用户名: 密码: 验证码:
丛枝菌根真菌(AMF)对黄瓜植株盐胁迫伤害的缓解及其生理效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐渍化严重制约着农业的发展,是目前影响作物生长和产量形成的主要限制因素。高盐会引起植物的减产或死亡,影响蔬菜的品质,因此提高植物的耐盐性对于农业的可持续发展意义重大。丛枝菌根真菌(Aarbuscular mycorrhizal fungi, AMF)是土壤菌根菌与高等植物根系形成的联合体,对植物具有广泛的侵染性。研究表明,接种AMF可以增加植物对N、P和微量元素的吸收,提高蔬菜的产量和品质,增强蔬菜植株对环境胁迫的抗性。但AMF对黄瓜耐盐性的生理作用及其调节机制尚未阐明。
     本文选用盐敏感型黄瓜品种‘津春2号’为试验材料,采用基质栽培,研究了不同种类AMF对黄瓜幼苗生长、叶片光合作用和植株体内矿质元素含量的影响,在此基础上探讨了AMF增强黄瓜耐盐性的生理机制,主要研究成果如下:
     盐胁迫下,黄瓜幼苗株高、茎粗和净光合速率(Pn)减少,电导率增大,MDA含量升高,超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性增强,且随着盐胁迫浓度的升高各指标变化幅度增大;高浓度(0.9%、1.2%)NaCl处理下,叶片的生长受到明显的抑制,幼苗存活率下降;0.3%NaCl处理对植株生长和生理指标影响较小;0.6%及以上浓度NaCl处理下,黄瓜植株的生物量显著下降。
     接种4种不同的丛枝菌根真菌GMA、GMS、GMH、GV对黄瓜植株生长有不同程度的促进作用,并显著提高黄瓜叶片叶绿素a、叶绿素b、类胡萝卜素含量和净光合速率(Pn)以及植株体内的矿质元素的含量,其中GMA对黄瓜生长促进效果最好。进一步研究了接种GMA对胁迫条件下黄瓜产量和品质的影响,结果表明,盐胁迫下,接种AMF可以缓解盐胁迫对黄瓜生长的抑制作用,提高植株体内各矿质元素含量,以及果实产量和品质。说明AMF可通过促进盐胁迫下黄瓜植株对矿质营养的吸收,来促进胁迫条件下植株的生长,从而增强黄瓜植株对盐胁迫的耐性,并改善黄瓜的产量和品质。
     盐胁迫下,黄瓜植株净光合速率(Pn)、气孔导度(Gs)、气孔限制值(Ls)、蒸腾速率(Tr)和水分利用率(WUE)均减小,细胞间隙CO2浓度(Ci)增加。盐胁迫下,接种AMF促进了黄瓜幼苗的生长,并提高了Pn、Gs、Tr、Ci和WUE,而使Ls降低。说明AMF通过增大气孔导度来促进盐胁迫下黄瓜幼苗光合作用,并提高了水分利用效率,增强黄瓜幼苗对盐胁迫的耐性。
     盐胁迫下,黄瓜幼苗叶片和根系的过氧化氢(H202)、抗坏血酸(AsA)、脱氢抗坏血酸(DHA)、氧化型谷胱甘肽(GSSG)含量,AsA/DHA比值,以及超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)、单脱氢抗坏血酸还原酶(MDAR)、脱氢抗坏血酸还原酶(DHAR)活性均显著提高,而还原型谷胱甘肽(GSH)含量和GSH/GSSG比值显著降低,MDA含量和O2产生速率增加。盐胁迫下,接种AMF可以使黄瓜幼苗叶片和根系的AsA和GSH含量、AsA/DHA和GSH/GSSG比值,以及SOD、POD、CAT、APX、GR、MDAR活性均显著高于单纯盐胁迫处理,而MDA、H2O2和GSSG含量和O2-产生速率则低于单纯盐胁迫处理。说明盐胁迫下AMF可增强黄瓜植株的抗氧化能力,缓解盐胁迫对黄瓜幼苗造成的伤害。
     盐胁迫下,接种AMF可以使黄瓜幼苗体内可溶性蛋白、可溶性糖、脯氨酸和矿质元素含量以及K+/Na+提高。说明AMF通过促进提高黄瓜植株的渗透调节能力,并促进黄瓜幼苗对矿质元素的吸收,减缓盐胁迫对植株的伤害。
Soil salinization seriously restricted the developing of modern agriculture. It was the main limitation factor of the crops growth and yield. High salty might course the yield reduction and the death of plants, effect the quality of vegetables. Increased the salt resistance of plants was very important to the sustainable development of agriculture. As the combo of the soil mycorrhiz and higher-plant roots, arbuscular mycorrhiz fingu (AMF) could infect most of the plants. It was recognized that AMF vaccinated could increase the absorptive amount of N, P and minor elements in plants, raise the yield and quatilty of vegetables, improve the resistance of environmental stress. However, the mechanism was still not well established in physiological regulation role of AMF in its adaptation to salt stress in cucumber seedlings.
     In the present study, salt-sensitive cultivar'Jinchun No.2'was chosen as experimental materials. In order to elucidate the mechanism of AMF in improving tolerance of cucumber to salinity, and develop suitable methods to whether infection seedlings with AMF could enhance the resistance of cucumber plants, we investigated the effects of different kinds of AMF on the growth, photosynthesis and mineral element contents in cucumber seedlings, and the relationship between AMF infection and the growth, photosynthesis, mineral element, reactive oxygen metabolism and ascorbat-glutahione cycle in cucumber seedlings under salt stress. Main research results were as follows:
     After treating with different levels of NaCl (0%,0.3%,0.6%,0.9% and 1.2%) both height, stem diameter and net photosynthetic rate (Pn) decreased, cell membrane damage rate and MDA contents increased, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activity improved, and the change of each index increases with the increase of NaCl concentrations. Under high concentration (0.9%,1.2%) NaCl treatment, the growth of leaves were distinctly inhibited, the survival rate of seedlings falled, and each physiological indices of the seedlings significant changed comparing with control.0.3% NaCl treatment had little effect on the growth and physiological indices. Under 0.6% and more concentration of NaCI treatment, biomass significantly decreased.
     Inoculation four kinds of AMF all could promote the growth of cucumber, chlorophyll a, chlorophyll b, carotenoid contents and photo synthetic rate of leaves, and the mineral element contents of shoots and roots were higher than control. It was illustrated that the inoculation of AMF might promote the growth of plant by enhancing the photosynthesis, the water and nutrients absorption of cucumber seedlings. GMA was the best one to promote the growth of cucumber seedlings.
     Inoculated AMF could effectively promote the growth and mineral nutrient absorption in cucumber plants, increase its yield and fruit quality. Salt stress might inhibit the growth of cucumber, reduce the mineral element contents and K+/Na+ of plants, and decrease the yield and quality of fruit. AMF inoculation could alleviate the inhibition of cucumber plants by salt stress, improve the mineral element contents and K+/Na+ of plants, and increase the yield and quality of fruits. It showed that by promoting the absorption of mineral nutrients in cucumber plants under salt stress, AMF could expedite the growth of plant and increase the yield and quality of fruit under stress conditions, consequently enhanced the salt stress tolerance in cucumber plants.
     Under salt stress, the height, the fresh and dry weight of shoots and roots decreased, and the net photosynthetic rate (Pn), stomatal conductance (Gs), stomatal limitation (Ls), transpiration rate (Tr) and water use efficiency (WUE) reduced, while intercellular CO2 concentration (Ci) increased in cucumber seedlings. Under salt stress, after AMF-inoculation the growth index, Pn, Gs, Tr, Ci and WUE increased, however Ls decreased. It indicated that AMF could accelerate plant growth and enhance the salt stress tolerance of cucumber seedlings by promoting the photosynthesis and the absorption of water.
     Under salt stress, hydrogen peroxide (H2O2), ascorbic acid (AsA), dehydroascorbic acid (DHA) and oxidized glutathione (GSSG) contens, AsA/DHA ratio, superoxide dismutase(SOD), peroxidase(POD), catalase(CAT), ascorbate peroxidase (APX), glutathione reductase (GR), mondehydroascorbate reductase (MDAR), dehydroascorbaic reductase (DHAR) activity significantly increased, while glutathione (GSH) and malondialdehyde (MDA) contents, GSH/GSSG ratio, O2 production rate notablely decreased compared with control in leaves and roots of cucumber seedlings. Under salt stress, after AMF inoculation the AsA and GSH contents, AsA/DHA and GSH/GSSG ratio, SOD, POD, CAT, APX, GR, MDAR activities in leaves and roots were remarkablely higher than those of salt stress, while MDA, H2O2 and GSSG contents, O2-·production rates in leaves and roots were lower than that of salt stress. It was suggested that AMF could improve the antioxidant capacities of cucumber seedlings, then ease the injury of salt stress in cucumber seedlings.
     Under salt stress, after AMF-inoculation soluble protein, soluble sugar, proline and various mineral elements contents, K+/Na+ increased. It showed that AMF could enhance the osmotic adjustment mechanism of salt tolerance by promoting the mass accumulation of soluble protein, soluble sugar and proline contents, and improve the absorption of mineral element contents to alleviate the damage of salt stress in cucumber seedlings.
引文
1.柏素花,赵士杰,赵永厚.VA菌根对茄子生长的影响.莱阳农学院学报,2002,19(1):47-49
    2.陈洁,林栖风.植物耐盐生理及耐盐机理研究进展.海南大学学报自然科学版,2003,21(2):177-182
    3.陈晓亚,汤章城.植物生理与分子生物学(Ⅲ).北京:高等教育出版社,2007:536,537
    4.陈沁,刘友良.外源GSH对盐胁迫大麦叶片活性氧清除系统的保护作用.作物学报,2000,26(3):365-371
    5.陈双臣,刘爱荣,孙三杰.丛枝菌根真菌对有机基质性状及番茄生长的影响.安徽农业科学,2008,36(31):13598-13599,13625
    6.程玉静,郭世荣,刘书仁,田婧,刘超杰.外源硝酸钙对盐胁迫下黄瓜幼苗叶片抗氧化系统及膜质子泵活性的影响.生态学杂志,2010,29(5):892-898
    7.程玉静,郭世荣,张润花,刘书仁,徐玉伟.外源硝酸钙对黄瓜幼苗盐胁迫伤害的缓解作用.西北植物学报,2009,29(9):1853-1859
    8.戴松香,陈少良,Eberhard F, Andrea O, Christine K, Andrea P, Aloys H盐胁迫下胡杨和毛白杨叶细胞中的离子区隔化.北京林业大学学报.2006,28(增刊2):1-5
    9.耿广东,李莉,张素勤.VA菌根对黄瓜矿质元素吸收和根际土壤微生物数量的影响.江苏农业科学,2009,1:284-285
    10.耿广东,谢兵,李莉,张素勤.VA菌根对黄瓜幼苗生长及生理特性的影响.长江蔬菜,2008,11:29-31
    11.段九菊,郭世荣,康云艳.外源亚精胺对盐胁迫下黄瓜幼苗活性氧代谢的影响.农业工程报,2005,21(12):87-91
    12.冯固,白灯莎,杨茂秋,李晓林,张福锁,李生秀.盐胁迫下AM真菌对玉米生长及耐盐生理指标的影响.作物学报,2000,26(6):743-750
    13.冯固,杨茂秋,白灯莎.盐胁迫下VA菌根真菌对无芒雀麦体内矿质元素含量及组成的影响.草业学报,1998,7(3):21-28
    14.冯固,张福锁.丛枝菌根真菌对棉花耐盐性的影响.中国农业生态学报,2003,11(2):22-24
    15.甘海峰,刘可慧,傅翠娜,雷新南,梅正敏,肖远辉,区善汉.NaCl胁迫对不同柑橘砧木品种抗氧化系统的影响.生态环境学报,2010,19(1):183-187
    16.高俊凤.植物生理学试验技术.西安:世界图书出版公司,2000
    17.高永生,王锁民,宫海军,赵志光,张承烈.盐胁迫下植物离子转运的分子生物学研究.草业学报,2003,12(5):18-25
    18.弓明钦,陈应龙,仲崇禄.菌根研究及应用.北京:中国林业出版社,1997
    19.郭鹏,贺学礼.AM真菌对草莓的接种效应研究.河北农业大学学报,2006,29(4):53-56
    20.郭绍霞,马颖,李敏.丛枝菌根真菌对彩叶草耐寒性的影响.青岛农业大学学报(自然科学版),2009,26(3):174-176
    21.韩志平,郭世荣,冯吉庆,高新昊.盐胁迫对西瓜幼苗生长、叶片光合色素和脯氨酸含量的影响.南京农业大学学报,2008,31(2):32-36
    22.贺学礼,刘媞,赵丽莉.接种丛枝菌根对不同施氮水平下黄芪生理特性和营养成分的影响.应用生态学报,2009,20(9):2118-2122
    23.贺学礼,赵丽莉,李英鹏. NaCl胁迫下AM真菌对棉花生长和叶片保护酶系统的影响.生态学报,2005,25:188-193
    24.贺忠群,贺超兴,任志雨,李焕秀.不同丛枝菌根真菌对番茄酶活性及光合作用的影响.北方园艺,2008,6:21-24
    25.何仲复.蔬菜瓜果鲜样中NO3--N及NO2--N测定方法的改进.农业环境保护,1995,14(1):46-48
    26.贺忠群,贺超兴,张志斌.丛枝菌根真菌对番茄渗透调节物质含量的影响.园艺学报,2007,34(1):147-152
    27.贺忠群,贺超兴,张志斌,邹志荣,王怀松.不同丛枝菌根真菌对番茄生长及相关生理因素的影响.沈阳农业大学学报,2006,37(3):308-312
    28.贺忠群,邹志荣,贺超兴,张志斌,王军.盐胁迫下丛枝菌根真菌对番茄细胞膜透性及谷光甘肽过氧化物酶活性的影响.西北农历科技大学学报(自然科学版),2006,34(12):53-57,64
    29.侯旭光,赵可夫. NaCl和CHS对棉花幼苗的渗透胁迫效应.山东师大学报(自然科学版),1999,14(1):69-73
    30.胡晓辉,杜灵娟,邹志荣.Spd浸种对盐胁迫下番茄(Solanum lycopersicum)幼苗的保护效应.生态学报,2009,29(9):5152-5157
    31.胡晓辉,王素平,曲斌. NaCl胁迫下亚精胺对番茄种子萌发及幼苗抗氧化系统的影响.应用生态学报,2009,20(2):446-450
    32.华春,周泉澄,王小平,夏静,陈莉.外源GA3对盐胁迫下北美海蓬子种子萌发及幼苗生长的影响.南京师范大学学报(自然科学版),2006,30(1):82-87
    33.黄京华,曾任森,骆世明.AM菌根真菌诱导对提高玉米纹枯病抗性的初步研究.中国生态农业学报,2006,14(3):167-169
    34.黄益宗,张文强,招礼军,曹慧明.Si对盐胁迫下水稻根系活力、丙二醛和营养元素含量的影响.生态毒理学报,2009,4(6):860-866
    35.贾亚雄,李向林,万里强,何峰,何丹.盐胁迫下盐草和高羊茅营养器官的离子微区分布.中 国农业科学,2009,42(5):1595-1600
    36.焦彦生,郭世荣,李娟,樊怀福,胡晓辉,王素平.钙对根际低氧胁迫下黄瓜幼苗活性氧代谢的影响.西北植物学报,2006,26(10):2056-2062
    37.金樑,陈国良,赵银,王晓娟.丛枝菌根对盐胁迫的响应及其与宿主植物的互作.生态环境,2007,16(1):228-233
    38.李海燕,刘润进,束怀瑞.丛枝菌根真菌提高植物抗病性的作用机制.菌物系统,2001,20(3):435-439
    39.李合生.植物生理生化试验原理与技术.北京:高等教育出版社,2001:119-120,134-137
    40.李敏,刘润进.AM真菌对蔬菜品质的影响.中国生态农业学报,2002,10(4):62-64
    41.李敏,王维华,刘润进.AM真菌和镰刀菌对西瓜根系膜脂过氧化作用和膜透性的影响.植物病理学报,2003,33(3):229-232
    42.李敏,辛华,郭绍霞,孙太娟,梁美霞,刘润进.丛枝菌根真菌对盐渍土中番茄和辣椒生长及矿质元素吸收的影响.莱阳农学院学报,2005,22(1):38-41
    43.李平华,张慧,王宝山.盐胁迫下植物细胞离子稳态重建机制.西北植物学报,2003,23(10):1810-1817
    44.李思龙,张玉刚,陈丹明.丛枝菌根对高温胁迫下牡丹生理生化的影响.中国农学通报,2009,25(7):154-157
    45.李涛,段迪,杨青,王宝山.接种摩西球囊霉对盐胁迫条件下盐地碱蓬叶片SOD和CAT活性的影响.安徽农业科学,2008,36(35):15324-15325,15335
    46.李文兵,王燕凌,李芳,刘君,李霞.水分胁迫下多枝怪柳体内活性氧与保护酶的关系.新疆农业大学学报,2007,30(1):30-34
    47.李娅娜,江可珍,别之龙.植物盐胁迫及耐盐机制研究进展.黑龙江农业科,2009,3:153-155
    48.李振国.现代植物生理学试验指南.北京:科学出版社,1999:302-303
    49.林先贵,顾希贤,郝文英.VA菌根在芦笋栽培上的接种效应.土壤学报,1994,31:84-90
    50.刘惠芬,史铭均,高玉葆.不同种群羊草幼苗对渗透胁迫的反应和生理生态适应.南开大学学报(自然科学版),2003,36(2):31-35
    51.刘建新,胡浩斌,王鑫.外源NO对盐胁迫下黑麦草幼苗活性氧代谢、多胺含量和光合作用的影响.植物研究2009,29(3):313-319
    52.刘润进,李敏,孟祥霞,刘新,李晓林.丛枝菌根真菌对玉米和棉花内源激素的影响.菌物系统,2000,19(1):91-96
    53.刘润进,李敏,石兆勇,韩义洲,李晓林.AM真菌对花生与甘薯产量的影响.中国生态农业学报,2003,11(1):36-37
    54.刘润进,李晓林.丛枝菌根及其应用.北京:科学出版社,2000
    55.刘润进,刘鹏起,徐坤,吕志范.中国盐碱土壤中AM菌的生态分布.应用生态学报,1999,10(6):721-724
    56.刘晓捷,曾明,杜建斌,任争.AMF对葡萄扦插苗矿质营养及生长的影响.西南农业大学学报(自然科学版),2006,28(2):286-289
    57.刘艳红,张萍萍,王金胜,马瑞燕.等渗胁迫下聚乙二醇和氯化钠对喜旱莲子草生长的影响.热带农业科学,2010,30(4):25-29
    58.刘友良,汪良驹.植物对盐胁迫的反应和耐盐性.植物生理与分子生物学(Ⅱ).北京:科学技术出版社,1998
    59.陆艳,叶慧君,耿守保,黄增荣,隆小华,刘兆普.NaCl胁迫对菊芋幼苗生长和叶片光合作用参数以及体内离子分布的影响.植物资源与环境学报,2010,19(2):86-91
    60.罗庆云,於丙军,刘友良.NaCl胁迫下Cl-和Na+对大豆幼苗胁迫作用的比较.中国农业科学,2003,36(11):1390-1394
    61.罗群,唐自慧,李路娥,曹慕岚,马丹炜.干旱胁迫对9种菊科杂草可溶性蛋白的影响.四川师范大学学报(自然科学版),2006,29(3):356-359
    62.罗娅,汤浩茹,张勇.低温胁迫对草莓叶片SOD和AsA-GSH循环酶系统的影响.园艺学报,2007,34(6):1405-1410
    63.吕桂云,陈贵林,齐国辉,高志奎,高洪波.菌根化育苗对大棚黄瓜生长发育和果实品质的影响.应用生态学报,2006,17(12):2352-2356
    64.吕慧颖,李银心,孔凡江.植物Na+/H+逆向转运蛋白的研究进展.植物学通报,2003,20(3):363-369
    65.毛爱军,王永健,冯兰香,耿三省,许勇.水杨酸等4种诱导剂诱导辣椒抗疫病作用的研究.中国农业科学,2004,37(10):1481-1486
    66.南京农业大学.土壤农化分析(Ⅱ).北京:中国农业出版社,1996:213-228
    67.宁建凤,郑青松,杨少海,邹献中,孙丽丽,陈勇.高盐胁迫对罗布麻生长及离子平衡的影响.应用生态学报,2010,21(2):325-330
    68.秦海滨,贺超兴,张志斌,王怀松,任志雨.丛枝菌根真菌对温室有机土栽培黄瓜的作用研究.内蒙古农业大学学报,2007,28(3):69-72
    69.秦景,董雯怡,贺康宁,陈静,于洋,王占林.盐胁迫对沙棘幼苗生长与光合生理特征的影响.生态环境学报,2009,18(3):1031-1036
    70.任志雨,贺超兴,孙世海,李树和.丛枝菌根真菌对黄瓜幼苗生长和矿质元素吸收的影响.长江蔬菜(学术版),2008a,11:34-36
    71.任志雨,贺超兴,孙世海,张志斌.丛枝菌根真菌对番茄幼苗生长和矿质元素吸收的影响.北方园艺,2008b,4:35-37
    72.申连英,毛永民,鹿金颖,彭士琪,李晓林,张福锁.丛枝菌根对酸枣实生苗耐盐性的影响.土壤学报,2004,41(3):426-433
    73.石玉林.西北地区土地荒漠化与水土资源利用研究.北京:科学出版社,2004
    74.石兆勇,刁志凯,徐倩,李敏,刘润进.培养基质和AM真菌对西瓜生长和产量的影响.莱阳农学院学报(自然科学版),2006,23(1):1-6
    75.宋会兴,彭远英,钟章成.干旱生境中接种丛枝菌根真菌对三叶鬼针草(Bidens pilosa L.)光合特征的影响.生态学报,2008,8:3744-3751
    76.孙国荣,彭永臻,阎秀峰,姜丽芬,张睿.干旱胁迫对白桦实生苗保护酶活性及脂质过氧化作用的影响.林业科学,2003,39(1):165-167
    77.唐明,薛蓑,任嘉红,胡景江,刘建朝.AMF提高沙棘抗旱性的研究.西北林学院学报,2003,18(4):29-31
    78.佟丽华,姚彩艳.等渗NaCl和PEG胁迫对玉米幼苗伤害的比较.安徽农业科学,2009,37(14):6393-6395,6471
    79.王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系.植物生理学通讯,1990,6:55-57
    80.王宝山,赵可夫,邹琦.作物耐盐机理研究进展及提高作物抗盐性的对策.植物学通报,1997,14(增刊):25-30
    81.王倡宪,郝志鹏.丛枝菌根真菌对黄瓜枯萎病的影响.菌物学报,2008,27(3):395-404
    82.王倡宪,秦岭,冯固,李晓林.三种丛枝茵根真菌对黄瓜幼苗生长的影响.农业环境科学,2003,22(3):301-303
    83.王鹏,邹国元,张淑彬,刘淑英,王平.丛枝菌根真菌对黄瓜南方根结线虫病的影响.甘肃农业大学学报,2009,44(2):92-93
    84.王素平,郭世荣,李璟,胡晓辉,焦彦生.盐胁迫对黄瓜幼苗根系生长和水分利用的影响.应用生态学报,2006,17(10):1883-1888
    85.王素平,郭世荣,胡晓辉,李璟,焦彦生.盐胁迫对黄瓜幼苗叶片光合色素含量的影响.江西农业大学学报,2006,28(1):32-38
    86.王艳玲,胡正嘉.VA菌根真菌对番茄线虫病的影响.华中农业大学学报,2000,19(1):25-28
    87.王玉峰.VA菌根真菌在马铃薯上的应用效果.中国蔬菜,2007,2:30-31
    88.吴强盛,邹英宁,夏仁学.水分胁迫下丛枝菌根真菌对红橘叶片活性氧代谢的影响.应用生态学报,2007,18(4):825-830
    89.许大全.叶片表观光合量子效率的测定.现代植物生理学试验指南.北京:科学出版社,1999:89-90
    90.杨帆,丁菲,杜天真.盐胁迫下构树幼苗各器官中K+、Ca2+、Na+和Cl-含量分布及吸收特征.应 用生态学报,2009,20(4):767-772
    91.杨秀梅,陈保冬,朱永官,王冬梅,王幼珊.丛枝菌根真菌(Glomus intraradices)对铜污染土壤上玉米生长的影响.生态学报,2008,3:1052-1058
    92.曾韶西,王以柔,李美如.不同胁迫预处理提高水稻幼苗抗寒期间膜保护系统变化比较.植物学报,1997,39(4):308-314
    93.曾韶西,王以柔,刘鸿先.低温下黄瓜幼苗子叶硫氢基(SH)含量变化与膜脂过氧化.植物学报,1991,33(1):50-54
    94.曾曙才,苏志尧,陈北光,俞元春.VA菌根真菌对植物养分吸收与传递的影响.西南林学院学报,2005,25(1):72-74
    95.张俊莲,张金文.植物Na+/H+逆向转运蛋白与植物耐盐性的研究进展.草原与草坪,2005,11(4):3-8
    96.张旭红,高艳玲,林爱军,黄益宗.重金属污染土壤接种丛枝菌根真菌.环境工程学报,2008,2:274-278
    97.张永恩,李潮海,王群.植物抗旱相关功能基因研究.中国农学通报,2004,20(6):85-88
    98.赵春.盐胁迫下小麦苗期渗透调节物质含量的变化研究.安徽农业科学,2009,37(24):11473-11474
    99.赵可夫.植物耐盐生理.北京:中国科学技术出版社,1993:73-79
    100.赵可夫,冯立田.中国盐生植物资源.北京:科学出版社,2001
    101.赵平娟,安锋,唐明.丛枝菌根真菌对连翘幼苗抗旱性的影响.西北植物学报,2007,27(2):396-399
    102.赵士杰,李树林.VA菌根促进青椒生长的生理研究.华北农学报,1994,9(1):81-86
    103.赵杨景,郭顺星,高薇薇,杜淑燕.三种内生真菌与大花蕙兰共生对矿质营养吸收的影响.园艺学报,1999,26(2):110-115
    104.赵勇,马雅琴,翁跃进.盐胁迫下小麦甜菜碱和脯氨酸含量变化.植物生理与分子生物学学报,2005,31(1):103-106
    105.郑青松,刘海燕,隆小华,刘兆普,牛丹丹,高影影.盐胁迫对油菜幼苗离子吸收和分配的影响.中国油料作物学报,2010,32(1):65-70
    106.郑少玲,严小龙.盐胁迫下不同水稻基因型根内Na+和Cl-的分布情况比较.华南农业大学学报,1996,17(4):24-28
    107.朱先灿,宋凤斌,徐洪文.低温胁迫下丛枝菌根真菌对玉米光合特性的影响.应用生态学报,2010,2(21):470-475
    108.朱义,谭贵娥,何池全,崔心红,张群.盐胁迫对高羊茅(Festuca arundinacea)幼苗生长和离子分布的影响.生态学报,2007,20(12):5447-5454
    109. Alexieva V, Sergiev I, Mapelli S, Karanov E. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ,24:1337-1344
    110. Al-Karaki G N, Rusan R H M. Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhizal,2001,11:43-47
    111. Allakhverdiev S I, Sakamoto A, Nishiyama Y, Inaba M, Murata N. Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiology,2000, 123:1047-1056
    112. Arakawa N, Tsutsumi K, Sanceda N G. A rapid and sensitive method for the determination of ascorbic acid using 4,7-diphenyl-1,10-phenanthroline. Agricultural and Biological Chemistry,45: 1289-1290
    113. Ashraf M, Harris P J C. Potential biochemical indicators of salinity tolerance in plants. Plant Science,2004,166:3-16
    114. Attia H, Karray N, Rabhi M. Salt-imposed restrictions on the uptake of macroelements by roots of Arabidopsis thaliana. Acta Physiologiae Plantarum,2008,30:723-727
    115. Auge R M. Water relations, drought and vesicular arbuscular mycorrhizal symbiosis. Mycorrhiza, 2001,11:3-42
    116. Azcon R, Gomez M, Tobar R. Physiological and nutritional responses by Lactuca sativa L. to nitrogen sources and mycrrhizal fungi under drought conditions. Biol Fertil Soils,1996,22:156-161
    117. Azcon R, Tobar R. Activity of nitrate reductase and glutamine synthetase in shoot and root of mycorrhizal Allium cepa effect of drought stress. Plant Science,1998,133:1-8
    118. Barker S J, Tagu D. The roles of auxins and cytokinins in mycorrhizal symbioses. Journal of Plant Growth Regulation,2000,19:144-154
    119. Berry J A, Downton W J S. Environmental regulation of photosynthesis. Photosynthesis (Ⅱ). NewYork:Academic Press,1982:263-345
    120. Bethlenfalvay G, Brown M, Mihara K, Stafford A. Effects of mycorrhizal on nodule activity and transpiration in soybean under drought stress. Plant Physiol,1987,85:115-119
    121. Blilou I, Bueno P, Ocampo J A. Indution of catalase and ascorbate peroxidase activities in tobacco roots inoculated with the arbuscular mycorrhizal Glomus mosseae. Mycorrhizal Research,2000, 104:722-725
    122. Blumwald E. Sodium transport and salt tolerance in plants. Current Opinion in Cell Biology,2000, 12:431-434
    123. Borsani O, Valpuesta V, Botella M A. Developing salt tolerant plants in a new century:a molecular biology approach. Plant Cell,2003,73:101-115
    124. Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye bingding. Analytical Biochemistry,1976,72(1):248-254
    125. Cachorro P, Ortiz A. Growth, water relations, and solute composition of Phaseolus vulgaris L. shoots under salt stress. JPlant Growth Reg,1993,14:99-104
    126. Cantrell I C, Linderman R G. Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant and Soil,2001,233:269-281
    127. Cengiz K, Muhammed A, Osman S. The influence of arbuscular mucorrhizal colonization on key growth parameters and fruit yield of peper pants grown at high salinity. Scientia Horticulturae, 2009,121:1-6
    128. Chaparzadeh N, Amico M L, Khavari N R A. Antioxidative responses of Calendula officinalis under salinity conditions. Plant Physiol Biochem,2004,42:695-701
    129. Copeman R, Martin C, Stutz J. Tomato growth in response to salinity and mycorrhizal fungi from saline or monsaline soil. Hort Science,1996,31:313-318
    130. Cordier C, Gianinazzi S, Gianinazzi S, Pearson V. An immunological approach for the study of spatial relationshios between arbuscular mucorrhizal fungi in planta. Plant and Soil,1996,185(2): 223-232
    131. Dhindsa R S, Plumbdhindsa P, Thorpe T A. Leaf senescence correlated with increase levels of memebrane permeability and lipid peroxidation and decrease levels dismutase and catalase. Journal of Experimental Botany,1982,32:91-101
    132. Dodd J, Dougall T, Clapp J, Jeffries P. The role of arbuscular mycorrhizal fungi in plant community establishment at Samphire Hoe, Kent, UK the reclamation platform created during the building of the channel tunnel between France and the UK. Biodiversity and Conservation,2002,11:39-58
    133.Elsen A, Baimey H, Sweenen R. Relative mycorrhizal dependency and mycorrhiza-nematode interaction in banana cultivars(musa spp.) differing in nematode susceptibility. Plant Soil,2003, 256(2):303-313
    134. Farquhar G D, Sharkeyu T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology,1982,33:317-345
    135. Feng G, Zhang F S, Li X L, Tian C Y, Tang C, Rengel Z. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza,2002a,12(4):185-190
    136. Feng G, Zhang F S, Li X L, Tian C Y, Tang C X, Rengel Z. Uptake of nitrogen from indigenous soil pool by cotton plant inoculated with arbuscular mycorrhizal fungi. Common Soil Sci Plant Anal, 2002b,33:3825-3836
    137. Flexas J, Bota J, Galmes J, Medrano H, Carbo M R. Keeping a positive carbon balance under adverse conditions:responses of photosynthesis and respiration to water stress. Physiol Plant,2006, 127:343-352
    138. Foyer C H, Halliwell B. The presence of glutathione and glutathione reductase in chlorop lasts:A proposed role in ascorbic acid metabolism. Planta,1976,133:21-25
    139. Ghazi N, Al-Karaki R, Hammad M. Respose of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhizal,2001,11:43-47
    140. Ghorbanli M, Ebrahimzadeh H, Sharifi M. Effects of NaCl and mycorrhizal fungi on antioxidative enzymes in soybean. Biologia Plantarum,2004,48:575-581
    141. Giannopltis C N, Ries S K. Purification and quantitative relationship with water soluble protein in seedling. Plant Physiology,1997,59:315-318
    142. Giri B, Mukeiik G. Myeorrhizal inoculant alleviares salt stressin Sesbania aegyptiaca and Sesbania grandiflora under field conditions:evidence for reduced sodium and improved magnesium uptake. Mycorrhiza,2004,14(5):307-312
    143. Guo T, Zhang J L, Christie P, Li X L. Influence of nitrogen and sulphur fertilizers and inoculation with arbuscular mycorrhizal fungion yield and pungency of spring onion. Journal of Plant Nutrition, 2006,29:1767-1778
    144. Guo T, Zhang J L, Christie P, Li X L. Pungency of spring onion as affected by inoculation with arbuscular mycorrhizal fungi andsulfur supply. Journal of Plant Nutrition,2007,30:1023-1034
    145. Griffith O W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Analytical Biochemistry,1980,106:207-212
    146. Hao Z P, Christie P, Qin L,Wang C X, Li X L.Control of fusarium wilt of cucumber seedlings by inoculation with an arbuscular mycorrhical fungus. Journal of Plant Nutrition,2005,28(11):1961-1974
    147. Hawkins H, Anders J, Eckhard G. Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant and Soil,2000,226:275-285
    148. He Z Q, He C X, Zhang Z B, Zou Z R, Wang H S. Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mucorrhizae under NaCl stress. Colloids and Surfaces B,2007,59:128-133
    149. Herth R L, Packer L. Photoperoxidation in isolated chloroplasts I kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys,1986,125:189-198
    150. Hirrel M. The effect of sodium and chloride salts on the germination of Gigaspora margarita. Mycologia,1981,43:610-617
    151. Hossain M A, AsAda K. Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme. Plant and Cell Physiology,1984,25:85-92
    152. Imlay J A, Linn S. DNA damage and oxygen radical toxicity. Science,1988,240:1302-1309
    153. Jin Y H, Tao D L, Hao Z Q, Ye J, Du Y J, Liu H L, Zhou Y B. Environmental stresses and redox status of ascorate. Acta Botanica Sinica,2003,23,45(7):795-801
    154. Jindal V, Atwal A, Sekson B S. Effect of vesicular arbuscular mycorrhizae on metabolism of moong plants under NaCl salinity. Plant Physiol Biochem,1993,31:475-481
    155. Juniper S, Abbott L. Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza,1993,4:45-47
    156. Kaldorf M, Ludwig-Muller J. AM fungimight affect the root morphology of maize by increasing indole-3-butyric acid biosynthesis. Physiologia Plantarum,2000,109:58-67
    157. Kanazawa S, Sano S, Koshiba T, Sano S. Changes in antioxidative in cucumber cotyledons during natural senescence comparison with those during dark-induced senescence. Physiol Plant,2000, 109(2):211-216
    158. Karaki G. Growth and mineral acquisition by mycorrhizal tomato grown under salt stress. Mycorrhiza,2000,10:51-54.
    159. Killhan K. Ecological interactions in soils. Blockwell Scientific,1985,7:225-323
    160. Kormanik P P, McGraw A C. Quantification of VA mycorrhizae in plant roots. Methods and principles of mycorrhizal research. New York:American Phytopathological Society,1982:37-45
    161. Mediavilia S, Santiago H, Escudero A. Stomatal and mesophyll limitations to photosynthesis in one evergreen and one deciduous mediterranean oak species. Photosynthetica,2002,40:553-559
    162. Mittova V, Tal M, Volokita M, Guy M. Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt tolerant wild tomato species Lycopersion pennellii but not in the cultivated species. Physiol Plant,2002,115:393-400
    163.Miyake C, AsAda K. Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids. Plant and Cell Physiology,1992,33:541-553
    164. Mozafar S, Mahlagha G, Hassan E. Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. Journal ofplant physiology,2007,164:1144-1151
    165. Munns R. Comparative physiology of salt and water stress. Plant Cell Environment,2002,25:239-250
    166. Nakano Y, AsAda K. Hydrogen peroxide is seavenged by aseorabate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology,1981,22:867-880
    167. Neto A D A, Prisco J T, Eneas-Filho J. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot,2006,56:87-94
    168. Niu X, Bressan R A, Hasegawa P M. Ion homeostasis in NaCl stress environments. Plant Physiol, 1995,109:735-742
    169. Ottow E A, Brinker M, Teichmann T. Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress. Plant Physiol,2005,139:1762-1772
    170. Pande M, Tarafadar J M. Effects of phosphorus, salinity and moisture on VAM fungal association in neem(Azadirachta indica L.). Symbiosis,2002,32(2):195-209
    171. Parida A K, Das A B. Salt tolerance and salinity effects on plants:a review. Ecotoxicology and Environmental Safety,2005,60:324-349
    172. Perner H, Krumbein A, Li X L, Eckhard E. Influence of nitrogen forms and mycorrhizal colonization on growth and composition of Chinese bunching onion. Plant Nutr Soil Sci,2007,170: 762-768
    173. Porcel R, Barea J M, Ruiz-Lozano J M. Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytologist, 2003,157:135-143
    174. Poss J A, Pond E, Menge J. Effect of salinity on mycorrhizal onion and tomato in soil with and without additional phosphate. Plant and Soil,1985,88:307-319
    175. Pukacka S, Ratajczak E. Antioxidative response of ascorbate-glutathione pathway enzymes and metabolites to desiccation of recalcitrant Acer saccharinum seeds. Journal of Plant Physiology, 2006,163:1259-1266
    176. Rabie G H. Influence of arbuscular mycorrhizal fungi and kinetinon the response of mungbean plants to irrigation with seawater. Mycorrhiza,2005,15(3):225-230
    177. Ratti N, Abdul K, Shukla P K, Akhtar H. Effect of glomus mossese (nicol. and gerd.) gerdemann and trappe on root-knot disease of menthol mint (Mentha arvensis sub sp. Haplocalyx Briquet) caused by meloidogyne incognita (kofoid and white) chitwood. Journal of Spices and Aromatic Crops,2000,9(2):129-132
    178. Rosendal C N, Rosendahl S. Influence of vesicular arbuscular mycorrhizal fungi (Glomus spp.) on response of cucumber (cucumis sativus L.) to salt stress. Environ. Exp. Bor.,1991,31:313-318
    179. Ruizlozano J M, Azlon R, Gomez M. Alleviation of saltstress by arbuscular mycorrhizal Glomus speeies in Lactuca sativa plants. Physiologia Plantarum,1996,98:767-772
    180. Sairam R K, Rao K V. Srivastava G C. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science,2002,163:1037-1046
    181. Serrano R, Gaxiola R. Microbial models and salt stress tolerance in plants. Cri Rev Plant Sci,1994, 13:121-138
    182. Shalata A, Mittova V, Volokita M. Response of the cultivated tomato and itswild salt tolerant relative Lycopersicon pennellii to salt dependent oxidative stress:The root antioxidative system. Physiologia Plantarum,2001,112:487-494
    183.Sharifi M, Ghorbanli M, Ebrahimzadeh H. Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. Journal of Plant Physiology,2007,164:1144-1156
    184. Smith S, Read D. Mycorrhizal symbiosis. London:Academic Press,1997:164,233-289
    185. Srivastava A K, Kohli R R, Lallan R, Dass H C. Relationship between chloride accumulation in leaf and cation exchange capactity of root of Citrus species. Indian Journal of Agriculture Science,1998, 68(1):39-41
    186. Takacs T, Voros I. Effect of metal non-adapted arbuscular mycorrhizal fungi on Cd, Ni and Zn uptake by ryegrass. Acta Agronomica Hungarica,2003,51(3):347-354
    187. Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants. Annals of Botany,2003, 91:503-527
    188. Trimble M, Knowles N. Influence of vesicular arbuscular mycorrhizal fungi and phosphorus on growth, carbohydrate partitioning and mineral nutrition of greenhouse cucumber (Cucurnis sativus L.) plants during establishment. Can J. Plant Sci.,1995,75:239-250
    189. Vnocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress:achievements and limitations. Current Opinion in Biotechnology,2005,16:123-132
    190. Wang G X. Effect of drought stress on activities of cell defense enzymes and lipid peroxidation in glycyrrhiza uralensis seedlings. Acta Ecologica Sinica,2002,22(4):503-507
    191. Wang Y, Nil N. Changes in chlorophyll, ribulose biphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. Journal of Horticultural Science Biotechnology,2000,75:623-627
    192. Weissenhorn I. Mycorrhiza and salt tolerance of trees. Scientific Report,2000
    193. Zhu X C, Song F B, Xu H W. Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis. Plant and Soil,2010,33(1-2):129-137
    194. Xiang C, Oliver D J. Glutathione metabolish genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell,1998,10:1539-1550
    195. Yanomelo A M, Saggin O J, Maia L C. Tolerance of mycorrhized banana(Musa sp. Cv. pacovan) plantlets to saline stress. Ecosystems and Environment,2003,95:343-348
    196. Yao M K, Tweddell R J. Effect of two vesicular-arbuscular mucorrhizal fungi on the growth of micropropagated potato plantlets and on the extent of disease cause by Thizoctonia solani. Mycorrhiza,2002,12(5):235-242
    197. Zhu J K. Plant salt tolerance. Trends Plant Sci,2001,6:66-71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700