用户名: 密码: 验证码:
变电站接地网频域电磁场数值计算方法研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
接地网是变电站安全运行的重要保证,其接地性能一直受到设计和生产运行部门的重视。本文基于矩量法,结合国家自然科学基金项目“变电站瞬态电磁环境的预测计算方法研究”(项目编号:50077006),提出了完整的分析变电站接地网接地性能的频域电磁场数值计算方法并将其应用到实际工程中。通过与本文实验结果和国外知名软件包计算结果进行对比以及大量的工程应用,充分验证了本文提出方法的有效性和实用性。本文主要创新成果如下:
    提出了基于复镜像法的恒定电场中多层水平分层土壤的格林函数及其对土壤参数偏导数的快速算法,并在此基础上建立了基于土壤电阻率测量数据的多层水平分层土壤电阻率快速建模方法。同时,还提出了对恒定电场中格林函数待定系数和高频下半无限大导电媒质中广义索末菲积分待定系数进行采样的自适应方法。为快速计算工频和高频时变电站接地网的接地性能奠定了理论基础。
    提出了基于矩量法和电路理论的分别以接地导体漏电流为未知量并忽略导体间互感影响和以接地导体轴向电流为未知量并计及导体间互感影响的两种接地网工频电磁场数值计算方法,并将前一种方法进一步推广到垂直分层土壤中的接地网、连有绝缘电缆的接地网以及输电线路及铁塔附近三维工频电场的计算。这两种方法使用的未知量少,分析的情况比较全面。数值计算和实验对比证明,通常情况下分析接地网时可以忽略接地导体之间的互感,使用本文提出的前一种方法就可以满足工程设计要求。
    提出了基于矩量法的未知量较少的接地网高频电磁场数值计算方法。基于快速傅立叶变换,利用本文提出的计算方法,可以分析接地网遭受雷击时的瞬态性能。
    建立了一个检验本文方法的试验接地网,通过对该接地网和其它多座变电站接地网接地性能的测试,获得了大量实测数据。通过与本文提出方法的计算结果进行对比,有力地验证了本文提出方法的有效性和实用性。
    开发了变电站接地网频域电磁场数值计算软件包,该软件包操作方便,前后处理功能强大,计算速度快。利用该软件包对大量工程问题进行了计算和分析,获得了大量有工程价值的结果,并被工程部门采用。本文开发的软件包可以取代进口国外知名软件包和传统的接地网设计方法,以节约大量的人力、物力和财力。
The grounding system is one of the important components of a substation, to which much attention is always paid. Supported by the National Natural Science Foundation of China (No. 50077006), in this thesis, the numerical methods for electromagnetic fields of substations’ grounding systems in frequency domain are researched and applied to practice. The methods presented in this thesis are verified by comparing the results with those of experiments and other famous software and by lots of applications. The main innovative achievements are as follows:
    A fast approach to the Green’s function in horizontally stratified multi-layer earth and its partial differentials to the earth parameters is put forward by using the complex image method. An efficient method for estimating earth structure from Wenner’s four-probe test data is presented. A self-adaptation method to sample the unknown variables in the Green’s function and in the generalized Sommerfeld integral in high frequency domain is proposed. Both of them provide the theoretical foundation for the analysis of the grounding systems.
    A method using leakage currents as unknown variables as well as neglecting the mutual inductances and a method using longitudinal currents as unknown variables as well as taking account of the mutual inductances to analyze the grounding systems in low frequency domain are presented respectively. At the same time, the former is extended to analyze the grounding systems in vertically stratified multi-layer earth, the grounding systems with cables connected to it and the 3D electric field near power towers. Calculations and experiments show that the mutual inductances can be neglected and the former method is effective enough.
    An effective electromagnetic approach with few unknown variables for the substations’ grounding systems in high frequency domain is put forward based on the method of moment. With the help of the fast Fourier transform, the method in this thesis can be used to analyze the transient problem.
    A test grounding system is set up. Lots of measured data are collected by the experiments on the testing grounding system and many other substations’ grounding systems, through which the validity and the practicability of the methods in this thesis are adequately testified.
    A software package to calculate the electromagnetic fields of substations’ grounding systems in frequency domain by numerical method is developed based on the author’s work. The software package has simulated many practical projects and obtained lots of valuable results that have already been accepted by correlative departments. Thus, the software package can replace other famous imported software package and provide a new method of designing grounding systems to make the work more efficient.
引文
中华人民共和国水利电力部,电力设备接地设计技术规程(SDJ8-79),北京:水利电力出版社,1979
    中国电力企业联合会标准化部,交流电气装置的接地(DL/T 621-1997)——电气工业标准汇编电气卷1997,北京:中国电力出版社,1997:537-568
    Frank Wenner, A Method of Measuring Earth Resistivity, Bulletin, Washington, D. C.: National Bureau of Standards, 1915, 12
    Hans R. Seedher, J. K. Arora, Estimation of Two Layer Soil Parameters Using Finite Wenner Resistivity Expressions, IEEE Transaction on Power Delivery, 1992, 7(3): 1213-1217
    Huina Yang, Jiansheng Yuan, and Wei Zong, Determination of Three-layer Earth Model from Wenner Four-probe Test Data, IEEE Transactions on Magnetics, 2001, 37(5): 3684-3687
    H. B. Dwight, Calculation of Resistances to Ground, AIEE Transactions, 1936: 1319-1328
    R. Rudenberg, Grounding Principles and Practice, Part I, II, III, &IV, Electrical Engineering, 1945, 64(1-4)
    E. D. Sunde, Earth Conduction Effects in Transmission Systems, New York: D. Van Nostrand Company Inc. 1949
    S. J. Schwarz, Analytical Expressions for the Resistance of Grounding Systems, IEEE Trans. Power Apparatus and Systems, 1954, 73: 1011-1016
    J. Zaborszky, Efficiency of Grounding Grids with Nonuniform Soil, IEEE Trans. Power Apparatus and Systems, 1955, 74: 1230-1233
    J. Endrenyi, Evaluation of Resistivity Tests for Design of Station Grounds in Nonuniform Soil, IEEE Trans. Power Apparatus and Systems, 1963, 69: 966-970
    B. Thapar and K. K. Puri, Mesh Potentials in High-voltage Grounding Grids, IEEE Trans. Power Apparatus and Systems, 1967, 86: 249-254
    Roger F. Harrington, Field Computation by Moment Methods, New York: Macmillan, 1968
    Trinh N. Giao, Maruvada P. Sarma, Effect of Two-layer Earth on the Electric Field near HVDC Ground Electrodes, IEEE Trans. Power Apparatus and Systems, 1972, 91: 2356-2365
    D. Mukhedkar, Y. Gervais, F. Dawalibi, Modelling of Potential Distribution around a
    
    
    Grounding Electrode, IEEE Trans. Power Apparatus and Systems, 1973, 92(5): 1455-1459
    F. Dawalibe, D. Mukhedkar, Optimum Design of Substation Grounding in Two-layer Earth Structure, Part ?, ??, ???, IEEE Trans. Power Apparatus and Systems, 1975, 94(2): 252-272
    F. Dawalibe, D. Mukhedkar, Multi-Step Analysis of Interconnected Electrodes, IEEE Trans. Power Apparatus and Systems, 1976, 95(1): 113-119
    F. Dawalibe, D. Mukhedkar, Transferred Earth Potentials in Power Systems, IEEE Trans. Power Apparatus and Systems, 1978, 97(1): 90-101
    Robert J. Heppe, Computation of Potential at Surface above an Energized Grid or Other Electrode, Allowing for Non-uniform Current Distribution, IEEE Trans. Power Apparatus and Systems, 1979, 98(6): 1978-1989
    F. Dawalibe, D. Mukhedkar, Influence of Ground Rods on Grounding Grids, IEEE Trans. Power Apparatus and Systems, 1979, 98(6): 2089-2097
    F. Dawalibe, D. Mukhedkar, Resistance Measurement of Large Grounding Systems, IEEE Trans. Power Apparatus and Systems, 1979, 98(6): 2348-2354
    Pierre Kouteynikoff, Numerical Computation of Grounding Resistance of Substations and Towers, IEEE Trans. Power Apparatus and Systems, 1980, 99(3): 957-965
    F. Dawalibi, Measured and Computed Currents Densities in Buried Ground Conductors, IEEE Trans. Power Apparatus and Systems, 1981, 100(8): 4083-4091
    EPRI Report, EL-2699, Transmission Line Grounding, United States: Electric Power Research Institute, 1982, 10
    F. Dawalibi, Earth Resistivity Measurement Interpretation Techniques, IEEE Trans. Power Apparatus and Systems, 1984, 103(2): 374-382
    R. P. Nagar, R. Velazquez, Review of Analytical Methods for Calculating the Performance of Large Grounding Electrodes, IEEE Trans. Power Apparatus and Systems, 1985, 104(12): 3124-3133
    F. Dawalibi, A. Pinho, Computerized Analysis of Power Systems and Pipelines Proximity Effects, IEEE Transaction on Power Delivery, 1986, 1(2): 40-47
    E. B. Joy, R. E. Wilson, Accuracy Study of the Ground Grid Analysis Algorithm, IEEE Transaction on Power Delivery, 1986, 1(3): 97-103
    F. P. Dawalibi, Electromagnetic Fields Generated by Overhead and Buried Short Conductors, Part 1 and Part 2, IEEE Transaction on Power Delivery, 1986, 1(4): 105-119
    
    B. Thapar, S. L. Goyal, Scale Model Studies of Grounding Grids in Non-Uniform Soils, IEEE Transaction on Power Delivery, 1987, 2(2): 1060-1066
    A. P. Meliopoulos, J. Dunlap, Investigation of Grounding Related Problems in AC/DC Converter Stations, IEEE Transaction on Power Delivery, 1988, 3(2): 558-567
    P. J. Lagace, Evaluation of the Voltage Distribution around Toroidal HVDC Ground Electrodes in N-layer Soils, IEEE Transaction on Power Delivery, 1988, 3(4): 1573-1579
    A. P. Meliopoulos, Analysis of DC Grounding Systems, IEEE Transaction on Power Delivery, 1988, 3(4): 1595-1604
    R. Verma, D. Mukhedkar, Impulse Impedance of Buried Ground Wire, IEEE Trans. Power Apparatus and Systems, 1980, 99(5): 2003-2007
    B. R. Gupta, B. Thapar, Impulse Impedance of Grounding Grids, IEEE Trans. Power Apparatus and Systems, 1980, 99(6): 2357-2362
    R. Verma, D. Mukhedkar, Fundamental Considerations and Impulse Impedance of Grounding Grids, IEEE Trans. Power Apparatus and Systems, 1981, 100(3): 1023-1030
    A. P. Meliopoulos, R. P. Webb, and E. B. Joy, Analysis of Grounding Systems, IEEE Trans. Power Apparatus and Systems, 1981, 100(3): 1039-1048
    I. D. Lu, R. M. Shier, Application of a Digital Signal Analyzer to the Measurement of Power System Ground Impedances, IEEE Trans. Power Apparatus and Systems, 1981, 100(4): 1918-1922
    A. P. Meliopoulos, M. G. Moharam, Transient Analysis of Grounding Systems, IEEE Trans. Power Apparatus and Systems, 1983, 102(2): 389-397
    M. M. Babu Narayanan, S. Parameswaran, D. Mukhedkar, Transient Performance of Grounding Grids, IEEE Transaction on Power Delivery, 1989, 4(4): 2053-2059
    L. Grcev, F. Dawalibi, An Electromagnetic Model for Transients in Grounding Systems, IEEE Transaction on Power Delivery, 1990, 5(4): 1773-1781.
    Takehiko Takahashi, Calculation of Earth Resistivity for a Deep-Driven Rod in a Multi-layer Earth Structure, IEEE Transaction on Power Delivery, 1991, 6(2): 608-614
    Y. Leonard Chow, Complex Images for Electrostatic Field Computation in Multilayered Media, IEEE Transactions on Microwave Theory and Techniques, 1991, 39(7): 1120-1125
    P. R. Pillai, E. P. Dick, A Review on Testing and Evaluating Substation Grounding
    
    
    Systems, IEEE Transaction on Power Delivery, 1992, 7(1): 53-61
    A. P. S. Melipoulos, An Advanced Computer Model for Grounding System Analysis, IEEE Transaction on Power Delivery, 1993, 8(1): 13-23
    F. P. Dawalibi, Effects of Deteriorated and Contaminated Substation Surface Covering Layers on Foot Resistance Calculations, IEEE Transaction on Power Delivery, 1993, 8(1): 7-12
    J. Ma, Analysis of Grounding Systems in Soils with Hemispherical Layering, IEEE Transactions on Power Delivery, 1993, 8(4): 1773-1781
    F. Dawalibi, Behaviour of Grounding Systems in Multilayer Soils: A Parametric Analysis, IEEE Transaction on Power Delivery, 1994, 9(1): 334-342
    Y. L. Chow, A Simplified Method for Calculating the Substation Grounding Grid Resistance, IEEE Transaction on Power Delivery, 1994, 9(2): 736-742
    A. Selby, F. Dawalibi, Determination of Current Distribution in Energized Conductors for the Computation of Electromagnetic Fields, IEEE Transaction on Power Delivery, 1994, 9(2): 1069 -1078
    W. Xiong, F. P. Dawalibi, Transient Performance of Substation Grounding Systems Subjected to Lighting and Similar Surge Current, IEEE Transaction on Power Delivery, 1994, 9(3): 1412-1420
    Frank E. Menter, EMTP-Based Model for Grounding System Analysis, IEEE Transaction on Power Delivery, 1994, 9(4): 1838-1849.
    Y. L. Chow, Grounding Resistance of Buried Electrodes in Multi-layer Earth Predicted by Simple Voltage Measurements along Earth Surface – A Theoretical Discussion, IEEE Transaction on Power Delivery, 1995, 10(2): 707-715
    J. Ma, F. Dawalibi, On the Equivalence of Uniform and Two-layer Soils to Multilayer Soils in the Analysis of Grounding Systems, IEE Proc.-Gener. Transm. Distrib., 1996, 143(1): 49-55
    Leonid. Grcev, Computer Analysis of Transient Voltages in Large Grounding Systems, IEEE Transaction on Power Delivery, 1996, 11(2): 815-823
    P. J. Lagace, Interpretation of Resistivity Sounding Measurements in N-Layer Soil using Electrostatic Images, IEEE Transactions on Power Delivery, 1996, 11(3): 1349-1354
    Leonid. Grcev, Markus Heimbach, Frequency Dependent and Transient Characteristics of Substation Grounding Systems, IEEE Transaction on Power Delivery, 1997, 12(1): 172-178
    Y. L. Chow, Surface Voltages and Resistance of Grounding Systems of Grid and
    
    
    Rods in Two-Layer Earth by the Rapid Galerkin's Moment Method, IEEE Transaction on Power Delivery, 1997, 12(1): 179-185
    Markus Heimbach, Leonid. D. Grcev, Grounding System Analysis in Transients Programs Applying Electromagnetic Field Approach, IEEE Transaction on Power Delivery, 1997, 12(1): 186-193
    Hans Kr. Hoidalen, Jarle Sletbak, and Thor Henriksen, Ground Effects on Induced Voltages from Nearby Lighting, IEEE Transaction on Electromagnetic Compatibility, 1997, 39(4): 269-278
    M. B. Kostic, Analysis of complex Grounding Systems Consisting of Foundation Grounding Systems with External Grids, IEEE Transaction on Power Delivery, 1998, 13(3): 752-756
    Hyung-Soo Lee, Efficient Ground Grid Designs in Layered Soils, IEEE Transaction on Power Delivery, 1998, 13(3): 745-751
    Z. Stojkovic, M. S. Savic, J. M. Nahman, Sensitivity Analysis of Experimentally Determined Grounding Grid Impulse Characteristics, IEEE Transaction on Power Delivery, 1998, 13(4): 1136-1142
    Qingbo Meng, Jinliang He, F. P. Dawalibi, A New Method to Decrease Ground Resistances of Substation Grounding Systems in High Resistivity Regions, IEEE Transaction on Power Delivery, 1999, 14(3): 911-916
    A. Geri, Behaviour of Grounding Systems Excited by High Impulse Currents: the Model and Its Validation, IEEE Transaction on Power Delivery, 1999, 14(3): 1008-1017
    A. F. Otero, J. Cidras, J. L. del Alamo, Frequency-Dependent Grounding System Calculation by Means of a Conventional Nodal Analysis Technique, IEEE Transaction on Power Delivery, 1999, 14(3): 873-878
    Jinxi Ma, F. P. Dawlibi, Analysis of Grounding Systems in Soils with Cylindrical Soil Volumes, IEEE Transaction on Power Delivery, 2000, 15(3): 913-918
    J. Cidras, A. F. Otero, C. Garrido, Nodal Frequency Analysis of Grounding Systems Considering the Soil Ionization Effect, IEEE Transaction on Power Delivery, 2000, 15(1): 103-107
    J. Ma, F. P. Dawalibi, Influence of Inductive Coupling between Leads on Ground Impedance Measurements using the Fall-of-potential Method, IEEE Transaction on Power Delivery, 2001, 16(4): 739-743
    Jinxi Ma, F. P. Dawalibi, Analysis of Grounding Systems in Soils with Finite Volumes of Different Resistivities, IEEE Transaction on Power Delivery, 2002, 17(2):
    
    
    596-602
    CIGRé WG 36.04, Guide on Electromagnetic Compatibility in Electric Power Plants and Substations, Publication No. 124, Paris: CIGRé, 1997
    IEEE-SA Standards Board, IEEE Guide for Safety in AC Substation Grounding, IEEE Std 80-2000
    谢广润,电力系统接地技术,北京:水利电力出版社,1991
    文习山,接地体接地参数的数值计算与模拟实验,(硕士学位论文),武汉,武汉水利电力大学,1985
    L. Huang, Study of Unequally Spaced Grounding Grids, IEEE Transaction on Power Delivery, 1995, 10(2): 716-722
    戴江江,发、变电所(站)大地网接地问题边界单元法计算,武汉水利电力学院学报,1984(1):51-62
    李光中,陈彩屏,赵初元,边界原法在基础接地中的应用——混凝土基础桩接地电阻的计算,电工技术学报,1991(3):59-63
    Jiansheng Yuan, Huina Yang, Liping Zhang, Simulation of Substation Grounding Grids with Unequal-Potential, IEEE Trans. on Magn., 2000, 36(4): 1468-1471
    R. W. Hamming, Numerical Method for Scientists and Engineers, New York: Dover, 1973
    王仁宏,数值逼近,北京:高等教育出版社,1999
    Yingbo Hua, and Tapan K. Sarkar, Generalized Pencil-of –Function Method for Extracting Poles of an EM System from Its Transient Response, IEEE Trans. Antennas Propagat., 1989, 37(2): 229-234
    Tapan K. Sarkar, Odilon Pereira, Using the Matrix Pencil Method to Estimate the Parameters of a Sum of Complex Exponentials, IEEE Trans. Antennas Propagat., 1995, 43(1): 48-55
    赵志斌,张波,崔翔,等,分层土壤中点电流源电流场计算的递推算法,华北电力大学学报,2003,30(1):22-25
    胡广书,数字信号处理——理论、算法与实现,北京:清华大学出版社,1997
    袁建生,李中新,求解多层媒质中点源电场问题的复镜像法,清华大学学报,1999,39(5):51-53
    邓乃扬,无约束最优化计算方法,北京:科学出版社,1982
    袁亚湘,孙文瑜,最优化理论与方法,北京:科学出版社,2001
    R. L. Stoll, The Analysis of Eddy Currents, Oxford: Oxford University Press, 1974
    卡兰塔罗夫,采伊特林著,陈汤铭等译,电感计算手册,北京:机械工业出版社,1992
    
    邵方殷等译,国际大电网会议第36.01工作组:输电系统产生的电场和磁场,北京:水利电力出版社,1984
    阮江军,喻剑辉,张启春,等,1100kV架空线周围的工频电场,高电压技术,1999,25(4):29-31
    张启春,阮江军,喻剑辉, 高压架空线下空间场强的数学模型,高电压技术,2000,26(1):19-21
    Maolin Wu, Xiang Cui, The Influence on the Low-Voltage DC Cables Caused by a Direct Lightning Strike in a 500kV Substation, Italy: The 5th International Symposium on Electromagnetic Compatibility, 2002, 9: 261-266
    吴维韩,张芳榴,等,电力系统过电压数值计算,北京:科学出版社,1989
    K. A. Michalski, Extrapolation Methods for Sommerfeld Integral Trails, IEEE Trans. Antennas Propagat, 1998, 46(10): 1405-1418
    S. O. Park, C. A. Balanis, A. Constantine, Analytical Technique to Evaluate Asymptotic Part of the Impedance Matrix of Sommerfeld-type Integrals, IEEE Trans. Antennas Propagat, 1997, 45(3): 798-805
    D. G. Fang, J. J. Yang, G. Y. Delisle, Discrete Image Theory for Horizontal Electric Dipoles in a Multilayered Medium, IEE Proceedings, Pt. H, 1988, 135(5): 297-303
    Y. L. Chow, J. J. Yang, D. G. Fang, A Closed-Form Spatial Green’s Function for the Thick Microstrip Substrate, IEEE Trans. MTT, 1991, 39(3): 588-592
    潘锦,文希理,Sommerfeld积分的截断技术,地球物理学报,1996,39(增刊):400-405
    A. Sommerfeld, Uber Die Ausbritung der Wellen in der Draftlosen Telegraphe, Annalen der Physik, (4th Folge), 1909, 28: 665-736
    雷银照,时谐电磁场解析方法,北京:科学出版社,2000
    王建,广义索末菲积分的离散复镜像法,地球物理学报,1992,35(5):644-649
    Power System Instrumentation and Measurements Committee of the IEEE Power Engineering Society, IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System, ANSI/IEEE Std 81-1983, New York: the Institute of Electrical and Electronics Engineers, Inc., 1983, 3
    E. F. Vance, Coupling to Shielded Cables, New York: Wiley-Interscience publication, 1978

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700