用户名: 密码: 验证码:
波浪荷载作用下新型防波堤结构与软土地基相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着深水防波堤的大规模兴建,对于波浪-防波堤-地基相互作用问题的研究显得越来越重要。箱筒型基础防波堤是一种适用于深水、大波浪荷载和软弱地基等条件的新型防波堤。它与离岸工程中常用的重力式结构和板桩结构等的工作机理有较大的区别,不仅依靠结构基础的挡土作用维持稳定性,还依靠复杂的土与机构相互作用来维持稳定。本文以天津港新型的箱筒型基础防波堤为背景,通过土工离心模拟技术、土体静动三轴试验和有限元数值模拟等手段对波浪荷载作用下复杂防波堤结构与软土地基相互作用的问题进行了研究,主要工作包括如下几个方面:
     (1)在离心试验中,通过对防波堤施加静荷载以初步模拟波浪荷载的作用,研究在模拟波浪的静荷载作用下新型箱筒型基础防波堤与地基相互作用的问题,探讨防波堤的静力位移特性、稳定性和地基中孔压发展,以及地基土体强度对其影响。
     (2)通过研制在离心机中施加非接触式周期性循环荷载的加载设备,实现在离心试验中对防波堤结构施加周期性循环荷载,以模拟波浪荷载的作用,研究在循环荷载作用下箱筒型基础防波堤与地基相互作用的问题,探讨在循环荷载作用下的动态位移、动态孔压响应、防波堤位移模式以及循环荷载的作用对箱筒型结构周围地基土体强度的影响等问题。
     (3)利用循环三轴试验研究波浪荷载作用下软土的动力性质,通过对土样施加循环荷载的作用,探讨累积轴向应变、平均孔压、弱化指数的发展规律,分析循环荷载后各物理量的关系以及循环周期对各物理量的影响。
     (4)通过循环荷载后静三轴试验研究波浪循环荷载对土体静力性质的影响,分析循环荷载的作用对土体有效应力路径、孔压的影响,以及循环荷载后静模量的弱化性质,并探讨了循环荷载对不排水静强度的影响。
     (5)利用ABAQUS有限元软件模拟箱筒型基础防波堤与地基的相互作用问题,分析了不同基础筒高度、压重下,箱筒型基础防波堤与地基土体在静荷载作用下的应力应变、位移和土压力等的变化。
With the construction of breakwater into deep water area, the researches on interaction of wave-breakwater-foundation become more and more important. Bucket foundation breakwater is a new type of breakwater that is suitable for deep water area, large wave load and soft ground foundation conditions. The working mechanism of bucket foundation structure is different from common offshore structures such as gravity structure and sheet-pile structure, and the stability of this new structure is not only depend on earth pressure on foundation wall but also intensely depend on interaction between soil and structure. Taking the project of bucket foundation breakwater in Tianjin port as a background, the topic of interaction between complicated breakwater structure and soft ground foundation under wave load is studied through geotechnical centrifuge modeling technique, static and cyclic triaxial test and FEM simulation method in this dissertation, the main works carried out are as follow:
     (1) A static load which simulates the wave load is applied on breakwater in centrifuge test, and interaction between breakwater structure and soft ground foundation is studied, the displacement, stability of breakwater and pore pressure developed in foundation under static load are discussed, and undrained strength of foundation soil on work mechanism of the breakwater are also studied.
     (2) A new equipment which can apply non-contact cyclic load on structure in centrifuge test is developed, by using this equipment the interaction between breakwater structure and soft ground foundation under wave load is simulated, cyclic displacement, cyclic pore pressure response, displacement mode under different working conditions are analised, and the effect of wave load on undrained strength of foundation soil that adjacent to the breakwater is studied.
     (3) The effect of cyclic wave load on dynamic properties of soft clay is studied with cyclic triaxial test, a low frequency cyclic load is applied on the specimen, the effect of cyclic stress amplitude, consolidated stress and period on cyclic strain, cyclic pore pressure response and modulus degradation are studied. The development of accumulative axial strain, average pore pressure and degradation index are studied, the relationship between these index after cyclic load and influence of period on them are also discussed.
     (4) The effect of wave load on static behavior of soft clay is studied with post-cyclic static triaxial test, the influence of cyclic load on static effective stress path and pore pressure development are studied, static modulus degradation and influence of cyclic load on undrained strength are also discussed.
     (5) The interaction between breakwater and soft ground foundation is simulated through the ABAQUS finite element software, stress strain, displacement in foundation and earth pressure on foundation bucket are analyzed under different foundation height and overburden pressure conditions.
引文
[1]王元战,王文良.大圆筒结构计算及工程应用[M].北京:人民交通出版社, 2008.
    [2]张建红,林小静,鲁晓兵.水平荷载作用下张力腿平台吸力式基础的物理模拟[J].岩土工程学报, 2007, 29(1): 77-81.
    [3]范庆来,栾茂田,杨庆.横观各向同性软基上深埋式大圆筒结构水平承载力分析[J].岩石力学与工程学报, 2007, 26(1): 94-101.
    [4]王元战,迟丽华.沉入式圆筒结构与土相互作用的模式及位移计算方法[J].土木工程学报, 1997, 30(2): 68-73.
    [5]王元战,王海龙,付瑞清.沉入式大直径圆筒码头稳定性计算方法研究[J].岩土工程学报, 2002, 24(4): 417-420.
    [6]徐光明,章为民,赖忠中.沉入式大圆筒结构码头工作机理离心模型试验研究[J].海洋工程, 2001,19(1): 38-44.
    [7] Xu G, Ng C W W. Dimensional analysis and centrifuge modeling of quay wall of large-diameter bottomless cylinders [J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10): 1544-1552.
    [8]王庚荪,孔令伟,杨家岭,等.水平载荷作用下土体与桶形基础的相互作用[J].工程力学, 2004, 21(2): 107-113.
    [9]王元战,肖忠,李元音,等.筒型基础防波堤土压力性状的有限元分析[J].岩土工程学报, 2009, 31(4): 622-627.
    [10]王元战,肖忠,迟丽华,等.筒型基础防波堤稳定性简化计算方法[J].岩土力学, 2009, 30(5): 1367-1372.
    [11] Andersen K H, Kleven A, Heien D. Cyclic soil data for design of gravity structures [J]. Journal of Geotechnical Engineering, ASCE, 1988, 114(5): 517-539.
    [12] Andersen K H, Lauritzsen R. Bearing capacity for foundations with cyclic loads [J]. Journal of Geotechnical Engineering, ASCE, 1988, 114(5): 540-555.
    [13] Ding H, Qi L, Du X. Estimating soil liquefaction in ice-induced vibration of bucket foundation [J]. Journal of Cold Regions Engineering, ASCE, 2003, 17(2): 60-67.
    [14]刘振纹,秦崇仁,王建华.软土地基上循环承载力的计算模型研究[J].岩土力学, 2004, 25(增2): 405-408.
    [15]栾茂田,曲鹏,杨庆,等.波浪引起的海底管线周围海床动力响应分析[J].岩石力学与工程学报, 2008, 27(4): 789-795.
    [16] Dyvik R, Andersen K H, Madshus C, et al. Model tests of gravity platforms I: description [J]. Journal of Geotechnical Engineering, ASCE, 1989, 115(11): 1532-1549.
    [17] Andersen K H, Dyvik R, Lauritzsen R, et al. Model tests of gravity platforms II: interpretation [J]. Journal of Geotechnical Engineering, ASCE, 1989, 115(11): 1550-1568.
    [18] Dyvik R, Andersen K H, Hansen S B, et al. Field tests of anchors in clay I: description [J]. Journal of Geotechnical Engineering, ASCE, 1993, 119(10): 1515-1531.
    [19] Andersen K H, Dyvik R, Schr?der K, et al. Field tests of anchors in clay II: predictions and interpretation[J]. Journal of Geotechnical Engineering, ASCE, 1993, 119(10): 1532-1549.
    [20] Martin C M, Houlsby G T. Combined loading of spudcan foundations on clay: loading tests[R]. UK: University of Oxford, 2007.
    [21] Martin C M, Houlsby G T. Combined loading of spudcan foundations on clay: laboratory tests [J]. Géotechnique, 2000, 50(4): 325-338.
    [22] Byrne B W, Houlsby G T. Experimental investigations of the response of suction caissons to transient combined loading [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2004, 130(3): 240-253.
    [23] Byrne B W, Houlsby G T. Experimental investigations of the response of suction caisson to vertical transient loading [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2002, 128(11): 926-939.
    [24] Byrne B W. Investigations of suction caissons in dense sand [D]. UK: PhD thesis, Oxford University, 2000.
    [25]王义华,鲁晓兵,王淑云,等.动载下桶形基础的沉陷[J].岩石力学与工程学报, 2004, 23(增1): 4458-4561.
    [26]张建红,孙国亮,鲁晓兵.离心机中动冰荷载的模拟[J].岩土工程学报, 2005, 27(4): 474-477.
    [27] Wang S Y, Zhang J H, Lu X B, et al. A dynamic loading device for suction foundations in centrifuge modeling [J]. Journal of Experimental Mechanics, 2006, 21(4): 439-446.
    [28]鲁晓兵,王义华,张建红,等.水平动载下桶形基础变形的离心机实验研究[J].岩土工程学报, 2005, 27(7): 789-791.
    [29] Lu X, Wang S, Zhang J, et al. Experimental study of pore pressure and deformation of suction bucket foundations under horizontal dynamic loading [J]. China Ocean Engineering, 2005, 19(4): 671-680.
    [30]王建华,杨海明.软土中桶型基础水平循环承载力的模型试验[J].岩土力学, 2008, 29(10): 2606-2612.
    [31] Zhang X Y, Lee F H, Leung C F. Response of caisson breakwater subjected to repeated impulsive loading [J]. Géotechnique 2009, 59(1): 3-16.
    [32] Zhang X Y, Leung C F, Lee F H. Performance of caisson breakwater subjected to breaking wave loads [A]. Proceedings of the International Symposium on Frontiers in Offshore Geotechnics (IS-FOG 2005) [C]. Perth, Australia, 2005, 569-575.
    [33] Zhang X Y, Leung C F, Lee F H. Centrifuge modelling of caisson breakwater subject to wave-breaking impacts [J]. Ocean Engineering, 2009, 36(12-13): 914-929.
    [34] Leung C F, Zhang X Y, Lee F H. Wave impact on caisson breakwater [A]. Proc. 9th Australia New Zealand Conference on Geomechanics [C]. Auckland, New Zealand, 2004, 874-880.
    [35] Zhang X Y. Behavior of caisson breakwater subject to breaking waves [D]. Singapore: PhD thesis, National University of Singapore, 2006.
    [36]张建民,王刚,陈杨.海岸岩土工程的物理与数值模拟方法[J].岩土力学, 2004, 25(S2): 61-74.
    [37] Wang J, Li C, Moran K. Cyclic undrained behavior of soft clays and cyclic bearing capacity of a single bucket foundation [A]. Proceedings of the Fifteenth International Offshore and Polar Engineering Conference [C]. 2005: 392-399.
    [38]李驰,王建华,刘振纹.软土地基单桶基础循环承载力研究[J].岩土工程学报, 2005, 27(9): 1040-1044.
    [39]范庆来,栾茂田,杨庆,等.考虑循环软化效应的软基上深埋大圆筒结构承载力分析[J].大连理工大学学报, 2006, 46(5): 702-706.
    [40]栾茂田,赵少飞,袁凡凡,等.复合加载模式作用下地基承载性能数值分析[J].海洋工程, 2006, 24(1): 34-40.
    [41]栾茂田,武科,范庆来,等.复合加载下桶形基础循环承载性能数值分析[J].海洋工程, 2007, 25(3): 88-94.
    [42]武科,栾茂田,范庆来,等.滩海吸力式桶形基础水平承载特性的研究[A]. 2007年全国隧道、地下工程及岩石破碎学术研讨会[C].大连, 2007: 231-238.
    [43]范庆来,栾茂田,邓建俊,等.循环波压力下软基上大圆筒防波堤数值分析[J].华中科技大学学报, 2008, 36(11): 120-123.
    [44]范庆来,栾茂田,倪宏革.循环荷载作用下软基上大圆筒结构弹塑性有效应力分析[J].水利学报, 2008, (7): 836-842.
    [45]武科,栾茂田,杨庆,等.软黏土强度非均质性对复合加载模式下桶形基础破坏包络面的作用分析[J].岩土力学, 2009, 30(3): 799-784.
    [46]王志云,栾茂田,杨庆,等.循环加载条件下吸力式沉箱基础极限承载力特性分析[J].大连理工大学学报, 2009, 49(3): 414-418.
    [47]肖忠,王元战,及春宁,等.筒型基础防波堤稳定性有限元数值分析[J].土木工程学报, 2009, 42(7): 119-125.
    [48] Idriss I M, Dobry R D, Singh R D. Nonlinear behavior of soft clays during cyclic loading [J]. Journal of Geotechnical Engineering Division, ASCE, 1978, 104(GT12): 1427-1447.
    [49] Houston W N, Herrmann H G. Undrained cyclic strength of marine soils [J]. Journal of Geotechnical Engineering Division, ASCE, 1980, 106(GT6): 691-712.
    [50] Koutsoftas D C, Fischer J A. Dynamic properties of two marine clays [J]. Journal of the Geotechnical Engineering Division, ASCE, 1980, 106(GT6): 645-657.
    [51] Vucetic M, Dobry R. Degradation of marine clays under cyclic loading [J]. Journal of Geotechnical Engineering, ASCE, 1988, 114(2): 133-149.
    [52] Vucetic M. Normalized behavior of clay under irregular cyclic loading [J]. Canadian Geotechnical Journal, 1990, 27(1): 29-46.
    [53]王建华,要明伦.饱和软粘土振动弱化特性的研究[J].水利学报, 1993(12): 37-43.
    [54]要明伦,聂栓林.饱和软粘土动变形计算的一种模式[J].水利学报, 1994(7): 51-55.
    [55]章克凌,陶振宇.饱和粘土在循环荷载作用下的孔压预测[J].岩土力学, 1994, 15(3): 9-17.
    [56]王建华,要明伦.软粘土不排水循环特性的弹塑性模拟[J].岩土工程学报, 1996, 18(3): 11-18.
    [57]周建.饱和软粘土循环变形的弹塑性研究[J].岩土工程学报, 2000, 22(4): 499-502.
    [58]王建华,刘振纹,刘远峰.动静耦合效应对软土地基循环承载力的影响[J].水利学报, 2000, (6): 1-5.
    [59] Zhou J, Gong X. Strain degradation of saturated clay under cyclic loading [J]. Canadian Geotechnical Journal, 2001, 38: 208-212.
    [60]钟辉虹,黄茂松,吴世明,等.循环荷载作用下软黏土变形特性研究[J].岩土工程学报, 2002, 24(5): 629-632.
    [61]熊玉春,房营光.循环荷载作用下饱和软黏土的损伤模型[J].岩土力学, 2007, 28(3): 544-548.
    [62] Matsui T, Ohara H, Ito T. Cyclic stress-strain history and shear characteristics of clay [J]. Journal of the Geotechnical Engineering Division, ASCE, 1980, 106(GT10): 1101-1120.
    [63] Hyde A F L, Ward S J. The effect of cyclic loading on the undrained shear strength of a silty clay [J]. Marine Geotechnology, 1986, 6(3): 299-314.
    [64] Yasuhara K, Andersen K H. Recompression of normally consolidated clay after cyclic loading [J]. Soils and Foundations, 1991, 31(1): 83-94.
    [65] Matsui T, Bahr M A, Abe N. Estimation of shear characteristics degradation and stress-strain relationship of saturated clays after cyclic loading [J]. Soils and Foundations, 1992, 32(1): 161-172.
    [66] Matsui T, Abe N. Behavior of clay on cyclic-stress-strain history[C]// Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering. Stockholm, 1981, Vol.1: 261-264.
    [67] Yasuhara K, Hirao K, Hyde A F L. Effects of cyclic loading on undrained strength and compressibility of clay[J]. Soils and Foundations, 1992, 32(1): 100-116.
    [68] Yasuhara K. Postcyclic undrained strength for cohesive soils [J]. Journal of Geotechnical Engineering, ASCE, 1994, 120(11): 1961-1979.
    [69] Yasuhara K, Hyde A F L. Method for estimating postcyclic undrained secant modulus of clays [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1997, 123(3): 204-211.
    [70]王淑云,楼志刚.原状和重塑海洋粘土经历动载后的静强度衰减[J].岩土力学, 2000,21(1): 20-27.
    [71] Yasuhara K, Murakami S, Song B W. Postcyclic degradation of strength and stiffness for low plasticity silt [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2003, 129(8): 756-769.
    [72] Hyde A F L, Higuchi T, Yasuhara K. Postcyclic recompression, stiffness, and consolidated cyclic strength of silt [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2007, 133(4): 416-423.
    [73]南京水利科学研究院土工研究所.土工试验技术手册[M].北京:人民交通出版社, 2003.
    [74]谢世楞.半圆形防波堤的设计和研究进展[J].中国工程科学, 2000,2(11): 35-39.
    [75] Ishihara K, Yazamaki A. Analysis of wave-induced liquefaction in seabed deposits of sand [J]. Soils and Foundations, 1984, 24(3): 85-100.
    [76]李伟.箱型吸力基础防波堤结构探讨[J].港工技术, 2001, (增): 75-77.
    [77]天津港湾工程质量检测中心有限公司.天津港防波堤箱筒型基础结构检测报告[R].天津:天津港湾工程质量检测中心有限公司, 2008.
    [78]徐光明,蔡正银,曾友金,等.曹妃甸10万吨级通用散货泊位板桩方案离心模型试验研究报告[R].南京:南京水利科学研究院, 2005.
    [79]朱洋立,彭攀.波浪与防波堤相互作用研究[J].中国水运, 2007, 7(6): 104-106.
    [80]满银.波浪荷载作用下深埋式大圆筒基础施工期的水平承载特性研究[D].南京:河海大学硕士论文,2009.
    [81] JTJ213-98,海港水文规范[S].北京:人民交通出版社, 1998.
    [82] Goda Y. Random seas and design of maritime structures [M]. Univ. Tokyo Press, Tokyo, 1985.
    [83]潘军宁,等.长江口深水航道整治工程大圆筒结构试验段工程波浪力数值计算[R].南京:南京水利科学研究院, 2001.
    [84]王元战,等.箱筒型基础防波堤波浪力数值分析报告[R].天津:天津大学, 2007.
    [85]王元战,龚薇,及春宁,等.基于粘性流模型的筒型基础防波堤波浪力数值分析[J].海洋工程, 2008, 26(3): 1-6.
    [86]蒋敏敏,徐光明,顾行文.离心模型试验饱和粘性土制备和固结分析[C]//第25届全国土工测试学术研讨会论文集, 2008.杭州:浙江大学电子音像出版社.
    [87] Loh C K, Tan T S, Lee F H. Three-dimensional excavation test[C]// Centrifuge 98, 1998: 85-90.
    [88]李景林,王剑平,蔡正银,等.遮帘桩方案改造板桩码头离心模型试验研究[J].岩土工程学报, 2006,28(8): 978-982.
    [89]李国英,沈珠江,吴威.覆盖层上混凝土面板堆石坝离心模型试验研究[J].水利水电技术, 1997, 28(9): 51-54.
    [90]钱寿易,楼志刚,杜金声.海洋波浪作用下土动力特性的研究现状和发展[J].岩土工程学报, 1982,4(1): 16-23.
    [91] O’Reilly M P, Brown S F. Cyclic loading of soils [M]. Glasgow and London: Blackie, 1991.
    [92] Sekiguchi H, Phillips R. Generation of water waves in a drum centrifuge [A]. Proceedings of the International Conference Centrifuge 91[C]. Boulder, 1991, 343-350.
    [93] Sekiguchi H, Kita K, Okamoto O. Wave induced instability of sand beds [A]. Proceedings of the International Conference Centrifuge 94[C]. Singapore, 1994, 295-300.
    [94] Sekiguchi H, Kita K, Okamoto O. Wave induced instability of sand beds [J]. Geotechnical Testing Journal, ASTM, 1998, 21(2): 95-101.
    [95] Sassa S, Sekiguchi H. Wave induced liquefaction of beds of sand in a centrifuge [J]. Géotechnique 1999, 49(5): 621-638.
    [96] Gao F P, Randolph M F. Wave generation system in a drum centrifuge and its application [A].中国土木工程学会第10届土力学及岩土工程学术会议论文集[C].重庆:重庆大学出版社, 2007, 274-280.
    [97]苏雄.离心机超重工况波浪模拟多参数实时测控系统[D].长春:吉林大学硕士论文, 2009.
    [98] Ng T G, Lee F H. Cyclic settlement behavior of spudcan foundations [J]. Géotechnique 2002, 52(7): 469-480.
    [99] Andersen K H, Pool J H, Brown S F, et al. Cyclic and static laboratory tests on drammen clay [J]. Journal of Geotechnical Engineering Division, ASCE, 1980, 106(GT5): 499-529.
    [100] Hyde A F L, Yasuhara K, Hirao K. Stability criteria for marine clay under one-way cyclic loading. [J]. Journal of Geotechnical Engineering, ASCE, 1993, 119(11): 1771-1789.
    [101]侯钊,陈环,钱征,等.天津软土地基[M].天津:天津科学技术出版社, 1987.
    [102]朱登峰,黄宏伟,殷建华.饱和软粘土的循环蠕变特性[J].岩土工程学报, 2005,27(9): 1060-1064.
    [103] Lee J, Salgado R, Carraro J A H. Stiffness degradation and shear strength of silty sands [J]. Canadian Geotechnical Journal, 2004, 41: 831-843.
    [104] Fahey M, Carter J P. A finite element study of the pressuremeter test in sand using a nonlinear elastic plastic model [J]. Canadian Geotechnical Journal, 1993, 30: 348-361.
    [105]朱以文,蔡元奇,徐晗. ABAQUS与岩土工程分析[M].香港:中国图书出版社, 2005.
    [106] Hibbitt, Karlsson & Sorensen Inc. Analysis of geotechnical problems with ABAQUS [M]. USA: ABAQUS, Inc., 2003.
    [107]廖公云,黄晓明. ABAQUS有限元软件在道路工程中的应用[M].南京:东南大学出版社, 2008.
    [108]王金昌,陈页开. ABAQUS在土木工程中的应用[M].杭州:浙江大学出版社, 2006.
    [109]庄茁,由小川,廖剑晖,等.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700