用户名: 密码: 验证码:
盐草(Distichlis spicata)耐盐生理及Na~+转运机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究着眼于植物耐盐性和Na+转运的研究,对盐生植物——盐草(Distichlis spicata)和甜土植物——高羊茅(Festuca arundinacea)的耐盐生理特性进行了研究,并从个体和细胞水平两个不同的研究层面测定了Na+的分布、转运,分析了各自相关的耐盐机制。研究内容及主要结果概括如下:
     1.盐草和高羊茅耐盐生理特性及抗氧化体系反应机制。实验测定了250mM NaCl处理盐草和高羊茅植株0、5、10、15、20天后,其生物量、净光合速率、细胞膜透性、脯氨酸含量以及抗氧化体系的变化。结果表明,随着盐胁迫时间的延长,盐草和高羊茅的生物量和净光合速率都小于对照,但是高羊茅下降的幅度明显大于盐草;盐胁迫导致两种参试材料叶中细胞膜透性增加,高羊茅叶中的细胞膜透性高于盐草;而脯氨酸的含量在两种参试材料中的变化并不明显;盐胁迫导致两种参试材料根组织和叶组织中SOD酶活性增高,而盐草叶组织和根组织中SOD活性高于高羊茅,说明盐草对O2.-有更高的清除效率;盐草叶组织中APX活性显著高于高羊茅,但是根组织中APX活性在两种参试材料之间差异不大,说明APX酶和SOD酶联合变化清除SOD反应产生的H2O2,而且其作用部位主要是植物的叶组织。在盐胁迫条件下,盐草叶组织中CAT酶活性显著升高,而高羊茅叶组织中CAT酶活性变化不大。
     2.盐胁迫下Na+在盐草和高羊茅体内不同部位的积累和转运以及相关离子的变化。实验测定了250mM NaCl处理0、5、10、15、20、25天后,盐草和高羊茅根、茎、叶中Na+、K+、Ca2+、Mg2+离子含量变化。盐胁迫会导致盐草和高羊茅根、茎、叶中Na+含量升高,在盐胁迫15天后盐草叶中Na+含量显著低于高羊茅(P<0.05);两种植物叶中K+含量呈下降的趋势;在盐处理25天后,盐草叶中的K+含量高于高羊茅;而高羊茅茎和叶中的Ca2+含量高于盐草,这有利于高羊茅维持这些部位组织正常的代谢功能。通过对K+/Na+离子比的分析发现,盐草根中的K+/Na+离子比小于高羊茅,意味着更多的Na+进入到盐草的根中;而在“根-茎”和“茎-叶”的运输过程中,盐草的K+、Na+运输选择系数高于高羊茅,表明盐草对K+、Na+离子的选择运输具有很强的调控能力。
     3.运用X射线电子探针研究了两种耐盐性不同的植物材料盐草和高羊茅在盐胁迫下根、茎、叶中的离子微区分布的状况及其与耐盐适应性的关系。将扫描电镜和X射线能谱仪联用,对盐胁迫20天的盐草和高羊茅不同组织部位进行了点扫描分析,测定了不同部位离子分布状况。盐胁迫下,两种植物根组织中氯离子和钠离子的相对重量都很高,但是高羊茅中柱层中的钠离子和氯离子相对重量都高于盐草;和高羊茅相反,在盐草茎中,大量的钠离子主要分布在韧皮部中,而氯离子则主要存在于木质部中;高羊茅叶组织中钠离子相对重量是盐草叶组织中2倍。说明盐草可以通过根组织对离子的选择性吸收降低进入植物体的有害离子含量,并通过离子在茎中的再次分配降低有害离子进入叶组织,从而避免对叶组织造成较大的离子毒害。显然,矿物离子在植物体内中的微区分布是耐盐机制的一个重要组成部分。
     4.利用电子显微技术对盐草叶表面的盐腺结构及分布进行了观察,并研究了盐草泌盐特性的动态变化以及相关的生理生态特性,以建立植物光合作用、蒸腾速率、以及环境因子和盐草泌盐特性之间的关系。对在250mMNaCl溶液中生长了30天的盐草测定了光合速率、蒸腾速率的日变化及泌盐量的日变化,并对所分泌盐分的不同离子含量进行了测定。通过对盐草和大气相对湿度的相关性分析,发现泌盐量(Na、K、Ca、Mg)和大气湿度具有很高的相关性(R>0.843),而盐草在上午9:00时盐分分泌速度最大,达到61.3 umol Na+ g-1f.wth-1。对不同元素的分泌数量排序为:Na>>K>Ca>Mg。
     5.利用分子生物学技术获得了盐草液泡膜Na+/H+ antiporter基因中间片段,大约为600bp,通过序列比对发现它和其他植物的相同基因具有很高的同源性,确定为我们希望得到的目的片段。利用X-ray技术分析了盐处理0、5、10、15、20、25天后Na+在盐草细胞不同部位的积累(细胞质、液泡和细胞间质),发现液泡和细胞间质中Na+含量明显增加,表明进入叶片中的Na+主要区隔在液泡中和控制在细胞间质中。同时测定了盐草叶组织质膜和液泡膜H+-ATPase质子泵的活性,发现盐胁迫处理使液泡膜H+-ATPase的活性显著升高,而盐草质膜H+-ATPase活性并没有明显的升高,表明细胞液泡中Na+的积累会激活液泡膜H+-ATPase质子泵的活性。通过Real-time PCR技术检测了盐草液泡膜Na+/H+ antiporter的基因表达随时间的变化,发现随着盐胁迫时间的延长,Na+/H+ antiporter表达量显著升高,说明盐诱导会导致Na+/H+ antiporter超量表达。综合分析发现,随着盐胁迫时间的延长,盐草叶中增加的Na+一部分会积累到细胞液泡中形成区隔化,在区隔化的过程中液泡膜H+-ATPase质子泵的活性增强使离子转运过程的驱动力加大,同时液泡膜Na+/H+ antiporter作为转运载体表达量也会协同增高。细胞间质中Na+也会增高,但是质膜H+-ATPase质子泵并没有明显变化,表明细胞可能通过控制Na+在细胞膜上的通透来抑制Na+进入到细胞质中。
The physiological response of saltgrass(halophyte) and tall fescue (glycophyte) to salt stress, as well as the distribution and transport of Na+, were studied experimentally at both cellar and whole plant levels to better understand the mechanism of salt tolerance and Na+ transport in higher plants. The research work and main results are summarized below.
     1. The physiological response and the activity of antioxidative enzymes of saltgrass and tall fescue under salt stress were studied. Plant growth, net photosynthesis, relative electrolyte leakage percentage (RELP), proline content and activity of antioxidative enzymes were measured after 0, 5,10,15,20 days of 250mM NaCl treatment. The results showed that the shoot weight and net photosyntheis of both saltgrass and tall fescue were decreased significantly with prolonged salt stress, with the reduction being more evident in tall fescue than in saltgrass. Salt stress led to an increase in RELP in leaf tissues in both species but it is higher in tall fescue, while no significant change in proline cotent was detected in both species. Salt stress also increased the SOD activity in leaves and roots of both species, with that of saltgrass being higher than in tall fescue, suggesting that the saltgrass had better ability of O2.- radical scavenging. With increased salt stress, leaf APX activity in saltgrass was significantly higher than in tall fescue, but there was no significant difference in root APX between the the two species. These suggested that APX and SOD enzymes jointly contributed to scavenging of H2O2 resulted from SOD reaction and the actitivy took place mainly in leaf tissues. The activity of CAT in leaf tissues of saltgrass increased significantly with increased salt stress, however that of tall fescue was not affected significantly by salt stress.
     2. The effects of exogenous NaCl on ion distribution and transport were investigated in both species. Na+, K+,Ca2+,Mg2+ content in root, shoot and leaf were measured after 0, 5,10,15,20 days of 250mM NaCl treatment. The results showed that Na+ content in root, shoot and leaf tissues increased as a response to increased salt stress. After 15 days of NaCl treatment, Na+ content in leaf of saltgrass was significantly higher than that of tall fescue (P<0.05). K+ content decreased in leaves of both species, while that of saltgrass was higher than that Tall fescue after 25 days of NaCl treatment. K+ content in leaf tissue, Ca2+ content in shoot and leaf of tall fescue was higher than in saltgrass, indicating a better condition for tall fescue to maintain the normal metabolic function . K+/Na+ ration in root of saltgrass was lower than that of tall fescue, indicating more Na+ leaked into root tissue.Higher K+-Na+ selectivity was detected in the root-to-shoot and shoot-to-root transport in saltgrass as compared with that in Festuca arundinaces. The results indicated that saltgrass had more control on K-Na selectivity.
     3. Microdistribution of mineral ions in roots, stems and leaves of saltgrass and tall fescue was investigated under salt stress using an energy dispersive X-ray microanalyzer (EDX) to explore its relations to salt-tolerance. Plants of the two species were grown hydroponically with 250 mM NaCl . Root tips, stem and leaves were harvested for microanalysis 20 days after transplanting. X-ray percentage of content of atom and the peak of X-ray energy spectra intensity were measured in the sections. It was shown that high Cl and Na X-ray peaks were recorded in root tissues of the both specieswith the X-ray percentages of content of Na and Cl in stelar cells of roots of tall fescue being higher than that of Distichlis spicata. In contrast with tall fescue, saltgrass had relatively high percentage of content Na+ in xylem, and Cl- in phloem. The percentage of Na+ in leaves of tall fescue was 2 times of that of saltgrass.The results suggested that saltgrass regulated the absorption of toxic irons by the mechanism of selective absorption in root, recirculated Na back to root through phloem or retrieval of Na+ from xylem so that less toxic ions were transported to leaf tissues. It was clear that a micro-distribution of mineral ions in plants was involved in the salt tolerance machanism.
     4. The micro-structure, distribution of salt glands, salt excretion and the ecophysiological environments in saltgrass were observed using scanning electron microscopyin relation to diurnal changes in net photosynthesis, transpiration rate and other ecophysiological factors. Diurnal dynamics of net photosynthesis, transpiration rate, ionic secretion and ion content were measured after 30 days of NaCl treatment. The results showed that there was generally a positive correlation between the atmosphere humidity and ion secretion during the day (R>0.843), with the excretion rate being the highest at 9:00 AM (61.3μmol Na+ g-1f.wt h-1). The ions could be ranked, according to their excretion rate, as Na>>K>Ca>Mg.
     5. A segment of vacuolar Na+/H+ antiporter gene was cloned from saltgrass using PCR and a sequence of 600 bp in length was obtained. The sequence was highly homologous with the Na+/H + antiporter genes from other plants. X-ray microanalysis were used to investigate the Na+ cellar distribution in saltgrass after 0,5,10,15,20,25 days of NaCl treatment. The results showed that Na+ in cytoplasm was compartmented into vacuole and apoplast. Meanwhile the activity of vacuolar H+-ATPase increased after salt treatment, while the activity of plasma H+-ATPase did not increase. And the expression of vacuolar Na+/H+ antiporter increased using real-time PCR. In sum, we found that a part of Na+ which increased in leaf of saltgrass was accumulated in vacuolar and was compartmented. In the proceed on compartment, more energy was supplied for Na+ transport by the increase of vacuolar H+-ATPase, in coordination expression of vacuolar Na+/H+ antiporter as carrier was also increasing. However the activity of H+-ATPase in plasma had not significant change although the Na+ in apoplast increased. It suggested that maybe some ion channels were cotrolled to inhibtated Na+ into cytolplasm.
引文
1. 李品芳,, 白文波,,杨志成. NaCl 胁迫对苇状羊茅离子吸收与运输及其生长的影响. 中国农业科学, 2005, 7(38): 1458-1565.
    2. 周玲玲, 刘萍,陆嘉惠. 四种补血草属植物叶片泌盐结构的扫描电镜观察. 植物研究, 2006,6 667-671.
    3. 梁永超,丁瑞兴. 硅对大麦根系中离子的微域分布的影响及其与大麦耐盐性的关系. 中国科学(C 版), 2002, 32(2): 113-121.
    4. 章文华, 余友良. 大麦根液泡膜微囊依赖 ATP 质子泵测定技术的改进. 植物生理学通讯, 1997,33(4): 282-285.
    5. 刘志华,时丽冉,赵可夫. 獐茅盐腺形态结构及其泌盐性. 植物生理与分子生物学学报,2006, 32,(4): 420-426.
    6. 孙启忠,乔秉钧. 盐分胁迫下植物对离子的吸收及其危害. 盐碱地利用, 1992,1:1-4.
    7. 张宜辉, 王文卿,林鹏. 红树植物的盐分平衡机制. 海洋科学, 2007,11,86-90.
    8. 杨洪兵, 陈敏. 小麦幼苗拒 Na+部位的拒 Na+机理. 植物生理与分子生物学学报, 2002, (3):
    181-186.
    9. 杨洪泽,王长海,,袁文杰. 不同海水浓度灌溉菊芋的营养元素测定. 光谱学与光谱分析, 2006, 26,(11), 2140-2142.
    10. 汤章城. 现代植物生理学实验指南, 北京, 科学出版社,1999,195-198.
    11. 罗庆云, 於丙军,刘友良. NaCl 胁迫下 Cl - 和 Na + 对大豆幼苗胁迫作用的比较. 中国农业科学,2001,36,(11), 1390 - 1394.
    12. 陆静梅,李建东. 一种新型的植物盐腺. 东北师大学报:自然科学版 1994, 3,(3): 88-90.
    13. 陆静梅,李建东. 二色补血草叶片泌盐结构的扫描电镜观察. 应用生态学报, 1995, (4):355-358.
    14. 陈德明,俞仁培. 盐胁迫下不同小麦品种的耐盐性及其离子特征. 土壤学报, 1998, (1): 88-94.
    15. 韩军丽,赵可夫. 植物盐腺的结构、功能和泌盐机理的探讨. 山东师范大学学报:自然科学版, 2001,(2): 194-198.
    16. 145 夏阳,刘德玺,李自峰等. NyPa 草生物学性状观测和耐盐生产性能研究. 山东林业科技, 2006,1(162):7-8.
    17. Abei, H. Catalase in vitro. Method in enzymology. 1984,105:121-126.
    18. Alberico, G. J., and Cramer, G. R. In the salt tolerance of maize related to sodium exclusion? I.Preliminary screening of seven cultivars. Journal of plant nutrition. 1993, 16(11):2289-2303.
    19. Albinsky, D., Masson, J. E., Bogucki, A., Afsar, K., Vass, I., Nagy, F., and Paszkowski, J. Plant responses to genotoxic stress are linked to an ABA/salinity signaling pathway. Plant journal: for cell and molecular biology. 1999, 17(1): 73-82.
    20. Amarasinghe, V., and Watson, L. Variation in salt secretory activity of microhairs in grasses. Australian journal of plant physiology. 1989, 16(2):219-229.
    21. Apse, M. P., Aharon, G. S., Snedden, W. A., and Blumwald, E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. 1999, 285(5431):1256-1258.
    22. Arakawa, N., Tsutsumi, K., Sanceda, N. G., Kurata, T., and Inagaki, C. A rapid and sensitive method for the determination of ascorbic acid using 4,7-diphenyl-1,10-phenanthroline. Agricultural and biological chemistry. 1981, 45(5):1289-1290.
    23. Ball, M. C.. Salinity tolerance in the mangroves Aegiceras corniculatum and Avicennia marina. 1. Water use in relation to growth, carbon partitioning, and salt balance. Australian journal of plant physiology. 1988. 15(3):447-464.
    24. Benito, B., Garciadeblas, B., and Rodriguez-Navarro, A. Potassium- or sodium-efflux ATPase, a key enzyme in the evolution of fungi. Microbiology. 2002. 148(4):933-941.
    25. Berger, B., Wilson, D. B., Wolf, E., Tonchev, T., Milla, M., and Kim, P. S.. Predicting coiled coils by use of pairwise residue correlations. Proceedings of the National Academy of Sciences of the United States of America. 1995, 92(18):8259-8263.
    26. Bhandal, I. S., and Malik, C. P. Potassium estimation, uptake, and its role in the physiology and metabolism of flowering plants. International review of cytology. 1988, 110(110):205-254.
    27. Blom-Zandstra, M., Vogelzang, S. A., and Veen, B. W. Sodium fluxes in sweet pepper exposed to varying sodium concentrations. Journal of experimental botany. 1998, 49(328):1863-1868.
    28. Blumwald, E., Aharon, G. S., and Apse, M. P. Sodium transport in plant cells. International journal of biochemistry and biophysics.2000, 1465(1-2):140-151.
    29. Boevink, P., Martin, B., Oparka, K., Santa Cruz, S., and Hawes, C. Transport of virally expressed green fluorescent protein through the secretory pathway in tobacco leaves is inhibited by cold shock and brefeldin A. Planta. 1999, 208(3):392-400.
    30. Braida, W. J., White, J. C., Ferrandino, F. J., and Pignatello, J. J. Effect of solute concentration on sorption of polyaromatic hydrocarbons in soil: uptake rates. Environmental science & technology. 2001, 35(13):2765-2772.
    31. Briskin, D. P., Basu, S., and Assmann, S. M. Characterization of the red beet plasma membrane H+-ATPase reconstituted in a planar bilayer system. Plant physiology. 1995, 108(1):393-398.
    32. Briskin, D. P., and Reynolds-Niesman, Determination of H+-ATP stoichiometry for the plasma membrane H+-ATPase from red beet (Beta vulgaris L.) storage tissue. Plant physiology. 1991, 95(1):242-250.
    33. Camberato, J. J., Peterson, P. D., and Martin, S. B. Salinity and Salinity Tolerance Alter Rapid Blight in Kentucky Bluegrass, Perennial Ryegrass, and Slender Creeping Red Fescue. Applied turfgrass science. 2006.
    34. Cardenas, M., LeCompte, C., and Cua, G. Estimation of permeability of disturbed halite using inverse modeling. Ground water. 1999, 37(4):539-545.
    35. Cheeseman, J. M. Mechanisms of salinity tolerance in plants. Plant physiology. 1988, 87(3):547-550.
    36. Cheeseman, J. M., Bloebaum, P. D., and Wickens, L. K. Short term 22Na+ and 42K+ uptake in intact, mid-vegetative spergularia marina plants. Physiologia plantarum. 1985, 65(4):460-466.
    37. Chen, T. H. H., Howe, G. T., and Bradshaw, H. D., Jr. Molecular genetic analysis ofdormancy-related traits in poplars. Weed science. 2002. 50(2):232-240.
    38. Chen, T. H. H., and Murata, N. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Current opinion in plant biology. 2002, 5(3):250-257.
    39. Chen, W. Q., Provart, N. J., Glazebrook, J., Katagiri, F., Chang, H. S., Eulgem, T., Mauch, F., Luan, S., Zou, G. Z., Whitham, S. A., and Budworth, P. R. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant cell. 2002, 14(3):559-574.
    40. Conway, G., The doubly green revolution,Ithaca, N.Y,Comstock Pub,1999:1512-1514
    41. Cramer, G. R., Alberico, G. J., and Schmidt, C. Salt tolerance is not associated with the sodium accumulation of two maize hybrids. Australian journal of plant physiology. 1994,21(5):675-692.
    42. Cramer, G. R., and Quarrie, S. A. Abscisic acid is correlated with the leaf growth inhibition of four genotypes of maize differing in their response to salinity. Functional plant biology. 2002, 29(1):111-115.
    43. Cuin, T. A., Miller, A. J., Laurie, S. A., and Leigh, R. A. Potassium activities in cell compartments of salt-grown barley leaves. Journal of experimental botany. 2003, 54(383):657-661.
    44. D'Souza, P., Amit, A., Saxena, V. S., Bagchi, D., Bagchi, M., and Stohs, S. J. Antioxidant properties of Aller-7, a novel polyherbal formulation for allergic rhinitis. Drugs Exp Clin Res 30, 99-109.
    45. Davenport, R. J., and Tester, M. A weakly voltage-dependent, nonselective cation channel mediates toxic sodium influx in wheat. Plant physiology. 2000, 122(3):823-834.
    46. Demidchik, V., Davenport, R. J., and Tester, M. Nonselective cation channels in plants. Annual review of plant biology. 2002, 53(53):67-107.
    47. Demidchik, V., and Tester, M. Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant physiology. 2002, 128(2):379-387.
    48. Ding, L., and Zhu, J. K. (1997). Reduced Na+ uptake in the NaCl-hypersensitive sos1 mutant of Arabidopsis thaliana. Plant physiology. 1997, 113(3):795-799.
    49. Dubcovsky, J., Maris, G. S., Epstein, E., Luo, M. C., and Dvorak, J. Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theoretical and applied genetics. 1996, 92(3-4):448-454.
    50. Elphick, C. H., Sanders, D., and Maathuis, F. J. M. Critical role of divalent cations and Na+ efflux in Arabidopsis thaliana salt tolerance. Plant, cell and environment. 2001, 24(7):733-740.
    51. Flowers, T. J. Chloride as a nutrient and as an osmoticum. Advances in plant nutrition. 1988, 3(3):55-78.
    52. Flowers, T. J., and Dalmond, D. Protein synthesis in halophytes: the influence of potassium, sodium and magnesium in vitro. Developments in plant and soil sciences. 1993, 50(50):195-203.
    53. Flowers, T. J., Hajibagheri, M. A., and Yeo, A. R. Ion accumulation in the cell walls of rice plants growing under saline conditions: evidence for the Oertli hypothesis. Plant, cell and environment. 1991, 14(3):319-325.
    54. Flowers, T. J., and Yeo, A. R. Ion relations of plants under drought and salinity. Australian journalof plant physiology. 1986, 13(1):75-91.
    55. Fukuda, A., Yazaki, Y., Ishikawa, T., Koike, S., and Tanaka, Y. Na+/H+ antiporter in tonoplast vesicles from rice roots. Plant and cell physiology. 1998, 39(2):196-201.
    56. Galston, A. W., and Sawhney, R. K. Polyamines in plant physiology. Plant physiology.1990, 94(2):406-410.
    57. Garcia, L., Garcia, M. C., Vallejo, A., and Cartagena, M. C. Coated diammonium phosphate effect on soil nitrogen lixiviation and its relation with properties kinetics. Communications in soil science and plant analysis. 1995, 26(19-20):3405-3416.
    58. Garciadeblas, B., Benito, B., and Rodriguez-Navarro, A. Plant cells express several stress calcium ATPases but apparently no sodium ATPase. Plant and soil. 2001, 235(2):181-192.
    59. Garg, A. K., Kim, J. K., Owens, T. G., Ranwala, A. P., Choi, Y. D., Kochian, L. V., and Wu, R. J. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proceedings of the National Academy of Sciences of the United States of America. 2002, 99(25):15898-15903.
    60. Gaxiola, R. A., Li, J., Undurraga, S., Dang, L. M., Allen, G. J., Alper, S. L., and Fink, G. R. Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proceedings of the National Academy of Sciences of the United States of America. 2001. 98(20):11444-11449.
    61. Gibson, T. S., Speirs, J., and Brady, C. J. Salt-tolerance in plants. II. In vitro translation of m-RNAs from salt-tolerance and salt-sensitive plants on wheat germ ribosomes. Responses to ions and compatible organic solutes. Plant, cell and environment. 1984, 7(8):579-587.
    62. Gimmler, H. Primary sodium plasma membrane ATPases in salt-tolerance algae: facts and fictions. Journal of experimental botany. 2000, 51(348):1171-1178.
    63. Glenn, E. P., Brown, J. J., and Blumwald, E. Salt tolerance and crop potential of halophytes. Critical reviews in plant sciences. 1999, 18(2):227-255.
    64. Gong, M., Chen, B., Li, Z. G., and Guo, L. H. Heat-shock-induced cross adaptation to heat, chilling, drought and salt stress in maize seedlings and involvement of H2O2. Journal of plant physiology. 2001, 158(9):1125-1130.
    65. GORHAM, J. Photosynthesis, transpiration and salt fluxes through leaves of Leptochloa fusca L. Kunth. Plant, Cell and Environment 2000, 10:191-196.
    66. Gorham, J. Salt tolerance in the triticeae: ion discrimination in rye and triticale. Journal of experimental botany. 1990, 41(226):609-614.
    67. Gorham, J., and Wyn Jones, R. G. Utilization of Triticeae for improving salt tolerance in wheat. Tasks for vegetation science. 1993, (28): 27-33.
    68. Hajibagheri, M. A., Harvey, D. M. R., and Flowers, T. J. Quantitative ion distribution within root cells of salt-sensitive and salt-tolerant maize varieties. New phytologist. 1987. 105(3):367-379.
    69. Hamada, A., Shono, M., Xia, T., Ohta, M., Hayashi, Y., Tanaka, A., and Hayakawa, T. Isolation and characterization of a Na+/H+ antiporter gene from the halophyte Atriplex gmelini. Plant molecular biology. 2001, 46(1):35-42.
    70. Harvey, D. M. R. The effects of salinity on ion concentrations within the root cells of Zea mays L. Planta. 1985, 165(2):242-248.
    71. Hasegawa, P. M., Bressan, R. A., Zhu, J. K., and Bohnert, H. J. Plant cuticular and molecular responses to high salinity. Annual review of plant physiology and plant molecular biology. 2000, 51(51):463-499.
    72. Ingram, J., and Bartels, D. The molecular basis of dehydration tolerance in plants. Annual review of plant physiology and plant molecular biology. 1996, 47(47):377-403.
    73. Jefferies, P. R., Knox, J. R., and Scaf, B. "Structure elucidation of some ent-clerodane diterpenes from Dodonaea boroniaefolia and Cyanostegia angustifolia, Australian journal of chemistry 1973, 26 (10): 2199-2211.
    74. Jeschke, W. D., and Pate, J. S. Cation and chloride partitioning through xylem and phloem within the whole plant of Ricinus communis L. under conditions of salt stress. Journal of experimental botany. 1991. 42(242):1105-1116.
    75. Karley, A. J., Leigh, R. A., and Sanders, D. Differential ion accumulation and ion fluxes in the mesophyll and epidermis of barley. Plant physiology. 2000. 122(3):835-844.
    76. Kawasaki, S., Borchert, C., Deyholos, M., Wang, H., Brazille, S., Kawai, K., Galbraith, D., and Bohnert, H. J. Gene expression profiles during the initial phase of salt stress in rice. Plant cell. 2001, 13(4):889-905.
    77. Kronzucker, H. J., Britto, D. T., Davenport, R. J., and Tester, M. Ammonium toxicity and the real cost of transport. Trends in plant science. 2001, 6(8):335-337.
    78. Lefevre, I., Gratia, E., and Lutts, S. Discrimination between the ionic and osmotic components of salt stress in relation to free polyamine level in rice (Oryza sativa). Plant science.2001, 161(5):943-952.
    79. Lin, C. C., and Kao, C. H. Effect of NaCl stress on H2O2 metabolism in rice leaves. Plant growth regulation. Feb 2000. 30(2):151-155.
    80. Lohaus, G., Hussmann, M., Pennewiss, K., Schneider, H., Zhu, J. J., and Sattelmacher, B.. Solute balance of a maize (Zea mays L.) source leaf as affected by salt treatment with special emphasis on phloem retranslocation and ion leaching. Journal of experimental botany.2000, 51(351):1721-1732.
    81. M'Rah, S., Ouerghi, Z., Berthomieu, C., Havaux, M., Jungas, C., Hajji, M., Grignon, C., and Lachaal, M. Effects of NaCl on the growth, ion accumulation and photosynthetic parameters of Thellungiella halophila. J Plant Physiol 1999, 163, 1022-31.
    82. Maathuis, F. J. M., and Amtmann, A. K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Annals of botany. 1999. 84(2):123-133.
    83. Maathuis, F. J. M., Flowers, T. J., and Yeo, A. R. Sodium chloride compartmentation in leaf vacuoles of the halophyte Suaeda maritima (L.) Dum. and its relation to tonoplast permeability. Journal of experimental botany. 1992. 43(254):1219-1223.
    84. Maathuis, F. J. M., and Prins, H. B. A. Patch clamp studies on root cell vacuoles of a salt-tolerantand a salt-sensitive Plantago species. Plant physiology. 1990. 92(1):23-28.
    85. Maeshima, M. Tonoplast transporters: organization and function. Annual review of plant physiology and plant molecular biology. 2001. 52(52):469-497.
    86. Maeshima, M., Hara-Nishimura, I., Takeuchi, Y., and Nishimura, M.Accumulation of vacuolar H+-pyrophosphatase and H+-ATPase during reformation of the central vacuole in germinating pumpkin seeds. Plant physiology. 1994, 106(1):61-69.
    87. Mandala, S., and Taiz, L. Partial purification of a tonoplast H+-ATPase from corn coleoptiles. Plant physiology. June 1985, 78(2):327-333.
    88. Marcum, K. B., Anderson, S. J., and Engelke, M. C. Salt gland ion secretion: a salinity tolerance mechanism among five zoysiagrass species. Crop science. 1998,38(3):806-810.
    89. Marcum, K. B., and Murdoch, C. L. Salt glands in the Zoysieae. Annals of botany. July 1990. 66(1):1-7.
    90. Matsushita, K., Nagatani, Y. I., Shinagawa, E., Adachi, O., and Ameyama, M. Reconstitution of the ethanol oxidase respiratory chain in membranes of quinoprotein alcohol dehydrogenase-deficient Gluconobacter suboxydans subsp. alpha strains. Journal of bacteriology. 1991, 173(11):3440-3445.
    91. McNeil, S. D., Nuccio, M. L., and Hanson, A. D. Betaines and related osmoprotectants, targets for metabolic engineering of stress resistance. Plant physiology. 1999, 120(4):945-949.
    92. Muhling, K. H., and Lauchli, A. Effect of salt stress on growth and cation compartmentation in leaves of two plant species differing in salt tolerance. Journal of plant physiology.2002, 159(2):137-146.
    93. Munns, R. Na+, K+ and C1- Xylem sap flowing to shoots of NaCl-treated barley. Journal of experimental botany. 1985, 36(168):1032-1042.
    94. Munns, R., Tonnet, M. L., Shennan, C., and Gardner, P. A. Effect of high external NaCl concentration on ion transport within the shoot of Lupinus albus. II. Ions in phloem sap. Plant, cell and environment. 1988,11(4):291-300.
    95. Murthy, M., and Tester, M. Compatible solutes and salt tolerance: misuse of transgenic tobacco. Trends in plant science. 1996, 1(9):294-295.
    96. Molinari, H. B. C., C. J. Marur, et al. Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiologia plantarum. 2007,130(2): 218-229.
    97. Neto, A. e. D. d. A., Jos′e Tarquinio Prisco, Joaquim En′eas-Filho, Carlos Eduardo Braga de Abreu, and Gomes-Filho., E. e. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany 2000, 56: 87-94.
    98. Nevo, E., Gorham, J., and Beiles, A. Variation for 22Na uptake in wild emmer wheat, Triticum dicoccoides in Israel: salt tolerance resources for wheat improvement. Journal of experimental botany. 1992, 43(249):511-518.
    99. Niu, X., Damsz, B., Kononowicz, A. K., Bressan, R. A., and Hasegawa, P. M. NaCl-induced alterations in both cell structure and tissue-specific plasma membrane H+-ATPase gene expression.Plant physiology. 1996, 111(3):679-686.
    100. Nublat, A., Desplans, J., Casse, F., and Berthomieu, P. Sas1, an Arabidopsis mutant overaccumulating sodium in the shoot, shows deficiency in the control of the root radial transport of sodium. Plant cell. 2001, 13(1):125-137.
    101. Otoch, M. d. L. O., Sobreira, A. C. M., Aragao, M. E. F. d., Orellano, E. G., Lima, M. d. G. S., and Fernandes de Melo, D. Salt modulation of vacuolar H+-ATPase and H+-pyrophosphatase activities in Vigna unguiculata. Journal of plant physiology. 2001, 158(5):545-551.
    102. Ozturk, Z. N., Talame, V., Deyholos, M., Michalowski, C. B., Galbraith, D. W., Gozukirmizi, N., Tuberosa, R., and Bohnert, H. J. Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant molecular biology. 2002, 48(5-6):551-573.
    103. Perez-Alfocea, F., Balibrea, M. E., Alarcon, J. J., and Bolarin, M. C. Composition of xylem and phloem exudates in relation to the salt-tolerance of domestic and wild tomato species. Journal of plant physiology. 2000, 156(3):367-374.
    104. Piao, H. L., Lim, J. H., Kim, S. J., Cheong, G. W., and Hwang, I. Constitutive over-expression of AtGSK1 induces NaCl stress responses in the absence ot NaCl stress and results in enhanced NaCl tolerance in Arabidopsis. Plant journal: for cell and molecular biology. 2001, 27(4):305-314.
    105. Pittman, U. Magnetism and plant growth I. Effect of germination and early growth of cereal seeds. Journal of Plant Science.1999, 43, 513–518.
    106. Poljakoff-Mayber, A. Ecological-physiological studies on the responses of higher plants to salinity and drought. Scientific reviews on arid zone research. 1988, 6(6):163-183.
    107. Pollak, G., and Waisel, Y. Ecophysiology of salt excretion in Aeluropus litoralis (Graminae). Physiologia plantarum. 1979, 47(3):177-184.
    108. Qiu, J., and Jin, X. Development and optimization of organic acid analysis in tobacco with ion chromatography and suppressed conductivity detection. Journal of chromatography. 2002, 950(1-2):81-88.
    109. Quarrie,S. A. Understanding plant responses to stress and breeding for improved stress resistance--the generation gap. Current topics in plant physiology. 1993, 10(10):224-245.
    110. Rajagopal, D., Agarwal, P., Tyagi, W., Singla-Pareek, S. L., Reddy, M. K., and Sopory, S. K. Pennisetum glaucum Na+/H+ antiporter confers high level of salinity tolerance in transgenic Brassica juncea. Molecular breeding. 2007, 19(2):137-151.
    111. Ramadan, T. Ecophysiology of salt excretion in the xero-halophyte Reaumuria hirtella. New phytologist. 1998, 139(2):273-281.
    112. Ramadan, T. Dynamics of salt secretion by Sporobolus spicatus (Vahl) Kunth from sites of differing salinity. Annals of botany. 2001, 87(2):259-266.
    113. Rea, P. A., and Poole, R. J. Vacuolar H+-translocating pyrophosphatase. Annual review of plant physiology and plant molecular biology. 1993, 44(44):157-180.
    114. Reid, R. J., and Smith, F. A. The limits of sodium/calcium interactions in plant growth. Australian journal of plant physiology. 2000, 27(7):709-715.
    115. Reinhardt, D. H., and Rost, T. L. On the correlation of primary root growth and tracheary element size and distance from the tip in cotton seedlings grown under salinity. Environmental and experimental botany. 1995, 35(4):575-588.
    116. Richards, R. A. Increasing salinity tolerance of grain crops: is it worthwhile? Developments in plant and soil sciences. 1993, 50(50):117-126.
    117. Rivera, A., De Franceschi, L., Peters, L. L., Gascard, P., Mohandas, N., and Brugnara, C. Effect of complete protein deficiency on ion transport properties of murine erythrocytes. Am J Physiol Cell Physiol 2006, 291: 880-886
    118. Roberts, S. K., and Tester, M. A patch clamp study of Na+ transport in maize roots. Journal of experimental botany. 1997, 48(48):431-440.
    119. Rout, N. P., and Shaw, B. P. Salt tolerance in aquatic macrophytes: possible involvement of the antioxidative enzymes. Plant Sci 1997, 160: 415-423.
    120. Rozema, J., Gude, H., Bijl, F., and Wesselman, H. Sodium concentration in xylem sap in relation to ion exclusion, accumulation and secretion inhalophytes. Acta botanica Neerlandica. 1981,30(4):309-311.
    121. Rubio, M. C., and Maldonado, M. C. Purification and characterization of invertase from Aspergillus niger. Current microbiology. 1995, 31(2):80-83.
    122. S.F.Alshammary, Y.L.Qian, and S.J.Wallner. Growth response of four turfgrass species to salinity. Agricultural Water Management 2001, 66: 97–111.
    123. Schubert, E., Mengel, K., and Schubert, S. Soil pH and calcium effect on nitrogen fixation and growth of broad bean. Agronomy journal. 1990,82(5):969-972.
    124. Sehested, E., and Mao, I. L. Responses to selection on genotypic or phenotypic values in the presence of genes with major effects. Theoretical and applied genetics. 1992, 85(4):403-406.
    125. Shi, H., Quintero, F. J., Pardo, J. M., and Zhu, J. K. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant cell. 2002, 14(2):465-477.
    126. Shone, M. G. T., Clarkson, D. T., and Sanderson, J. The absorption and translocation of sodium by maize seedlings, Planta 1969, 86(4).:301-314.
    127. Stelzer, R. Ion localization in the leaves of Puccinellia peisonis. journal of plant physiology. 1981, 103(1):27-36.
    128. Sugino, M., Hibino, T., Tanaka, Y., Nii, N., Takabe, T., and Takabe, T. Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica acquires resistance to salt stress in transgenic tobacco plants. Plant science. 1999, 146(2):81-88.
    129. Tester, M., and Davenport, R. Na+ tolerance and Na+ transport in higher plants. Annals of botany. 2003 ,91(5):503-527.
    130. Tester, M., and Leigh, R. A. Partitioning of nutrient transport processes in roots. Journal of experimental botany. 2001, 52(52):445-457.
    131. Tsugane, K., Kobayashi, K., Niwa, Y., Ohba, Y., Wada, K., and Kobayashi, H. A recessive arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced activeoxygen detoxification. Plant cell. 1999, 11(7):1195-1206.
    132. Tyerman, S. D., and Skerrett, I. M. Root ion channels and salinity. Scientia horticulturae 1999,78(1-4):175-235.
    133. Tyerman, S. D., Skerrett, M., Garrill, A., Findlay, G. P., and Leigh, R. A. Pathways for the permeation of Na+ and Cl- into protoplasts derived from the cortex of wheat roots. Journal of experimental botany. 1997, 48(48):459-480.
    134. Tarczynski, M. C., R. G. Jensen, et al. Expression of a bacteerial mtlD gene in transgenic tobacco leads to production and accumulation of mannitol. Proceedings of the National Academy of Sciences of the United States of America. 1992. 89(7): 2600-2604.
    135. 119Urao, T., Yakubov, B., Satoh, R., Yamaguchi-Shinozaki, K., Seki, M., Hirayama, T., and Shinozaki, K. A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant cell. 1999, 11(9):1743-1754.
    136. Vitart, V., Baxter, I., Doerner, P., and Harper, J. F. Evidence for a role in growth and salt resistance of a plasma membrane H+-ATPase in the root endodermis. Plant journal:for cell and molecular biology. 2001, 27(3):191-201.
    137. Waisel, Y. Biology of halophytes, New York, Academic Press, 1972. Physiological ecology.
    138. Wei, J. Z., Tirajoh, A., Effendy, J., and Plant, A. L. Characterization of salt-induced changes in gene expression in tomato (Lycopersicon esculentum) roots and the role played by absicisic acid. Plant science. 2000. 159(1):135-148.
    139. Winter, E.. Salt tolerance of Trifolium alexandrinum L. III. Effects of salt on ultrastructure of phloem and xylem transfer cells in petioles and leaves Egyptian clover. Australian journal of plant physiology. 1982, 9(2):239-250.
    140. Winter, K., Schmitt, M. R., and Edwards, G. E. Microstegium vimineum, a shade adapted C4 grass. Plant science letters. 1982, 24(3):311-318.
    141. Xiong, L., Schumaker, K. S., and Zhu, J. K. Cell signaling during cold, drought, and salt stress. Plant cell. 2002, 14: 165-183.
    142. Yadav, R., Flowers, T. J., and Yeo, A. R. The involvement of the transpirational bypass flow in sodium uptake by high- and low-sodium-transporting lines of rice developed through intravarietal selection. Plant, cell and environment. 1996, 19(3):329-336.
    143. Yeo, A. R., Kramer, D., Lauchli, A., and Gullasch, J. Ion distribution in salt stressed mature Zea mays roots in relation to ultrastructure and retention of sodium, Journal of experimental botany. 1977, 28 (102): 17-29.
    144. Zhang, J. S., Xie, C., Li, Z. Y., and Chen, S. Y. Expression of the plasma membrane H+-ATPase gene in response to salt stress in a rice salt-tolerant mutant and its original variety. Theoretical and applied genetics. 1999, 99(6):1006-1011.
    145. Zidan, I., Jacoby, B., Ravina, I., and Neumann, P. M. Sodium does not compete with calcium in saturating plasma membrane sites regulating 22Na influx in salinized maize roots. Plant physiology. 1991. 96(1):331-334.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700