用户名: 密码: 验证码:
三维可控源电磁法非线性共轭梯度反演研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三维反演是电磁法解释的最有效手段,它可以克服一维和二维反演中存在的问题,反演出正确的地电结构。实现真正的完全三维反演是众多地球物理工作者的追求,但是由于其复杂性,三维反演技术尚未成熟,特别是可控源电磁法的三维反演,国外的研究还都停留在理论上,而国内的三维可控源电磁法研究还处于正演阶段,针对这一现状。本论文提出利用交错网格有限差分法来实现正演,然后利用非线性共轭梯度法完成可控源资料三维反演。
     本论文首先给出了适用于全空间层状模型各种基本源的格林函数广义描述,其核心是获得过源平行于层界面的虚界面上矢量势谱振幅的系数。该方法首先避开具体激发源的物理描述,将格林函数统一分解为TE模式场和TM模式场,然后利用电场切向分量连续性和磁场切向分量在含源虚界面处的不连续性求出源所在虚界面上的初始振幅系数,最后根据TE场和TM场的传播理论递推获得各层场的振幅。通过本文理论获得的过源(虚)界面上矢量势初始振幅系数在形式上可以分解为全空间格林函数的振幅系数(源强度)和模型参数对场初始振幅的影响两个部分,并且对于不同的源只需要替换对应源的全空间格林函数振幅系数即可得到对应格林函数的一般表达式。在此基础上,引进了二级近似离散复镜像法来实现低频格林函数快速、精确的计算。通过数值分析,给出了在低频地球物理电磁场计算中该方法近似参数的选取原则。(1)、二级近似的积分区间里谱格林函数采样个数N为十倍的近似多项式的个数M;(2)、总的积分区间L2大小约为40/r,r为收发距离;(3)、两个积分区间的分界值L1为总的积分区间大小L2与第二个积分区间采样数N1的比值的Q倍;(4)、Q的最优值根据谱格林函数拟合相对误差随Q值变化的近似误差曲线与横轴的交点来确定。将该参数选取原则应用到有限长双极源电磁场计算中,计算得到的视电阻率和直接积分结果吻合,表明本论文提出的计算方案是可行的。
     接着本论文利用基于二次场的交错网格有限差分方法来实现可控源电磁勘探的三维正演。计算过程中,Helmholtz方程右手源项中的基本场采用上述的数值计算技术进行。对均匀半空间近似模型的模拟结果与解析解基本吻合。对低阻异常和高阻异常体的不同频率的二次场和总场的形态特点进行了分析,发现:对于低阻体,其正上方的Ex总的电场强度减小,沿x轴方向在异常体两边Ex总的电场强度增加;对于高阻体,其变化规律与低阻体相反;对多个异常体的正演结果可以看出,本论文采用的长接地导线源对于低阻的敏感度要明显的高于对高阻的敏感度,这可以作为反演时选择背景电阻率的一个参考。
     借助于基于交错网格的有限差分正演模拟,本论文对非线性共轭梯度法的可控源资料三维反演进行了研究。在进行反演计算时,非线性共轭梯度法不需要显式计算灵敏度矩阵,而只需要计算矩阵和向量的乘积,这只需要一次正演和一次伴随正演。再加上为了计算步长而进行的线性搜索需要的最少三次正演,一次迭代只需要6次左右的正演就可以完成。对简单异常体的反演结果表明,非线性共轭梯度法可以较准确的给出异常体的位置、大小和电阻率等信息。对于层状异常,反演只能正确的给出测区之内中间范围的地电结构。对于测区外的较小异常体模型反演表明,反演异常体的位置基本反映了真实异常,并对测区内反演的电阻率分布基本没有影响,基本消除了常规可控源音频大地电磁反演的所谓阴影效应。对野外数据的三维反演结果和二维反演结果基本一致,证明了本论文的三维非线性共轭梯度算法是完全可靠的。
Three dimensional inversion is the most effective method in data processing of electromagnetic method, which can get the correct geoelectric structure avoiding many problems in one dimensional inversion and two dimensional inversion. Many geophysics pursuit of full three dimensional inversion, but it's complexity make it still under development. Especially in controlled source electromagnetic method, the study is stay in theory abroad. Domestic three dimensional controlled source electromagnetic research is in forward modeling, and for such situation, this paper make use of staggered grid finite difference to achieve forward modeling, and nonlinear conjugate gradient method for three dimensional inversion.
     Firstly, this paper introduces a method to generalize the description of Green's functions from various basic sources buried in stratified earths. The key of the theory is based on calculating the vector potential's amplitude coefficient on the virtual interface passing through the source and paralleling to the other interfaces. In order to get the generalized expression, we firstly separate Green's function into TE mode and TM mode, then a virtual interface parallel to layer interfaces is inserted through source. The continuity of the tangential electric field and the discontinuity of the tangential magnetic field on the virtual interface are then utilized to obtain the initial amplitude coefficient on the interface. Lastly, the amplitude coefficients in each layer will be recurred from the initial amplitudes using the propagation theory of TE mode and TM mode. The obtained initial amplitudes of vector potential on the virtual interface can be decomposed into the amplitude coefficient of whole space Green's function (source intensity) and the impact factor from model parameters; and for different source, to get the corresponding Green's function, only the amplitude coefficient of whole space is necessary to be changed. The methodology unifies Green's functions in electromagnetic exploration, simplifies the computation and gets better numerical stability. On this basis, this paper discusses how to applying the two-level approximate discrete complex image method to fast and accurately compute the low frequency Green's functions. Through numerical simulation, the approximate parameters in the compution of low frequency electromagnetc field is determined as follows:(1) Sampling number N of spectral green's function in the two-approximate integral interval are ten times of the number of approximate polynomial M; (2) The integral interval is about 40/r, where r is the offset; (3) The conjunction value L1 of the two level integral interval is Q times of the ratio of the total size of the integral interval L2 and the sampling number N1 of the second integral interval; (4) the optimal value of Q is decided by the cross point of the spectral Green's function approximate error plot about Q and the horizontal axis. The application of this principle to the calculation of the electromagnetic fields from a finite bipolar source shows that the calculated apparent resistivity agree with direct integral result very well, this reveals that the the proposed strategy is feasible.
     Then, this paper use finite difference method based on the secondary field to achieve three dimensional modeling of controlled source electromagnetic. This paper analysis the secondary field and total field's morphological characteristics of low resistivity abnormal body and high resistivity abnormal with different frequences, and summed as:for low resistivity abnormal body, the total electric field Ex become small just above it, and on both sides of the abnormal body along the x-axis, the total electric field Ex become large; for the high resistivity abnormal body, its law to the contray. From the result of many abnormal bodys, it can be seen that the low resistivity abnormal body is easer to be distinguished then the high resistivity abnormal body, which can be a reference when select background resistivity in inversion.
     Based on the staggered grid finite difference modeling, we use nonlinear conjugate gradient method to solve the problem of three dimensional inversion. When in the inversion calculation, nonlinear conjugate gradient method doesn't need to compute the sensitivity matrix explicitly, but only to calculate the product of matrix and vector, which just one forward modeling and one adjoint forward modeling. Although, another 3 or 4 forward problems should be done to evaluate the optimal step lenth, thus, there are totally about 5 time forward modeling in each iteration, the whole computation timen is much less than directly sensitivity matrix computation method. The inversion results of simple abnormal body show that nonlinear conjugate gradient method can get the correct position、size and resistivity of abnormal body. This paper also discusse the layered abnormal body and the abnormal body outside the surveyed area. For the layered abnormal body, we can only get the geoelectric structure in the surveyed area; for the little abnormal body outside, inversion give the right position of the abnormal body, and doesn't affect the inversional resistivity in the surveyed area. This shows that three dimensional inversion eliminate the shadow effect; field data inversion shows that three dimensional inversion give the same results as two dimensional inversion, which prove the algorithm of three dimensional nonlinear conjugate gradient method in this paper is reliable.
引文
[1]陈桂波,汪宏年,姚敬金,韩子夜.利用积分方程法的各向异性底层频率测深三维模拟[J].计算物理,2010,27(2):274-280.
    [2]付长民,底青云,王妙月.海洋可控源电磁法三维数值模[J].石油地球物理勘探,2009,44(3):353-363.
    [3]付长民,底青云,王妙月.计算层状介质中电磁场的层矩阵法[J].地球物理报,2010,53(1):177-188.
    [4]葛为中.层状介质电源电场正演解析及其应用[J].地球物理学报,1994,37(增刊Ⅱ):534-541.
    [5]胡祖志,胡祥云,何展翔.大地电磁非线性共轭梯度拟三维反演[J].地球物理学报,2006,49(4):1126-1234.
    [6]刘长生.基于非结构化网格的三维大地电磁自适应矢量有限元数值模拟[D].湖南:中南工业大学,2009.
    [7]刘云鹤,刘国兴,翁爱华,陈玉玲,贾定宇,廖祥东.基于二级近似离散复镜像法的低频电磁格林函数计算[J].地球物理学报,2011,54(4):1114-1121.
    [8]鲁来玉,张碧星。鲍光淑.电阻率随位置线性变化时的三维大地电磁模拟[J].地球物理学报,2003,46(4):568-575.
    [9]罗延钟,张胜业,王卫平.时间域航空电磁法一维正演研究[J].地球物理学报,2003,46(5):719-724.
    [10]朴化荣.电磁测深法原理[M].北京:地质出版社,1990.
    [11]阮百尧,王有学.三维地形频率域人工源电磁场的边界元模拟方法[J].地球物理学报,2005,48(5):1197-1204.
    [12]邵长金,李相方.离散复镜像法求取层状介质的格林函数[J].中国石油大学学报(自然科学版),2006,30(1):150-153.
    [13]沈金松.用交错网格有限差分计算三维频率域电磁响应[J].地球物理学报,2003,(2):281-288.
    [14]汤井田,何继善可控源音频大地电磁法及其应用[M].湖南:中南大学出版社,2005.
    [15]汤井田,罗维斌,刘长生.海底油气藏地质模型的冲击响应[J].地球物理学报,2008,51(6):1929-1935.
    [16]汤井田,任政勇,化希瑞.地球物理学中的电磁场正演与反演[J].地球物理学进,2007,22(4):1181-1194.
    [17]谭捍东,余钦范,John Booker,魏文博.大地电磁法三维交错采样有限差分数值模拟[J].地球物理学报,2003,46(5):705-711.
    [18]翁爱华,王雪秋.利用数值积分提高一维模型电偶源电磁测深响应计算精度[J].西北地震学报,2003,25(3):193-197.
    [19]翁爱华.三维井中电磁法正反演[R].俄勒冈,美国:俄勒冈大学,2010.
    [20]王家映.我国石油电法勘探评述[J].勘探地球物理进展,2006,29(2):77-81.
    [21]王若,底青云,王秒月,王光杰.用积分方程法研究源于勘探区之间的三维体对CSAMT观测曲线的影响[J].地球物理学报,2009,52(6):1573-1582.
    [22]王若,王秒月,卢元林.三维三分量CSAMT法有限元正演模拟研究初探[J].地球物理学进展,2007,22(2):579-585.
    [23]王绪本,刘云,高永才.大地电磁测深三维有限单元四面体剖分法数值模拟[C].中国安徽合肥:中国地球物理学会第二十五届年会,2009.
    [24]徐建华.层状媒质中的电磁场与电磁波[M].北京:石油工业出版社,1977.
    [25]徐利明,聂在平.埋地目标体矢量电磁散射的一种快速正演算法[J].地球物理学报,2005,48(1):209-215.
    [26]殷长春.可控源音频磁大地电流法一维正演及精度评价[J].长春地质学院学报,1994,24(4):438-443.
    [27]杨长福,徐世浙.国外大地电磁研究现状[J].物探与化探,2005,29(3):243-247.
    [28]袁建生,李中新.求解多层媒质中点源电场问题的复镜像法[J].清华大学学报(自然科学版),1999,39(5):51-53.
    [29]阎述,陈明生.电偶源频率电磁测深三维地电模型有限元正演[J].煤田地质与勘探,2000,28(3):50-56.
    [30]赵国泽,陈小斌,汤吉.中国地球电磁法新进展和发展趋势[J].地球物理学进展,2007,22(4):1171-1180.
    [31]张辉,李桐林,董瑞霞.体积分方程法模拟电偶源三维电磁响应[J].地球物理学进展,2006,21(2):386-390.
    [32]张继峰.基于电场双旋度方程的三维可控源电磁法有限单元法数值模拟[D].湖南:中南大学,2008.
    [33]Aksun M I. A robust approach for the derivation of closed-form Green's functions[J]. IEEE Trans.Microwave.Theory Tech,1996,44(5):651-658.
    [34]Anderson W L. Numerical integration of related Hankel transforms of orders 0 and 1 by ad-aptive digital filtering [J]. Geophysics,1979,44(10):1287-1305.
    [35]Alumbaugh D L, Newman G A, Prevost L and Shadid J N. Three-dimensional wide band e-lectromagnetic modeling on massively parallel computers[J]. Radio Sci.1996.31:1-23.
    [36]Avdeev D B, Kuvshinov A V, Pankratov O V and Newman G A. High-performance three-dimensional electromagnetic modeling using modified neumann series. Wide-band numer-ical solution and examples[J]. J. Geomagn. Geoelectr.,1997.49:1519-1539.
    [37]Avdeev D B, Kuvshinov A V, Pankratov O V and Newman G A. Three-dimensional frequ-ency-domain modelling of airborne electromagnetic responses[J]. Explor. Geophy.,1998, 29:111-119.
    [38]Avdeev D B, Kuvshinov A V, Pankratov O V and Newman G A.3D EM modelling using fast integral equation approach with Krylov subspace accelerator, in Expanded abstracts of the 62nd EAGE Conference[C]. Glasgow, Scotland,2000:195-198.
    [39]Avdeev D B, Kuvshinov A V, Pankratov O V and Newman G A. Three-dimensional induc-tion logging problems. part I. An integral equation solution and model comparisons[J]. Ge-ophysics,2002a,67:413-426.
    [40]Avdeev D B, Kuvshinov A V and Epova X A. Three-dimensional modeling of electromag-netic logs from inclined-horizontal wells[J]. Izvestiya. Phys. Solid Earth.,2002b,38:975-980.
    [41]Avdeev D B. Three-dimensional electromagnetic modelling and inversion from theory to application[J]. Surveys in Geophysics,2005,26:767-799.
    [42]Badea E A, Everett M E, Newman G A and Biro O. Finite-element analysis of controlled--source electromagnetic induction using coulomb-gauged potentials[J]. Geophysics,2001, 66:786-799.
    [43]Boyce W, Lynch D, Paulsen K and Minerbot G. Nodal based finite element modelling Ma-xwell's equations[J]. IEEE Trans. Antennas Propagat,1992,40:642-651.
    [44]Borner R. Numerical modeling in geo-electrcmagnetics:advances and challenges[J]. Surv-ey Geophysics,2010,31:225-245.
    [45]Cerv V. Modelling and analysis of electromagnetic fields in 3D inhomogeneous media[J]. Surv. Geophys.,1990,11:205-230.
    [46]Champagne N J, Berryman J G, Buettner H M, Grant J B and Sharpe R M. A finite-differ-ence frequency-domain code for electromagnetic induction tomography, in Proc. SAGEEP [C]. Oakland, CA,1999:931-940.
    [47]Chave A D and Cox C S.Controlled electromagnetic sources for measuring electrical cond-uctivity beneath the oceans:1.Forward problem and model study[J]. J. Geophys. Res.,1982, 87:5327-5338.
    [48]Chave A D. Numerical integration of related Hankel transforms by quadrature and continu-ed fraction expansion[J]. Geophysics,1982,48(12):1671-1686.
    [49]Chow Y L, Yang J J, Fang D G, and Howard G E.A closed-form spatial Green's function for the thick microstrip substrate[J]. IEEE Trans.Microwave Theory Tech.,1991,39(3): 588-592.
    [50]Coggon J H and Morrison H F. Electromagnetic investigation of the sea floor[J]. Geophys, 1970,35(3):476-489.
    [51]Commer M and Newman G A. Parallel finite-difference approach for 3D transient electro-magnetic modeling with galvanic sources[J]. Geophysics,2004,69:1192-1202.
    [52]Commer M and Newman G A. New advances in three-dimensional controlled-source elect-romagnetic inversion[J]. Geophys. J. Int.,2008,172:513-535.
    [53]Das U. A reformalism for computing frequency-and time-domain EM responses of a buried, finite-loop,in Annual Meeting Abstracts[C].Houston:SEG,1995:811-814.
    [54]Das U and Hoop A. Efficient computation of apparent resistivity curves for depth profiling of a layered earth[J]. Geophysics,1995,60:1691-1697.
    [55]De Hoop A T. Areas for exploration in electromagnetic modelling and inversion[J]. Inverse problems,2000,16:1083-1096.
    [56]Dey A and Morrison H F. Resistivity modelling for arbitrary shaped three-dimensional str-uctures[J]. Geophysics,1979,44:753-780.
    [57]Dey A and Ward S H. Inductive sounding of a layered earth with a horizontal magnetic dip-ole[J]. Geophys,1970,35(4):660-703.
    [58]Dmitriev V I. Electromagnetic fields in inhomogeneous media[D]. Moscow:Moscow State University,1969.
    [59]Dmitriev V I and Nesmeyanova N I. Integral equation method in three-dimensional proble-ms of low-frequency electrodynamics[J]. Comput. Math. Model.,1992,3:313-317.
    [60]Eaton P A.3D electromagnetic inversion using integral equations[J]. Geophys. Prosp.,198-9,37:407-426.
    [61]Egbert G D.Computational recipes for EM inverse problems:Mathematical framework and modular implementation[R]. Oregon:Oregon State University,2011.
    [62]Ellis R G. Joint 3-D electromagnetic inversion, in M J Oristaglio and B R Spies(eds.), Thr-ee dimensional electromagnetics[C].Tulsa,OK:SEG,1999:179-192.
    [63]Ellis R G. Electromagnetic inversion using the QMR-FFT fast integral equation method, in 72st Ann. Internat. Mtg [C]. Soc. Expl. Geophys.,2002:21-25.
    [64]Farquharson C G and Oldenburg D W. Approximate sensitivities for the electromagnetic i-nverse problem[J]. Geophys. J. Int.,1996,126:235-252.
    [65]Fang D G,Yang J J, and Delisle G Y.Discrete image theory for horizontal electric dipoles in a multilayered medium[J].Proc.Inst.Elect.Eng.,1988,135(10):297-303.
    [66]Fletcher R and Reeves C M. Function minimization by conjugate gradients [J]. Comput. J., 1964,7:149-154.
    [67]Fomenko E Y and Mogi T. A new computation method for a staggered grid of 3D EM field conservative modeling[J]. Earth Planets Space,2002,54:499-509.
    [68]Ge Y H and Esselle K P. New closed-form Green's functions for microstrip structures-the-ory and results[J]. IEEE Trans.Microwave Theory Tech.,2002,50(6):1556-1560.
    [69]Ghosh P P. The application of linear filter theory to the direct integration of geoelectrical resistivity sounding measurements[J]. Geophysical prospecting,1971,19(2):192-217.
    [70]Goldman M. Non-conventional methods in geoelectrical prospecting[M]. Ellis Horwood Ltd Publisher,1990.
    [71]Greenbaum A. Iterative methods for solving linear systems[M]. Philadelphia:SIAM,1997.
    [72]Habashy T M, Groom R W and Spies B R. Beyond the Born and Rytov approximations:a nonlinear approach to electromagnetic scattering[J]. J. Geophys. Res.,1993,98:1759-1775.
    [73]Haber E. Modeling 3D EM using potentials and mixed finite elements, in M J Oristaglio and B R Spies (eds.), Three Dimensional Electromagnetics[C].Tulsa,OK:SEG,1999:12-15.
    [74]Haber E, Ascher U M, Aruliah D A. and Oldenburg D W. Fast simulation of 3D electrom-agnetic problems using potentials[J]. J. Comp. Phys.,2000a,163:150-171.
    [75]Haber E, Ascher U M, Aruliah D A. and Oldenburg D W. On optimisation techniques for solving nonlinear inverse problems[J]. Inv. Prob.,2000b,16:1263-1280.
    [76]Haber E, Ascher U M, Oldenburg D W, Shekhtman R and Chen J.3-D frequency domain CSEM inversion using unconstrained optimization, in 72st Ann. Internat. Mtg[C].Soc. Expl. Geophys.,2002a:653-656.
    [77]Haber E, Ascher U M and Oldenburg D W. Inversion of 3D electromagnetic data in frequ-ency and time domain using an inexact all-at-once approach[J]. Geophysics,2004,69:1216-1228.
    [78]Haber E. Quasi-newton methods for large-scale electromagnetic inverse problems[J]. Inv. Prob.,2005,21:305-323.
    [79]Hohmann G W. Three-dimensional induced-polarization and electromagnetic modeling[J]. Geophysics,1975,40:309-324.
    [80]Hohmann G W. Numerical modelling of electromagnetic methods of geophysics, in M. N. Nabighian (ed.), Electromagnetic methods in applied geophysics, Vol.1 [M]. Oklahoma: SEG,1988:314-364.
    [81]Hua Y and Sarkar T K. Generalized pencil-of-function method for extracting poles of an EM system from its transient response[J]. IEEE Trans, on Antennas Propaga.,1989,37(2): 229-234.
    [82]Jones F W and Pascoe L J. The perturbation of alternating geomagnetic fields by three-di-mensional conductivity inhomogeneities[J]. Geophys. J. Roy. Astr. Soc.,1972,27:479-484.
    [83]Judin M N. Magnetotelluric field calculation in three-dimensional media using a grid meth-od, in Problems of the Sea Electromagnetic Investigations[D]. Moscow:IZMIRAN,1980.
    [84]Kaufman A A and Eaton P A. The theory of inductive prospectings, methods in geochemi-stry and geophysics 35[M]. Amsterdam-NewYork-Tokyo:Elsevier,2001.
    [85]Kaufman A A and Keller G V. Frequency and transient soundings[M]. New York:Elsevier, 1983.
    [86]Kaufman A A and Dashevsky Y A. Principles of induction logging[M]. Amsterdam:Elsevi-er,2003.
    [87]Kelly C T. Iterative methods for optimization[M]. Philadelphia:SIAM,1999.
    [88]Key K. ID inversion of multicomponent, multifrequency marine CSEM data:methodology and synthetic studies for resolving thin resistive layers[J]. Geophysics,2009,74:F9-F20.
    [89]Kelbert A, Egbert G and Schultz A. Non-linear conjugate gradient inversion for global EM induction:resolution studies[J]. Geophys. J. Int.,2008,173:365-381.
    [90]Krivochieva S and Chouteau M. Whole-space modeling of a layered earth in time-domain electromagnetic measurements[J]. Journal of Applied Geophysics,2002,50:375-391.
    [91]Lager I E and Mur G. Generalized cartesian finite elements[J]. IEEE Trans. Magn.,1998,34, 2220-2227.
    [92]Levenberg K. A method for the solution of certain non-linear problems in least squares[J]. Quart. Appl. Math.,1944,2:164-168
    [93]Lin C H, Tan H D and Tong T. Three-dimensional conjugate gradient inversion of magneto-telluric sounding data[J]. Applied Geophysics,2008,5(4):314-321.
    [94]Lin C H, Tan H D and Tong T. Parallel rapid relaxation inversion of 3D magnetotelluric da-ta[J]. Applied Geophysics,2009,6(1):77-83.
    [95]Livelybrooks D. Program 3D feem, A multidimensional electromagnetic finite element mo-del[J]. Geophys. J. Int.,1993,114:443-458.
    [96]Mackie R L and Madden T R. Three-dimensional magnetotelluric inversion using conjugat-e gradients[J]. Geophys. J. Int.,1993,115:215-229.
    [97]Mackie R L, Madden T R and Wannamaker P.3-D magnetotelluric modeling using differe-ntce equations-Theory and comparisons to integral equation solutions[J]. Geophysics, 1993,58:215-226.
    [98]Mackie R L, Smith T J and Madden T R.3-D electromagnetic modeling using difference equations, the magnetotelluric example[J]. Radio Sci.,1994,29:923-935.
    [99]Mackie R L, Rodi W and Watts M D.3-D magnetotelluric inversion for resource explora-tion, in 71st Ann. Internat. Mtg[C]. Soc. Expl. Geophys.,2001:1501-1504.
    [100]Madden T R and Mackie R L. Three-dimensional magnetotelluric modeling and inversion [J]. Proc. IEEE.,1989,77:318-333.
    [101]Marquardt D W. An algotithm for least-squares estimation of nonlinear parameters[J]. J. Soc. Indust. Appl. Math.,1963,11:431-441.
    [102]McGillivray P R and Oldenburg D W. Methods for calculating frechet derivatives and sens-itivities for the non-linear inverse problems[J]. Geophysics,1990,60:899-911.
    [103]Mitsuhata Y and Uchida T.3D magnetotelluric modeling using the T-W document finite-e-lement method[J]. Geophysics,2004,69:108-119.
    [104]Newman G A. and Hohmann G W. Transient electromagnetic tesponse of high-contrast pri-sms in a layered earth[J]. Geophysics,1988,53:691-706.
    [105]Newman G A and Alumbaugh D L. Frequency-domain modeling of airborne electromagn-etic responses using staggered finite differences[J]. Geophys. Prosp.,1995,43:1021-1042.
    [106]Newman G A. and Alumbaugh D L. Three-dimensional massively parallel electromagnetic inversion-1, Theory[J]. Geophys. J. Int.,1997,128:345-354.
    [107]Newman G A. and Alumbaugh D L. Three-dimensional magnetotelluric inversion using non-linear conjugate gradients[J]. Geophys. J. Int.,2000,140:410-424.
    [108]Newman G A. and Hoversten G M. Solution strategies for 2D and 3D EM inverse problem [J]. Inv. Prob.,2000,16:1357-1375.
    [109]Newman G A., Hoversten G M and Alumbaugh D L.3D magnetotelluric modeling and inversion, applications to sub-salt imaging, in M.S. Zhdanov and P.E.Wannamaker (eds.), Three Dimensional Electromagnetics, Methods in Geochemistry and Geophysics 35[M]. Utah:Elsevier,2002.
    [110]Newman G A. and Alumbaugh D L. Three-dimensional induction logging problems. Part I. An integral equation solution and model comparisons [J]. Geophysics,2002,67:484-491.
    [111]Newman G A. Recher S, Tezkan B and Neubauer F M.3D inversion of a scalar radio mag-netotelluric field data set[J]. Geophysics,2003,68:791-802.
    [112]Newman G A and Boggs P T. Solution accelerators for large-scale three-dimensional elect-romagnetic inverse problem[J]. Inv. Prob.,2004,20:s151-s170.
    [113]Newman G A. and Commer M. New advances in three-dimensional transient electromag-netic inversion[J]. Geophys. J. Int.,2005,160:5-32.
    [114]Nocedal J and Wright S. Numerical optimization. New York:Springer-Verlag,1999.
    [115]Pankratov O V, Avdeev D B and Kuvshinov A V. Electromagnetic field scattering in a heterogeneous earth, a solution to the forward problem[J]. Phys. Solid Earth,1995,31: 201-209.
    [116]Pankratov O V, Kuvshinov A V and Avdeev D B. High-performance three-dimensional electromagnetic modeling using modified neumann series [J]. Anisotropiccase. J. Geoma-gn. Geoelectr.,1997,49:1541-1547.
    [117]Parker R L. Geophysical inverse theory. Princeton Univ. Press,1994.
    [118]Polak E and Ribiere G. Note sur la convergence de methode de directions conjuguees [J]. Revue Francaise d'Informatique et de Recherche Operationnelle,1969,16:35-43.
    [119]Portniaguine O and Zhdanov M S. Focusing geophysical inversion images[J]. Geophysics, 1999,64:874-887.
    [120]Pridmore D F, Hohmann G W, Ward S H and Still W R. An investigation of finite-element modeling for electrical and electromagnetic data in three dimensions[J]. Geophysics,1981, 46:1009-1024.
    [121]Raiche A. An integral equation approach to three-dimensional modeling[J]. Geophys. J., 1974,36:363-376.
    [122]Ramaswamy V, Dosso H W and Weaver J T. Horizontal magnetic dipole embedded in a two-layer conducting medium[J]. Can.J.Phys.,1972,50:607-616.
    [123]Ramaswamy V and Dosso H W. Effect of a conducting overburden on the fields of a buried dipole source[J]. Can.J.Phys.,1975,53(6):598-606.
    [124]Ratz S. A 3D finite element code for modeling of electromagnetic responses, in expanded abstracts of the 2nd International Symposium on 3D Electromagnetics[C]. Salt Lake City, Utah:SEG,1999:33-36.
    [125]Reddy I K, Rankin D and Phillips R J. Three-dimensional modellingin magnetotelluric and magnetic variational sounding[J]. Geophys. J. Roy. Astr. Soc.,1977,51:313-325.
    [126]Rodi W L. A technique for improving the accuracy of finite element solutions for magnetit-elluric data[J]. Geophys. J. Roy. Astr. Soc.,1976,44:483-506.
    [127]Rodi W L and Mackie R L. Nonlinear conjugate gradients algorithm for 2-D magnetotellur-ic inversion[J]. Geophysics,2001,66:174-187.
    [128]Singer B S. Method for solution of maxwell's equations in non-uniform media[J]. Geophys. J. Int.,1995,120:590-598.
    [129]Singer B S and Fainberg E B. Generalization of the Iterative-dissipative method for model-ing electromagnetic fields in non-uniform media with displacement currents[J]. J. Appl. Geophys.,1995,34:41-46.
    [130]Singer B and Fainberg E B. Fast and stable method for 3-D modelling of electromagnetic field[J]. Explor. Geophys.,1997,28:130-135.
    [131]Singer B, Mezzatesta A and Wang T. Integral equation approach based on contraction ope-rators and Krylov subspace optimisation, in J Macnae and G Liu (eds.), Three Dimensional Electromagnetics III[C].Austr. Soc. Expl. Geophys,2003.
    [132]Siripunvaraporn W and Egbert G. An efficient data-subspace inversion method for 2-D ma-gnetotelluric data[J]. Geophysics,2000,65(3):791-803.
    [133]Siripunvaraporn W, Egbert G A and Lenbury Y. Numerical accuracy of magnetotelluric modeling:A comparison of finite difference approximations[J]. Earth Planets Space,2002, 54:721-725.
    [134]Siripunvaraporn W and Egbert G. Data space conjugate gradient inversion for 2-D magne-totelluric data[J].Geophys. J. Int.,2007,170:986-994.
    [135]Slichter L B and Knopoff L. Field of an alternating magnetic dipole on the surface of a lay-ered earth[J]. Geophysics,1959, XXIV:77-88.
    [136]Smith J T and Booker J R. Magnetotelluric inversion for minimum structure[J]. Geophysics, 1988,53:1565-1576.
    [137]Smith J T and Booker J R. Rapid inversion of two-and three-dimensional magnetotelluric data[J]. J. Geophys. Res.,1991,96(B3):3905-3922.
    [138]Smith J T. Conservative modeling of 3-D electromagnetic fields, Part Ⅰ, properties and error analysis[J]. Geophysics,1996a,61:1308-1318.
    [139]Smith J T. Conservative Modeling of 3-D electromagnetic fields, Part Ⅱ, biconjugate gradi-ent solution and an accelertor[J]. Geophysics,1996b,61:1319-1324.
    [140]Spichak V V. Numerically modeling the electromagnetic fields in three-dimensional media. Ph. D. thesis[D]. Moscow:Moscow State University,1983.
    [141]Stoyer C H. Electromagnetic Fields of dipoles in stratified media[J]. IEEE Trans. on Ante-nnas Propaga.,1977,25:547-552.
    [142]Sugeng F, Raiche A and Xiong Z. An edge-element approach to model the 3DEM response of complex structures with high contrasts, in expanded abstracts of the 2nd International Symposium on 3D Electromagnetics[C]. Salt Lake City, Utah:SEG,1999:25-28.
    [143]Tamarchenko T, Frenkel M and Mezzatesta A. Three-dimensional modeling of microresist-ivity devices, in M J Oristaglio and B R Spies (eds.), Three Dimensional Electromagnetics, S.E.G. Geophysical Developments Series[C].Tulsa,OK:SEG,1999:77-83.
    [144]Tarantola, A. Inverse Problem Theory. Amsterdam-Oxford-New York-Tokyo:Elsevier, 1987.
    [145]Tan H D, Tong T and Lin C H.The parallel 3D magnetotelluric forward modeling algorithm [J]. Applied Geophysics,2006,3(4):197-202
    [146]Tikhonov A N and Arsenin V Y. Solutions of ill-posed problems[M]. New York:Wiley, 1977.
    [147]Ting S C and Hohmann G W. Integral equation modeling of three-dimensional magnetite-lluric response[J]. Geophysics,1981,46:182-197.
    [148]Torres-Verdin C and Habashy T M. Rapid 2.5-D forward modeling and inversion via a new nonlinear scattering approximation[J]. Radio Sci.,1994,29:1051-1079.
    [149]Torres-Verdin C and Habashy T M. Rapid numerical simulations of axisymmetric single-well induction data using the extended born approximation[J]. Radio Sci.,2002,36:1287-1306.
    [150]Tseng H-W, Lee K H and Becker A.3-D interpretation of electromagnetic data using a modified extended born approximation[J].Geophysics,2003,68:127-137.
    [151]Varentsov I M. The selection of effective finite difference solvers in 3D electromagnetic modeling, in Expanded Abstracts of 2nd International Symposium on 3D Electromagnetics[C]. Salt Lake City, Utah:SEG,1999.
    [152]Wait J R. Propagation of radio waves over a stratified ground[J]. Geophys,1953,18:416-422.
    [153]Wang T and Hohmann G W. A finite-difference time-domain solution for three-dimensio-nal electromagnetic modeling[J]. Geophysics,1993,58:797-809.
    [154]Wang T and Tripp A. FDTD simulation of EM wave propagation in 3-D media[J]. Geoph-ysics,1996,61:110-120.
    [155]Wannamaker P E, Hohmann G W and San Filipo W A. Electromagnetic modeling of three-dimensional bodies in layered earth using integral equations[J]. Geophysics,1984,49:60-74.
    [156]Wannamaker P E. Advances in Three-dimensional magnetotelluric modeling using integral equations[J]. Geophysics,1991,56:1716-1728.
    [157]Ward S H and Hohmann G W. Electromagnetic theory for geophysical applications:Elec-tromagnetic methods in applied geophysics[J]. Investigations in Geophysics,1988,1:131-311.
    [158]Weaver J T. The quasi-static field of an electric dipole imbedded in a two-layer conducting half-space[J]. Can.J.Phys,1967,45:1981-2002.
    [159]Weaver J T. Mathematical methods for geo-electromagnetic induction[M].Taunton, UK: John Wiley and Sons,1994.
    [160]Weidelt P. Electromagnetic induction in 3D structures[J]. J. Geophys.,1975,41:85-109.
    [161]Weidelt P.3D conductivity models, implications of electrical anisotropy, in M J Oristaglio and B R Spies (eds.), Three Dimensional Electromagnetics [C].Tulsa,OK:SEG,1999:119-137.
    [162]Weiss Ch J and Newman G A. Electromagnetic induction in a fully 3-D anisotropic earth[J]. Geophysics,2002,67:1104-1114.
    [163]Weiss Ch J and Newman G A. Electromagnetic induction in a fully 3-D anisotropic earth, part 2, the LIN preconditioner[J]. Geophysics,2003,68:922-930.
    [164]Xiong Z. EM modeling three-dimensional structures by the method of system iteration us-ing integral equations[J]. Geophysics,1992,57:1556-1561.
    [165]Xiong Z and Tripp A C. Electromagnetic scattering of large structures in layered earth us- ing integral equations[J]. Radio Sci.,1995,30:921-929.
    [166]Xiong Z, Raiche A and Sugeng F. Efficient solution of full domain 3D electromagnetic mo-deling problems[J]. Explor. Geophys.,2000,31:158-161.
    [167]Yee K S. Numerical solution of initial boundary value problems involving maxwell's equa-tions in isotropic media[J]. IEEE Trans. Ant. Prop.,1966, AP-14:302-307.
    [168]Zhang J, Mackie R L and Madden T R. Three-dimensional resistivity forward modeling and inversion using conjugate gradients[J]. Geophysics,1995,60:1313-1325.
    [169]Zhang Z.3D resistivity mapping of airborne EM data[J]. Geophysics,2003,68:1896-1905.
    [170]Zhdanov M S and Fang S. Quasi-linear approximation in 3-D EM modeling[J]. Geophysi-cs:1996,61,646-665.
    [171]Zhdanov M S and Fang S. Quasi-linear series in three-dimensional electromagnetic modeli-ng[J]. Radio Sci.,1997,32:2167-2188.
    [172]Zhdanov M S and Portniaguine O. Time-domain electromagnetic migration in the solution of inverse problems[J]. Geophys. J. Int.,1997,131:293-309.
    [173]Zhdanov M S, Fang S and Hursan G. Electromagnetic inversion using quasi-linear approx-imation[J]. Geophysics,2000,65:1501-1513.
    [174]Zhdanov M S. Geophysical inverse theory and regularization problems[M]. Amsterdam-New York-Tokyo:Elsevier,2002.
    [175]Zhdanov M S and Wannamaker P E. Three-dimensional electromagnetics[M].Utah:Elsevi-er,2002.
    [176]Zhdanov M S and Golubev N G. Three-dimensional inversion of magnetotelluric data in complex geological structures, in J Macnae and G Liu (eds.), Three-Dimensional Electro-magnetics III[C]. Austr. Soc. Expl. Geophys,2003.
    [177]Zhdanov M S and Tolstaya E. Minimum support nonlinear parametrization in the solution of a 3D magnetotelluric inverse problem[J]. Inv. Prob.,2004,20:937-952.
    [178]Zhdanov M S. Electromagnetic exploration:Notes from the past and the road ahead[J]. Geophysics,2010,75(5):49-66.
    [179]Zonge K L, Hughes L J. Controlled source audio-frequency magnetotellurics, in Nabighian, M N,Ed, Electromagnetic methods in applied geophysics[M]:Society of Exploration Geo-physicists,1988,2:713-809.
    [180]Zunoubi M R, Jin J M, Donepudi K C and Chew WC.A Spectral lanczos decomposition method for solving 3-D low-frequency electromagnetic diffusion by the finite-element met-hod[J]. IEEE Trans. Antennas Propogat.,1999,47:242-248.
    [181]Zyserman F I and Santos J E. Parallel finite element algorithm with domain decomposition for three-dimensional magnetotelluric modeling[J]. J. Appl. Geophys.,2000,44:337-351.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700