial transformationhydrophobic compound in cloud point system[J]. J Mol Catal BEnzyma,2004,27:147-153.
    [70] Wang Z, Zhao F, Li D. Determination of solubilization of phenol incoacervate phase of cloud point extraction[J]. Colloids&Surf A,2003,216:207-214.
    [71] Wang Z, Zhao F, Chen D, et al. Biotransformation of phytosterol toproduce androsta-diene-dione by resting cells Mycobacterium incloud point system[J]. Process Biochemistry,2006,41(3):557-561.
    [72]王志龙.甾醇侧链切除的微生物转化技术[J].工业微生物,2006,36(3):49-54.
    [73]何幼鸾.葫芦巴籽深加工工艺研究[J].武汉生物工程学院学报,2006,2(2):77-80.
    [74]徐礼焱.皂苷元分析方法的研究I.番麻皂素非水滴定法[J].化学学报,1997,35(3,4):233-236.
    [75]郑良永,罗文扬,林家丽,等.我国黄姜生产现状及其可持续发展对策[J].广西热带农业,2006,4:35-36.
    [76] GB/T5514-2008,粮油检验粮食、油料中淀粉含量测定[S].北京:中国标准出版社,2008.
    [77] GB/T15683-1995,稻米直链淀粉含量的测定[S].北京:中国标准出版社,1995.
    [78]王林风,程远超.硝酸乙醇法测定纤维素含量[J].化学研究,2011,22(4):52-55,71.
    [79] GB/T5515-2008/ISO6865:2000,粮油检验粮食中粗纤维素含量测定-介质过滤法[S].北京:中国标准出版社,2008.
    [80] GB/T2677.8-1994,造纸原料酸不溶木素含量的测定[S].北京:中国标准出版社,1994.
    [81] Hromadkova Z, Ebringerova A, Valachovic p. Ultrasound-assistedextraction of water-soluble polysaccharides from the roots ofvaleriran[J]. Ultrosonic sonochemistry,2002,9(1):37-44.
    [82] Hou K F, Zheng Q, Li Y R. Modeling and Optimization of HerbLeaching Processes[J]. Computer Chemistry Engineering,2000,24(27):1343-1348.
    [83]张惠.超声波对传质过程强化的研究[D].杭州:浙江工业大学,2002.
    [84]段增宾.微波场强化中草药提取的传质机理研究[D].天津:天津大学机械学院,2005.
    [85] Li X, Ma J Z, Xia J, etal. A study on the ultrasonic-assisted ethanolextraction of dioscin[J]. Journal of Medicinal Plants Research2011,5(14):2945-2951.
    [86] Breitbath. M. Influence of ultrasound on adsorption Processes[J].Ultrasound Sonochemistry,2001,8:277-283.
    [87] Myers D. Surfactant science and technology [M]. New York:Wiley-Vch Publishers,1992.25-68.
    [88]邓军.表面活性剂和环糊精对土壤有机污染物的增溶作用及其机理[D].长沙:湖南大学,2007.
    [89]赵国玺,朱步瑶.表面活性剂作用原理[M].北京:中国轻工业出版社,2003.257-542.
    [90]徐燕莉.表面活性剂的功能[M].北京:化学工业出版社,2004.56-100.
    [91] Rosen. M.J. Surfactant and interfacial phnomena[M]. New York:John Wiley,2004.24-45.
    [92] Kile D E, Chiou C T. Water Solubility Enhancements of DDT andTrichlorobenzene by Some Surfactants Below and Above theCritical Micelle Concentration[J]. Environment ScienceTechnology,1989,23:832-838.
    [93] Edwards D A, Luthy R G, Liu Z. Solubilization of polycyclicaromatic hydrocarbons in micellar nonionic surfactant solutions[J].Environmental Science Technology,1991,25:127-133.
    [94] Zhao B, Zhu L, Li w. Solubilization and biodegradation ofphenanthrene in mixed anionic-nonionic surfactant solutions[J].Chemosphere,2005,58:33-40.
    [95]董树杰.氨基酸的反胶束水合萃取研究[D].杭州:浙江工业大学,2007.
    [96]吕建晓.表面活性剂SDS胶束聚集行为及其机理研究[D].大连:大连理工大学,2006.
    [97] Rao K.J., Paria S..Solubilization of Naphthalene in the presence ofplant-synthetic mixed surfactant systems[J]. Journal of physicalchemistry.2009, B(113):474-481.
    [98] Gamage A, Shahidi F. Use of chitosan for the removal of metal ioncontaminants and proteins from water[J]. Food Chemistry,2007,104:989-996.
    [99]杨志华,王焰新,洪岩,等.黄姜皂素清洁生产工艺污染物削减过程分析[J].环境科学与技术,2007,30(1):53-55.
    [100]董悦生,齐珊珊,刘琳,等.米曲霉直接转化盾叶薯蓣生产薯蓣皂苷元[J].过程工程学报,2009,9(5):993-997.
    [101]钱士辉,袁丽红,杨念云.盾叶薯蓣中甾体类化合物的分离与结构鉴定[J].中药材,2006,29(11):1174-1176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700