用户名: 密码: 验证码:
四种暖季型草坪草抗盐生理及根系蛋白表达差异研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐胁迫可造成草坪草在生长、生理生化和蛋白等水平上的变化,是限制草坪草生长的主要环境因子之一。研究草坪草抗盐机理以及草坪草对盐的适应和调节机制,对于筛选适合不同土壤盐浓度的草坪草种具有重要的意义。本文以华东地区常用的四种暖季型草坪草为材料,进行了抗盐性评价与筛选,确定了海滨雀稗、狗牙根、结缕草和假俭草四个暖季型草坪草种的耐盐阈值;对这四种暖季型草坪草的泌盐现象及泌盐能力进行了初步研究;选择抗盐性强的海滨雀稗和盐敏感的假俭草为研究对象,比较了其在盐胁迫下光合生理的差异,并通过双向凝胶电泳分析了盐胁迫下根系蛋白的表达差异。主要研究结果如下:
     1.暖季型草坪草的耐盐阈值
     以杂交狗牙根‘Tifway’(Cynodon dactylon×C. transvaalensis)、假俭草‘Civil’(Eremochloa ophiuroides)、海滨雀稗‘Salam’(Paspalum vaginatum)和结缕草‘Matrella’(Zoysia matrella L.Merr)四种暖季型草坪草为材料,研究了不同盐(NaCl)浓度处理对草坪草生长、生理的影响。结果表明:海滨雀稗耐盐性最好,海滨雀稗的目测质量、生长量、叶片相对含水量、叶绿素指数、光化学效率在600mM盐浓度处理36d时分别下降了52.2%、75.9%、62.1%、59.4%、72.9%,相对电导率上升至71.5%,与其他三个草种相比,海滨雀稗各指标仍能维持较高的水平,膜伤害程度相对较小;结缕草耐盐性次之,600mM盐处理36d时目测质量、生长量、叶片相对含水量、叶绿素指数、光化学效率分别下降了85.2%、68.8%、70.5%、73.9%、49.3%,相对电导率上升至81.8%,表现出较好的耐盐性;耐盐性表现较差的为狗牙根和假俭草,在600mM盐浓度处理36d时,两种草的各指标皆下降至0,膜伤害程度达到最大,植物已枯死。以36d时的各生理指标与盐处理浓度建立回归方程,以最小显著差异性检验(LSD0.05)的置信区间分别求出各指标与对照无显著差异的盐浓度临界值。选取最低的临界盐浓度作为该植物的耐盐阈值。求得四个草种的耐盐阈值分别为为:海滨雀稗261mM、结缕草203mM、狗牙根135mM、假俭草131mM。
     2.暖季型草坪草的泌盐能力
     对杂交狗牙根‘Tifway’(Cynodon dactylon×C. transvaalensis)、假俭草‘Civil’(Eremochloa ophiuroides)、海滨雀稗‘Salam’(Paspalum vaginatum)和上海结缕草‘JD-1’(Zoysia japomca)叶表面盐分测定及活体显微观察发现,最耐盐的海滨雀稗和盐敏感的假俭草没有泌盐功能,而结缕草和狗牙根则具有泌盐功能。通过荧光反射显微镜观察发现,结缕草和狗牙根泌盐结构为盐腺,且狗牙根泌盐量比结缕草要高,在盐处理的20d狗牙根泌盐量为结缕草的1.6倍。主要原因为狗牙根盐腺密度比结缕草大,结缕草叶片盐腺数量平均为66个/mm~2,而狗牙根叶片盐腺数量为169个/mm~2,是结缕草盐腺数量的2.6倍。通过荧光反射显微观察,狗牙根和结缕草的泌盐随着盐处理时间的延长,泌盐量不断增加。但两者盐腺数量在盐胁迫下没有明显变化。狗牙根的泌盐能力高于结缕草,但其抗盐能力却低于结缕草,且耐盐能力最强的海滨雀稗和盐敏感的假俭草中均未发现具有泌盐能力,说明泌盐机制及泌盐能力的大小并不直接决定暖季型草坪草的抗盐能力。
     3.海滨雀稗和假俭草对盐胁迫的光合响应
     以耐盐的海滨雀稗和盐敏感的假俭草为材料,利用盆栽研究不同浓度盐处理(0,300和500mM NaCl)下的光合生理响应变化。海滨雀稗和假俭草的草坪目测质量、叶片相对含水量及Fv/Fm均随处理时间及处理浓度的递增而呈下降趋势,叶片质膜透性呈上升趋势;盐敏感的假俭草的各指标的变化均明显大于耐盐的海滨雀稗。盐胁迫下两个草种表现出不同的光合响应变化:海滨雀稗在低浓度盐处理初期,光合速率的下降主要是由气孔性因素即气孔关闭引起的胞间CO2浓度降低所造成的,随着处理时间的延长,海滨雀稗光合速率有所恢复,此时海滨雀稗gs有所回升,Ci与对照无显著差异,叶绿素含量、Fv/Fm及Rubisco大亚基均未显著下降。假俭草在两浓度处理下光合速率的下降主要是由非气孔性因素作用的结果,假俭草的光合速率及各生理指标持续下降,Ci持续升高,Rubisco大亚基含量显著下降。海滨雀稗比假俭草抗盐是由于海滨雀稗具有较强的光合恢复能力。
     4.海滨雀稗和假俭草根系蛋白表达差异
     以抗盐海滨雀稗和盐敏感假俭草为材料,利用2-DE研究两者盐胁迫下根系蛋白差异表达的情况。结果表明,根系渗透势和根系活力在盐胁迫下随着处理时间的延长而不断下降,根系质膜透性随处理时间的延长不断上升。但假俭草各生理指标的变化程度要比海滨雀稗严重。2-DE检测结果表明,海滨雀稗中有8个蛋白点显著上调,14个蛋白点显著降解;假俭草中分别有19和16个蛋白点显著上调和降解。对海滨雀稗8个上调蛋白进行质谱鉴定,7个蛋白点鉴定成功,鉴定结果为:两个蛋白为ATP合成酶链(ATPS链),五个为盐胁迫响应蛋白,分别是:过氧化物酶(POD,2.36倍),苹果酸脱氢酶(cMDH,5.84倍),抗坏血酸过氧化物酶(APX,4.03倍)及线粒体ATP合成酶链(ATPS链,2.26倍和4.78);2个为新蛋白:hypothetical protein LOC100274119(5.01倍)和FlavoproteinwrbA (2.20倍)。通过对POD和ATP合成酶链进行蛋白免疫印迹验证发现,海滨雀稗在盐处理下,POD和ATPS链的表达明显高于对照,而假俭草对照与处理间无显著差异。本研究结果表明,和假俭草相比,海滨雀稗较高的抗盐性可能与它较高的POD、APX活性及较高的ATP合成能力有关。
Salinity is one of the major abiotic factors limiting plant growth and inducesvarious changes in the growth, physiological and proteomic levels. Understanding themechanisms of salinity resistance and adaptation in turfgrass will provide the crucialreference to select suitable turfgrass variety for salinity soils and imformation forsalinity-tolerant variety development. In this study, existing turfgrass varieties werescreened for the salinity tolerance and the salt tolerance thresholds of fourwarm-season turfgrasses were determined. Salt seretion phenomenon was observedand salt secretion capacity was determinded in the four warm-season turfgrassesunder the salinity stress. Seashore paspalum, the most salt tolerance turfgrass species,and centipedegrass, the salt sensitive species, were selected for the studies ofdifferential photosynthetic responses to salt stress, and the differentially-expressedsalt-responsive proteins in the roots. The main contents and results of this study are asfollows:
     1. Salinity stress responses and thresholds in four warm-season turfgrasses
     Four warm-season turfgrass species including bermudagrass ‘Tifway’(Cynodondactylon×C. transvaalensis), centipedegrass‘Civil’(Eremochloa ophiuroides),seashore paspalum ‘Salam’(Paspalum vaginatum), and zoysiagrass ‘Matrella’(Zoysia matrella L.Merr) were grown in plastic pots under a series of NaClconcentrations to study the salinity stress responses in turfgrass growth andphysiological parameters. The results indicated that: sashore pspalum has the bestsalinity tolerance. The visual quality, relative growth rate, relative water content,chlorophyll index, Fv/Fm decreased52.2%、75.9%、62.1%、59.4%、72.9%respectively, at36d under600mM of NaCl, and electrolyte leakage increased to 71.5%. The cell membrane damage in seashore paspalum is the lowest whencompared to other three species. Zoysiagrass also showed the good salinity tolerance,with the visual quality, relative growth rate, relative water content, chlorophyll index,Fv/Fm decreased85.2%、68.8%、70.5%、73.9%、49.3%respectively, at36d under600mM of NaCl, and electrolyte leakage increased to81.8%. Bermudagrass andcentipedegrass showed the lowest salinity tolerance, for the treatment of600mMafter36d, both grasses were died. The critical salinity tolerance concentrations foreach parameter were calculated by the regression analysis and Least SignificantDifference (P<0.05). The salinity tolerance thresholds for each turfgrasses are:seashore paspalum261mM, zoysiagrass203mM, bermudagrass135mM andcentipedegrass131mM.
     2. Study of salt excretion ability in four warm-season turfgrass
     Four warm-season turfgrass species including bermudagrass ‘Tifway’(Cynodondactylon×C. transvaalensis), centipedegrass ‘Civil’(Eremochloa ophiuroides),seashore paspalum ‘Salam’(Paspalum vaginatum), zoysiagrass‘JD-1’(Zoysiajapomca) were grown in plastic pots under300mM NaCl concentration to study theirsalt secretion ability and made the microscopic observation for salt secretion process.The results indicated that: the most salt tolerant seashore paspalum and salt-sensitivecentipedegrass have no function of salt excretion, while zoysiagrass andbermudagrass have the salt excretion function. The salt secretion structures in bothturfgrass are salt glands, and the salt secretion capacity of bermudagrass is higher thanzoysiagrass. At20d of the salt treatment, the salt secretion content of bermudagrass is1.6times higher than zoysiagrass. Mainly due to the salt glands density ofbermudagrass is larger than zoysiagrass. The leaf salt gland number of zoysiagrassaveraged66/mm~2, while the leaf salt gland number of bermudagrass averaged169/mm~2, mermudagrass is2.6times higher than zoysiagrass.
     3. Differential photosynthetic responses to salinity stress between seashorepaspalum and centipedegrass in salinity tolerance
     This study was to examine photosynthetic responses to salinity stress in twowarm-season turfgrasses differing in salinity tolerance. Salt-tolerant species seashorepaspalum and salt-sensitive species centipedegrass were exposed to salinity at threeNaCl concentrations (0,300and500mM) in a growth chamber. Turf quality, RWC,and Fv/Fm declined while EL increased under the two NaCl regimes for both grassspecies, and the changes were more dramatic in centipedegrass than that in seashorepaspalum, as well as in the higher salinity concentration. Two grass species showeddifferent phytosynthetic responses to salinity stress. The earlier inhibition ofphotosynthesis in seashore paspalum was mainly associated with stomatal closure. Assalinity increased and salinity stress prolonged, the inhibition of photosynthesis inseashore paspalum was mainly associated with non-stomatal factors. The inhibition ofphotosynthesis in centipedegrass was associated with non-stomatal factors at bothsalinity levels. The SDS-PAGE analysis demonstrated the Rubisco large subunit hadno obvious decrease during the whole stress period under the300mM and500mMtreatments in seashore paspalum while significantly decreased in centipedegrass underboth the300mM and500mM treatments. The results indteicated that the superiorsalinity tolerance in seashore paspalum, compared to centipedegrass, could beattributed to its high Pn recovery capacity under salinity stress.
     4. Identification of differentially-expressed salt-responsive proteins in roots oftwo perennial grass species contrasting in salinity tolerance
     Seashore paspalum and centipedegrass were exposed to salinity stress bywatering the soil with300mM NaCl solution for20d in a growth chamber. Rootswere harvested at20d after salinity treatment. Proteins were extracted and separatedby two-dimensional electrophoresis (2-DE). Root electrolyte leakage (REL) increasedsignificantly while root osmotic potential and root viability decreased significantlyunder salinity treatment for both grass species. However, the extent of change in theabove physiological parameters in seashore paspalum was less pronounced than thosein centipedegrass. Under salinity stress, the abundance of8protein spots significantlyincreased and14significantly decreased in seashore paspalum, while19and16 protein spots exhibited increase and decrease in abundance in centipedegrass,respectively. By comparison of protein spots differentially accumulated between thetwo species,8protein spots that exhibited enhanced abundance in seashore paspalumunder salinity stress were excised from the2-DE gels and subjected to massspectrometry analysis. Seven protein spots were successfully identified. Two of themwere identified as the same protein: ATP synthase Delta chain (ATPS chain);5ofthem were previously confirmed as salt stress-responsive proteins: peroxidase (POD,2.36-fold), cytoplasmic malate dehydrogenase (cMDH,5.84-fold), asorbateperoxidase (APX,4.03-fold) and mitochondrial ATPS chain (2.26-fold and4.78-fold);2of them are novel ones: hypothetical protein LOC100274119(5.01-fold)and Flavoprotein wrbA (2.20-fold). Compared to the8enhanced salt-responsiveprotein spots in seashore paspalum,4corresponding protein spots (cMDH,2ATPSchain, LOC100274119) were expressed and3corresponding protein spots (POD,APX, Flavoprotein wrbA) were not expressed in centipedegrass. The expressedprotein spots in centipedegrass were not significantly changed in their abundance.Immunblotting analysis indicated that POD and ATPS chain were significantlyup-regulated in seashore paspalum at20d of salinity treatment while almost noexpression in both control and salt treatment of centipedegrass. The POD and APXactivities of seashore paspalum were markedly increased while centipedegrass weresignificantly declined at the end of salt treatment. These results indicated that thesuperior salinity tolerance in seashore paspalum, compared to centipedegrass, couldbe associated with its high POD, APX ability and energy metabolism.
引文
[1]赵艳.两种暖季型草坪草抗旱性研究[硕士学位论文].甘肃农业大学,2006.
    [2] Munns R, Tester M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol.,2008,59:651-681.
    [3]黄昌勇.土壤学.北京:中国农业出版社.2000,303.
    [4]范亚文.种植耐盐植物改良盐碱土的研究[博士学位论文].东北林业大学,2001.
    [5]赵可夫,李法曾.中国盐生植物.北京:科学出版社,1999,26-57.
    [6] Munns R. Genes and salt tolerance: bringing them together. New Phytol.,2005,167:645-663.
    [7] Munns R. Physiological Proeesses limiting Plnat frowth in saline sail: Somme dogmasand hyPothesis. Plant.Enviroment,1993,16:15-22.
    [8] Jeschke W D. K+-Na+exchange at cellular membranes, intracellular compartmentationof cations, and salt tolerance. In: Staples RC, ed. Salinity Tolerance in Plants: Strategiesfor Crop Improvement. New York, USA: Wiley,1984,37-66.
    [9] Hu Y, Schmidhalter U. Spatial distributions and net deposition rates of mineralelements in the elongating wheat (Triticum aestivum L.) leaf under saline soil conditions.Planta,1998,204:212-219.
    [10] Fricke W. Rapid and tissue-specific accumulation of solutes in the growth zone ofbarley leaves in response to salinity. Planta,2004,219:515-525.
    [11] Munns R. Comparative physiology of salt and water stress. Plant Cell andEnvironment,2002,25:239-250.
    [12] Flowers T J, Colmer T D. Salinity tolerance in halophytes. New Phytol,2008,179:945-963.
    [13] Tester M, Davenport R J. Na+transport and Na+tolerance in higher plants. Ann. Bot.,2003,91:503-527.
    [14]贾亚雄.盐草(Distichlis spicata)耐盐生理及Na+转运机理研究[博士学位论文].中国农业科学院,2008.
    [15]丁同楼.小麦Na+, K+吸收特性及液泡膜质子泵对NaCl胁迫的响应[硕士学位论文].山东师范大学,2005.
    [16]张士功,高吉寅,宋景芝. NaCl胁迫下水杨酸和阿斯匹林对小麦幼苗体内ATP含量的影响.植物学报,1999,41:675-676.
    [17] Munns R. Genes and salt tolerance: bringing them together. New Phytol.,2005,167:645-663.
    [18]赵旭.不同基因型冬小麦对Na+K+的吸收与累积规律及其耐盐性研究[博士学位论文].西北农林科技大学,2006.
    [19]赵福庚.植物逆境生理生态学.化学工业出版社,2004,3-4.
    [20] Hughes T D, Butler J D, Sanks G D. Salt tolerance and suitability of various grassesfor saline roadsides. J. Env. Quality,1975,4:65-68.
    [21] Maas E V. Salt tolerance of plants. Applied Agricultural Research,1986,1:12-26.
    [22] Harivandi A. Irrigation water quality and turfgrass management. California TurfgrassCulture,1988,38:3-4.
    [23]赵可夫,李孟杨.论甜土植物的拒盐机理.曲阜师范大学学报,1986,2:63-70.
    [24]王宝山,赵可夫,邹琦,等.作物耐盐机理研究进展及提高作物抗盐性的对策.植物学通报,1997,14:25-30.
    [25] Yeo A R, Flowers T J. Accumulation and localisation of sodium ions within the shootof rice (Oryza sativa) varieties differing in salinity resistence. Physiol Plant. Copenhagen,1982,56:343-348.
    [26] Matsushita N, Matoh T. Characterization of Na+exclusion mechanisms ofsalt-tolerant reed plants in comparison with salt-sensitive rice plants. PhysiologiaPlantarum,1991,83:170-176.
    [27]杨洪兵,陈敏,王宝山.小麦幼苗拒Na+部位的拒Na+机理.植物生理与分子生物学学报,2002,28:181-186.
    [28]王宝山,邹琦,赵可夫. NaCl胁迫对高粱不同器官离子含量的影响.作物学报,2000,26:845-850.
    [29] Fortmeier R, Schubert S. Salt tolerance of maize (Zea mays L.): the role of sodiumexclusion. Plant Cell Environment,1995,18:1041-1047.
    [30]杨洪兵.苹果属植物抗盐机理的研究[博士学位论文].中国农业大学,2004.
    [31] Marcum K B. Use of saline and non-potable water in the turfgrass industryConstraints and developments. Agricultural Water Management,2006,80:132-146.
    [32]武霞.野大麦盐胁迫的差异蛋白质组学研究[硕士学位论文].吉林大学,2007.
    [33]刘志华.植物盐腺的结构功能与泌盐机理.衡水师专学报,2003,1.
    [34] Marcum K B, Murdoch C L. Salinity tolerance mechanisms of six C4turfgrasses. J.Amer. Soc. Hort. Sci.,1994,119:779-784.
    [35] Marcum K B, Anderson S J, Engelke M C. Salt gland ion secretion: A salinitytolerance mechanism among five zoysia grass species. Crop Sci.,1998,3:806-810.
    [36] Marcum K B, Pessarakli M. Salinity tolerance and salt gland excretion efficiency ofbermudagrass turf cultivars. Crop Sci.,2006,46:2571-2574.
    [37]赵可夫.盐生植物.植物学通报,1997,14:1-22.
    [38]马文月.植物抗盐性研究进展.农业与技术,2004,24:95-99.
    [39]崔震海,王艳芳,樊金娟,等.植物渗透调节的研究进展.玉米科学,2007,15:140-143.
    [40] Chen T H H, Murata N. Enhancement of tolerance of abiotic st ress by metabolicengineering of betaines and other compatible solutes. Curr. Opin. Plant boil.,2002,5:250-257.
    [41]张丽,张华新,杨升,等.植物耐盐机理的研究进展.西南林学院学报,2010,3:82-86.
    [42]郝治安,吕有军.植物耐盐机制研究进展.河南农业科学,2004,11.
    [43]纪淑梅.草坪草耐盐性研究:盐胁迫对草坪草脯氨酸含量的影响.草业科学,1999,16(12):54-59.
    [44] Shen B, Jensen R G, Bohnert H J. Increased resistance to oxidative stress intransgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiology,1997,113:1177-1997.
    [45]杨淑慎,高俊凤.活性氧自由基与植物的衰老.西北植物学报,2001,21:215-220.
    [46]李彦,张英鹏,孙明,高弼模.盐分胁迫对植物的影响及植物耐盐机理研究进展.植物生理科学,2008,1:258-261.
    [47] Winston G W. Physiochemical basis for free radical formation in cells: productionand defenses. Plant biology,1990.
    [48]王爱国,叶发辉,罗广华.活性氧对花生叶片大分子量DNA的损伤.植物生理学通讯,1993,29:260-262.
    [49]陈洁,林栖凤.植物耐盐生理及耐盐机理研究进展.海南大学学报(自然科学版),2003,21:177-182.
    [50]籍越,滕开琼,杨芳绒,等. Na2CO3胁迫对不同草坪品种O2产生及SOD活性的影响.河南农业大学学报,2000,34(2):177-179.
    [51]周兴元,曹福亮.土壤盐分胁迫对三种暖季型草坪草保护酶活性及脂质过氧化作用的影响.林业科学研究,2005,18:336-341.
    [52] Binzel M L, Hess F D, Bressan R A. Intracellular of ion in salt adapted tobacco cells.Plant Physiol.,1988,86:607-614.
    [53] Borsani O, Valpuesta V, Botella M A. Developing salt tolerant plants in a newcentury: a molecular biology approach. Plant Cell. Tissue and Organ Culture,2003,73:101-115.
    [54]安宝燕.紫花苜蓿Na+/H+逆向转运蛋白基因的分离与鉴定.山东农业大学,2005,P13.
    [55]黄有总,张国平.大麦耐盐机理与化控增强耐盐性的研究进展.大麦科学,2003(2):29-32.
    [56] Lee G J. Comparative salinity tolerance and salt tolerance mechanisms of seashorepaspalum ecotypes [PhD Dissertation].2000.
    [57] Maathuis F J M, Amtmann A. K+nutrition and Na+toxicity: the basis of cellularK+/Na+ratios. Annals of botany,1999,84:123-133.
    [58] Paul M H, Ray A B. Plant cellular and molecular responses to high salinity. AnnualReview of Plant Physiology and Plant Molecular Biology,2000,51:463-499.
    [59] Cheeseman J M. Mechanisms of salinity tolerance in plants. Plant Physiol.,1988,87:547-550.
    [60]许祥明,叶和春.植物抗盐机理的研究进展.应用与环境生物学报,2000,6:379-387.
    [61]高永生,王锁民,张承烈.植物盐适应性调节机制的研究进展.草业学报,2003,12:1-6.
    [62] Hajibagheri M A, Hall J L, Flowers T J. Stereological analysis of leaf cell of thehalophyte Suaeda maritima L. Dum. J. Exp. Bot.,1984,35:1547-1557.
    [63] Dracup, M N H, Greenway H. A procedure for isolating vacuoles from leaves of thehalophyte Suaeda maritima. Plant Cell Environ,1985,8:149-154.
    [64] Dajic Z, Stajkovic M, Jakovljevic M. An ecophysiological study of Suaeda maritima(Chenopodiaceae) in Serbia. Bocconea,1997b,5:511-516.
    [65] Apse M P, Aharon G S, Snedden W A. Salt tolerance conferred by overexp ression ofa vacuolar Na+/H+antiporterin A rabidopsis. Science,1999,285:1256-1258.
    [66] Dopont F M. Salt-induced changes in ion transport: regulation of p rimary pumpssand secondary transporters. In: Clarkson, D.T. ed. Transport and Recep tor Proteins ofPlantMembranes. New York: Plenum Press,1992,91-100.
    [67]崔润丽,刁现民.植物耐盐相关基因克隆与转化研究进展.中国生物工程杂志,2005,8:25-30.
    [68]戴松香,陈少良, Eberhard Fritz,等.盐胁迫下胡杨和毛白杨叶细胞中的离子区隔化.北京林业大学学报,2006,12:1-5.
    [69]贾亚雄,李向林,万里强,等.盐胁迫下盐草和高羊茅营养器官的离子微区分布.中国农业科学,2009,42:1595-1600.
    [70] Chaves M M. Effects of water deficits on carbon assimilation. Journal ofExperimental Botany,1991,42:1-16.
    [71] Munns R, James R A, La¨uchli A. Approaches to increasing the salt tolerance ofwheat and other cereals. Journal of Experimental Botany,2006,57:1025-1043.
    [72] Brugnoli E, Lauteri M. Effects of salinity on stomatal conductance, photosyntheticcapacity, and carbon isotope discrimination of salt-tolerance (Gossypium hirsutum L.) andsalt sensitive (Phaseolus vulgaris L.) C3non-halophytes, Plant Physiol.,1991,95,628-635.
    [73] Megdiche W, Hessini K, Gharbi F. Photosynthesis, photosystem II efficiency of twosalt-adapted halophytic seashore Cakile maritima ecotypes. Hotosynthetica,2008.46(3):410-419.
    [74] Jaleel C A, Gopi R, Manivannan P, et al. Antioxidative potentials as a protectivemechanism in Catharanthus roseus L. G. Don. Plants under salinity stress. Turk. J. Bot.,2007,31:245-251.
    [75] Plesnicar M, Sakac Z, Pankovic D, et al. Responses of photosynthesis andcarbohydrate accumulation in sunflower leaves to short-term water stress. Helia.,1995,18:25-36.
    [76]吴永波,薛建辉.盐胁迫对3种白蜡树幼苗生长与光合作用的影响.南京林业大学学报:自然科学版,2002,26:19-22.
    [77]Ouerghi Z, Cornic G, Roudani M, et al. Effect of NaCl on photosynthesis of twowheat species (Triticum durum and T. aestivum) differing in their sensitivity to salt st ress.Journal of Plant Physiol,2000,156:335-340.
    [78]赵昕. NaCl胁迫对盐芥和拟南芥光合作用的影响.植物学通报,2007,24:154-160.
    [79] Bethke P C, Drew M C. Stomatal and non-stomatal components to inhibition ofphotosynthesis in leaves of Capsicum annuum during progressive exposure to NaClsalinity. Plant Physiol.,1992,99:219-226.
    [80] Chartzoulakis K, Therios I, Misopolinos N, et al. Growth, ion content andphotosynthetic performance of salt-stressed kiwifruit. Irrig. Sci,1995,16:23-28.
    [81] Dunn G M, Neales T F. Are the effects of salinity on growth and leaf gas exchangerelated? Photosynthetica,1993,29:33-42.
    [82] Everard J D, Gucci R, Kann S C, et al. Gas exchange and carbon partitioning in theleaves of celery (Apium graveolens L.) at various levels of root zone salinity. PlantPhysiol.,1994,106:281-292.
    [83]惠红霞,许兴,李守明.盐胁迫抑制枸杞光合作用的可能机理.生态学杂志,2004,23(1):5-9.
    [84]林莺,李伟,范海等.海滨锦葵光合作用对盐胁迫的响应.山东师范大学学报,2006,21(2):118-120.
    [85]周俊山.盐胁迫对二色补血草光合作用的影响.山东师范大学学报:自然科学版,2007,22:125-127.
    [86]王仁雷,华春,罗庆云,等.盐胁迫下水稻叶绿体中Na+、Cl-积累导致叶片净光合速率下降.植物生理与分子生物学学报,2002,28(5):385-390.
    [87]王东明,贾媛,崔继哲.盐胁迫对植物的影响及植物盐适应性研究进展.中国农学通报.2009,25(4):124-128.
    [88]马建华.植物抗盐机理研究进展.生命科学研究,2001,5(3):175-179.
    [89]张喜焕,田春雨,李永进. NaCl胁迫对两种冷季型草坪草光合特性的影响.河南农业科学,2007,8:85-87.
    [90]周兴元,曹福亮.土壤盐分胁迫对假俭草结缕草光合作用的影响.江西农业大学学报,2005,27(3):408-412.
    [91]胡龙兴.草坪草抗旱生理及相关基因的分析[博士学位论文].上海交通大学,2010.
    [92] Yokoi S, Bressan R A, Hasegawa P M. Salt stress tolerance of plants. JIRCASWorking Report,2002,25-33.
    [93]刘关君,王大海,郭晓瑞,等.用SDS-PAGE研究NaHCO3处理后西伯利亚蓼不同部位蛋白表达的变化.植物研究,2004,7:361-365.
    [94] Parker R, Flowers T J, Moore A L, et al. An accurate and reproducible method forproteome profiling of the effects of salt stress in the rice leaf lamina. J. Exp. Bot.,2006,57:1109-1118.
    [95] Monneuse J M, Sugano M, Bécue T, et al. Towards the profiling of the Arabidopsisthaliana plasma membrane transportome by targeted proteomics. Proteomics,2011,11(9):1789–1797.
    [96] Singh N K, Bracker C A, Hasegawa P M, et al. Characterization of osmotin: athaumatin-like protein associated with osmotic adaptation in plant cells. Plant Physiol.,1987,85(2):529-536.
    [97] Jiang Y, Yang B, Harris N S, et al. Comparative proteomic analysis of NaClstress-responsive proteins in Arabidopsis roots. J Exp Bot.,2007,58:3591-3607.
    [98] Ndimba B K, Chivasa S, Simon W J, et al. Identification of Arabidopsis salt andosmotic stress responsive proteins using two-dimensional difference gel electrophoresisand mass spectrometry. Proteomics,2005,5(16):4185-96.
    [99] Majoul T, Chahed K, Zamiti E, et al. Analysis by two-dimensional electrophoresis ofthe effect of salt stress on the polypeptide patterns in roots of a salt-tolerant and asalt-sensitive cultivar of wheat. Electrophoresis,2000,21:2562-2565.
    [100] Saqib M, Z rb C, Schubert S. Salt-resistant and salt-sensitive wheat genotypesshow similar biochemical reaction at protein level in the first phase of salt stress. Journalof Plant Nutrition and Soil Science,2006,169,542-548.
    [101] Claes B, Dekeyser R, Villarroel R, et al. Characterization of a rice gene showingorgan-specific expression in response to salt stress and drought. Plant Cell,1990,2(1):19-27.
    [102] Moons A, Prinsen E, Bauw G, et al. Antagonistic effects of abscisic acid andjasmonates on salt stress-inducible transcripts in rice roots. The Plant Cell,1997,9:2243-2259.
    [103] Salekdeh G H, Siopongco J, Wade L J, et al. Proteomic analysis of rice leavesduring drought stress and recovery. Proteomics,2002,2:1131-1145.
    [104] Chourey K, Ramani S, Apte S K. Accumulation of LEA proteins in salt (NaCl)stressed young seedlings of rice (Oryza sativa L.) cultivar Bura Rata and their degradationduring recovery from salinity stress. J. Plant Physiol.,2003,160:1165-1174.
    [105] Yan S, Tang Z, Su W, et al. Proteomic analysis of salt stress-responsive proteins inrice root. Proteomics,2005,5:235-244.
    [106] Sahar N M, Mehran H R, Manzar H, et al. Proteomics reveals new salt responsiveproteins associated with rice plasma membrane. Biosci Biotech. Biochem,2007,71:2144-2154.
    [107] Abbasi F M, Komatsu S. A proteomic approach to analyze salt-responsive proteinsin rice leaf sheath. Proteomics,2004,4:2072-2081.
    [108] Kim D W, Rakwal R, Agrawal G K, et al. A hydroponic rice seedling culture modelsystem for investigating proteome of salt stress in rice leaf. Electrophoresis,2005,23(26):4521-4539.
    [109] Kong-Ngern K, Daduang S, Wongkham C H, et al. Protein profiles in response tosalt stress in leaf sheaths of rice seedlings. Sci Asia,2005,31:403-408.
    [110] Parker R, Flowers T J, Moore A L, et al. An accurate and reproducible method forproteome profiling of the effects of salt stress in the rice leaf lamina. J. Exp. Bot.,2006,57:1109-1118.
    [111] Dooki A D, Mayer-Posner F J, Askari H, et al. Proteomic responses of rice youngpanicles to salinity. Proteomics,2006,6:6498-6507.
    [112] Chen C C S. Plant A L. Salt-induced protein synthesis in tomato roots: The role ofABA. J. Exp. Bot.,1999,50:677-687.
    [113] Kav N N V, Srivastava S, Goonewardene L, et al. Proteome-level changes in theroots of Pisum sativum in response to salinity. Ann Appl Biol.,2004,145(2):217-230.
    [114] Dani V, Simon W J, Duranti M, et al. Changes in the to-bacco leaf apoplastproteome in response to salt stress. Proteomics,2005,5(3):737-745.
    [115] Askari H, Edqvist J, Hajheidari M, et al.2006. Effects of salinity levels onproteome of Suaeda aegyptiaca leaves. Proteomics,2006,6(8):2542-54.
    [116] Singh N K, Handa A K, Hasegawa P M, et al. Proteins associated with adaptation ofcultured tobacco cells to NaCl. Plant Physiol.,1985,79:126-137.
    [117]何宝坤,李德全.植物渗调蛋白的研究进展.生物技术通报,2001,2:6-10.
    [118] Hundertmark M, Hincha D K. LEA (late embryogenesis abundant) proteins andtheir encoding genes in Arabidopsis thaliana. BMC Genomics,2008,9:118.
    [119]俞嘉宁,山仑. LEA蛋白与植物的抗旱性.生物工程进展,2002,22(2):10-14.
    [120] Dure L, Greenway S C, Galau G A. Developmental biochemistry of cotton seedembryogenesis and germination: Changing messenger ribonucleic acid population asshown in vitro and in vivo protein. Biochemistry,1981,20:4162-4168.
    [121] Blumwal D E. Sodium transport and salt to lerance in plants. Current Opinion inCell Biology,2000,12:431-434.
    [122] Amtmann A, Sander D. Mechanisms of Na+uptake by plant cells. Advances inBotanical Research,1998,29:76-112.
    [123] Borgnia M, Nielsen S, Engel A, et al. Cellular and molecular biology of theaquaporin water channels. Annu Rev Biochem,1999,68:425-58.
    [1] Munns R. Genes and salt tolerance: bringing them together. New Phytologist,2005,167:645-663.
    [2]黄昌勇.土壤学.北京:中国农业出版社,2000,303.
    [3]周兴元,曹福亮. NaCl胁迫对几种暖季型草坪草的影响.草原与草坪.2005,4:66-69.
    [4]陈平,席嘉宾.海滨型野生假俭草的盐胁迫效应研究.中山大学学报.2006,45(5):85-92.
    [5] Marcum K B, Anderson S J, Engelke M K. Salt gland ion secretion: a salinitytolerance mechanism among five Zoysiagrsss species. Crop Science,1998,38:806-810.
    [6]夏更寿,王加真.高盐胁迫对沟叶结缕草叶片抗氧化酶活性的影响.河北农业大学学报,2009,32(1):30-33.
    [7] Maas E V. Salt tolerance of plants. Applied Agricultural Research,1986,1:12-26.
    [8] Kuiper P J C, Kuiper D, Schuit J. Root functioning under stress conditions: anintroduction. Plant Soil,1988,111:249-258.
    [9] Mladenova Y I. Influence of salt stress on primary metabolism of Zea mays L.seedlings of model genotypes. Plant Soil.,1990,123:217-224.
    [10]吕芳德,徐德聪,侯红波.5种红山茶叶绿素荧光特性的比较研究.经济林业研究,2003,21(4):4-7.
    [11]吴欣明,王运琦,刘建宁,等.羊茅属植物耐盐性评价及其对盐胁迫的生理反应.草业学报,2007,16(6):67-73.
    [12]赵昕,赵敏桂,谭会娟,等. NaCl胁迫对盐芥和拟南芥K+、Na+吸收的影响.草地学报,2007,16(4):21-24.
    [13] Munns R. Comparative physiology of salt and water stress. Plant Cell andEnvironment,2002,25:239-250.
    [14] Lee G J, Carrow R N, Duncan R R. Growth and water relations responses to saltstress in halophytic seashore paspalum ecotypes. Science Horticulture,2004,104:221-36.
    [15]薛延丰,刘兆普.外源钙离子缓解海水胁迫下菊芋光合能力下降的研究.草地学报,2007,16(6):74-80.
    [1]周三,韩军丽,赵可夫.泌盐盐生植物研究进展.应用与环境生物学报,2001,7(5):496-501.
    [2]赵可夫,李法曾.中国盐生植物.北京:科学出版社,1999,26-57.
    [3] Marcum K B. Use of saline and non-potable water in the turfgrass industryConstraints and developments. Agricultural Water Management,2006,80:132-146.
    [4] Marcum K B. Salinity tolerance mechanisms of grasses in the SubfamilyChloridoideae. Crop Science,1999,39,1153-1160.
    [5]丁烽,王宝山. NaCl对中华补血草叶片盐腺发育及其泌盐速率的影响.西北植物学报,2006,26(8):1593-1599.
    [6]周玲玲,刘萍,陆嘉惠.四种补血草属植物叶片泌盐结构的扫描电镜观察.植物研究,2006,26(6):667-671.
    [7] Breckle. How do halophytes overcome salinity? In: Khann MA, Ungar ed. Biology ofSalt Tolerant Plants,1995,199-213.
    [8] Liphschitz N, Waisel Y. Adaptation of plants to saline environments: salt excretion andglandular structure. In: Tasks for Vegetation Science,1982.2.
    [9] Drennan P M, Berjak P, Lawton J R, et al. Ultrastructure of the salt glands of themangrove, Avicennia marina (Forssk.) Vierh, as indicafed by the use of selectivemembrane staining. Planta,1987,172:176-183.
    [10] Marcum K B, Anderson S J, Engelke M C. Salt gland ion secretion: A salinitytolerance mechanism among five Zoysiagrass species. Crop Sci.,1998,38:806-810.
    [11] Dschida W J, Platt-Aloia K A, Thomson W W. Epidermal peels of Avicenniagerminans (L.) Stearn: A useful system to study the function of salt glands.Ann Bot.,1992,70:501-509.
    [12] Lee G, Carrow R N, Duncan R R, et al. Synthesis of organic osmolytes and salttolerance mechanism in Paspalum vaginatum. Environ. Exp. Bot.,2008,63:19-27.
    [13] Zhu J K. Genetic analysis of plant salt tolerance using arabidopsis. Plant Physiol.,2000,124:941-948.
    [14] Hans J B, Nelson D E, Jensen R G. Adaptations to environmental stresses. Plant Cell,1995,7:1099-1111.
    [15] Niu X, Bressan R A, Hasegawa P M. Ion homeostasis in NaCl stress environments.Plant Physiol.,1995,109:735-742.
    [1] Carrow R N, Duncan R R. Salt-Affected Turfgrass Sites: Assessment andManagement. Chelsea, MI: Ann Arbor,1998, P.232.
    [2] Munns R, Tester M. Mechanisms of Salinity Tolerance. Ann. Rev. Plant Biol.,2008,59:651-681.
    [3] Tester M, Davenport R J. Na+transport and Na+tolerance in higher plants. Ann. Bot.,2003,91:503-527.
    [4] Munns R. Genes and salt tolerance: bringing them together. New Phytol.,2005,167:645-663.
    [5] Sahar N M, Mehran H R, Manzar H, et al. Proteomics reveals new salt responsiveproteins associated with rice plasma membrane. Biosci. Biotech. Biochem,2007,71:2144-2154.
    [6] Alshammary S, Qian Y L, Wallner S J. Growth response of four turfgrasses to salinity.Agric. Water Manage,2004,66:97-111.
    [7] Chaves M. Effects of water deficits on carbon assimilation. J. Exp. Bot.,1991,42:1-16.
    [8] Munns R, James R A, La¨uchli A. Approaches to increasing the salt tolerance of wheatand other cereals. J. Exp. Bot.,2006,57:1025-1043.
    [9] Brugnoli E, Lauteri M. Effects of salinity on stomatal conductance, photosyntheticcapacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) andsalt-sensitive (Phaseolus vulgaris L.) C3non-halophytes. Plant Physiol.,1991,95:628-635.
    [10] Lee G J, Carrow R N, Duncan R R. Photosynthetic responses of salinity stress ofhalophytic seashore paspalum ecotypes. Plant Sci.,2004,166:1417-1425.
    [11] Delfine S, Alvino A, Zacchini M, et al. Consequences of salt stress on conductanceto CO2diffusion, Rubisco character-istics and anatomy of spinach leaves. Austral. J. PlantPhysiol.,1998,25:395-402.
    [12] Jaleel C A, Manivannan P, Sankar B. Induction of drought stress tolerance byketoconazole in Catharanthus roseus is mediated by enhanced antioxidant potentials andsecondary metabolite accumulation. Colloids and Surf. B.,2007,60:201-206.
    [13] Megdiche W, Hessini K, Gharbi F, et al. Photosynthesis and photosystem-efficiencyof two salt-adapted halophytic seashore Cakile maritima ecotypes. Photosynthetica,2008,46:410-419.
    [14] Stoeva N, Kaymakanova M. Effect of salt stress on the growth and photosynthesisrate of bean plants. Agriculture,2008,9:385-392.
    [15] Qian Y L, Wilhelm S J, Marcum KB. Comparative Responses of Two Kentuckybluegrass Cultivars to Salinity Stress. Crop Sci.,2001,41:1895-1900.
    [16] Pessarakli M, Touchane H. Growth responses of bermudagrass and seashorepaspalum under various levels of sodium chloride stress. J. Food Agri. Env.,2006,4:240-243.
    [17] Peacock C H, Dudeck A E. A comparative study of turfgrass physiological responsesto salinity. Int. Turf. Res. J.,1985,5:821-829.
    [18] Marcum K B, Murdoch C L. Growth responses, ion relations, and osmoticadaptations of eleven C4turfgrasses to salinity. Agron. J.,1990,82:892-896.
    [19] Marcum K B, Murdoch C L. Salinity tolerance mechanisms of six C4turfgrasses. J.Amer. Soc. Hort. Sci.,1994,119:779-784.
    [20] Marcum K B, Anderson S J, Engelke M C. Salt gland ion secretion: A salinitytolerance mechanism among five zoysia grass species. Crop Sci.,1998,3:806-810.
    [21] Marcum K B, Pessarakli M. Salinity tolerance and salt gland excretion efficiency ofbermudagrass turf cultivars. Crop Sci.,2006,46:2571-2574.
    [22] Li R, Volenec J J, Joern B C, et al. Seasonal changes in nonstructural carbohydrates,protein, and macronutrients in roots of alfalfa, red clover, sweetclover, and birdsfoottrefoil. Crop Sci.,1996,36:617-623.
    [23] Desclos M, Dubousset L, Etienne P, et al. A proteomic profiling approach to reveal anovel role of brassica napus drought22kD/water-soluble chlorophyll-binding protein inyoung leaves during nitrogen remobilization induced by stressful conditions. PlantPhysiol.,2008,147:1830-1844.
    [24] Suplick-Ploense M R, Qian Y L, Read J C. Relative NaCl tolerance of KentuckyBluegrass Texas Bluegrass and their Hybrids. Crop Sci.,2002,42:2025-2030.
    [25] Liu Y, Cheng F, Wang Q, et al. Salinity stress responses and-thresholds in fourwarm-season turfgrasses. Acta Prat. Sin.,2009,18:192-199.
    [26] Chaves M, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress:regulation mechanisms from whole plant to cell. Ann. Bot.,2009,103:551-560.
    [27] Plesnicar M, Sakac Z, Pankovic D, et al. Responses of photosynthesis andcarbohydrate accumulation in sunflower leaves to short-term water stress. Helia.,1995,18:25-36.
    [28] Stepien P, Klobus G. Water relations and photosynthesis in Cucumis sativus L. leavesunder salt stress. Biol Plant.,2006,50:610-616.
    [29] Huchzermeyer B, Koyro H W. Salt and salt stress effects on photosynthesis. In:Pessarakli M, ed. Handbook of photosynthesis2nd edn. Florida, USA: CRC Press, Taylorand Francis Publishing Company,2005,751-777.
    [30] Perera L K R R, Mansfield T A, Malloch A J C. Stomatal responses to sodium ions inAster tripolium: a new hypothesis to explain salinity regulation in above-ground tissues.Plant, Cell Env.1994,17(3):335-340.
    [31] Lloyd J, Syvertsen F, Kriedemann P E. Salinity effects on leaf water relations andgas exchange of 'Valencia' orange on rootstocks with different salt exclusioncharacteristics. Austral. J. Plant Physiol.1987,14:605-617.
    [32] Seeman J D, Critchley C. Effects of salt stress on the growth, ion content, stomatalbehavior and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L.Planta.,1985,164:151-162.
    [33] Lakshmi A, Ramanjulu S, eeranjaneyulu K V, et al. Effect of NaCl on photosynthesisparameters in two cultivars of mulberry. Photosynthetica,1996,32:285-289.
    [34] Misra A J, Sahu S M, Misra M, et al. Sodium chloride induced changes in leafgrowth, and pigment and protein contents in two rice cultivars. Biol. Plant.,1997,39:257-262.
    [35] Dubey R S. Protein synthesis by plants under stressful conditions. In: Pessarakli, M.(ed.): Handbook of Plant and Crop Stress,1994, P.277-299.
    [36] Sultana N, Ikeda T, Itoh R. Effect of NaCl salinity on photosynthesis and dry matteraccumulation in developing rice grains. Env. Exp. Bot.,1999,42:211-220.
    [37] Dionisio-Sese M L, Tobita S. Effects of salinity on sodium content andphotosynthetic responses of rice seedlings differing in salt tolerance. J. Plant Physiol.,2000,157:54-58.
    [38] Parry M A J, Andralojc P, Khan S, et al. Rubisco activity: Effects of drought stress.Ann. Bot.2002,89:833-839.
    [39] Flexas J, Ribas-CarbóM, Bota J, et al. Decreased Rubisco activity during waterstress is not induced by decreased relative water content but related to conditions of lowstomatal conductance and chloroplast CO2concentration. New Phytol.,2006,172:73-82.
    [1] Tester M, Davenport R J. Na+transport and Na+tolerance in higher plants. Ann Bot,2003,91:503-527.
    [2] Munns R. Genes and salt tolerance: bringing them together. New Phytol,2005,167:645-663.
    [3] Sahar N M, Mehran H R, Manzar H, et al. Proteomics reveals new salt responsiveproteins associated with rice plasma membrane. Biosci Biotech. Biochem,2007,71:2144-2154.
    [4] Greenway H, Munns R. Mechanisnn of salt tolerance in non-halophytes. Annu RevPlant Physiol,1980,3:149-190.
    [5] Shi H, Ishitani M, Kim C, et al. The Arabidopsis thaliana salt tolerance gene SOS1encodes a putative Na+/H+antiporter. Proc Natl Acad Sci USA,2000,97:6896-6901.
    [6] Blumwald E, Poole R. Salt-tolerance in suspension cultures of sugar beet. Induction ofNa+/H+antiport activity at the tonoplast by grown in salt. Plant Physiol.,1987,83:884-887.
    [7] Apse M P, Aharon G S, Snedden W A, et al. Salt tolerance conferred byoverexpression of a vacuolar Na+/H+antiport in Arabidopsis. Sci.,1999,285:1256-1258.
    [8] Gossett D R, Millhollon E P, Lucas M C. Antioxidant response to NaCl stress insalt-tolerant and salt-sensitive cultivars of cotton. Crop Sci.,1994,34:706-714.
    [9] Marcum K B, Murdoch C L. Salinity tolerance mechanisms of six C4turfgrasses. JAmer Soc Hort Sci.,1994,119:779-784.
    [10] Parker R, Flowers T J, Moore A L, et al. An accurate and reproducible method forproteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot.,2006,57:1109-1118.
    [11] Komatsu S, Konishi H, Shen S, et al. Rice proteomics: A step functional analysis ofthe rice genome. Mol Cell Proteomics,2003,2:2-10.
    [12] Jiang Y, Deyholos M K. Comprehensive transcriptional profiling of NaCl-stressedArabidopsis roots reveals novel classes of responsive genes. BMC Plant Biology,2006,6:25.
    [13] Yan S, Tang Z, Su W, Sun W. Proteomic analysis of salt stress-responsive proteins inrice root. Proteomics,2005,5:235-244.
    [14] Majoul T, Chahed K, Zamiti E, et al. Analysis by two-dimensional electrophoresis ofthe effect of salt stress on the polypeptide patterns in roots of a salt-tolerant and asalt-sensitive cultivar of wheat. Electrophoresis,2000,21:2562-2565.
    [15] Kav N N V, Srivastava S, Goonewardene L, et al. Proteome-level changes in theroots of Pisum sativum L. in response to salinity. Ann appl Biol.,2004,145:217-230.
    [16] Du C X, Fan H F, Guo S R, et al. Proteomic analysis of cucumber seedling rootssubjected to salt stress. Phytochemistry,2010,71:1450-14559.
    [17] Wakeel A, Asif A R, Pitann B, et al. Proteome analysis of sugar beet (Beta vulgarisL.) elucidates constitutive adaptation during the first phase of salt stress. J. Plant Physiol.,2011,6:519-526.
    [18] Peacock C H, Dudeck A E. A comparative study of turfgrass physiological responsesto salinity Int Turf Res J.,1985,5:821-829.
    [19] Marcum K B, Anderson S J, Engelke M C. Salt gland ion secretion: A salinitytolerance mechanism among five zoysia grass species. Crop Sci.,1998,3:806-810.
    [20] Lee G J, Carrow R N, Duncan R R. Growth and water relations responses to saltstress in halophytic seashore paspalum ecotypes. Hort Sci.,2004,104:221-36.
    [21] Radoglou K, Cabral R, Repo T, et al. Appraisal of root leakage as a method forestimation of root viability. Plant Biosystems,2007,141:443-459.
    [22] Blum A. Osmotic adjustment and growth of barley genotypes under drought stress.Crop Science,1989,29(1):230-233.
    [23] Blum A, Sullivan C Y. The comparative drought resistance of landraces of sorghumand millet from dry and humid regions. Annals of Botany.1986,57(6):835.
    [24] Steponkus P L, Lanphear F O. Refinement of triphenyl tetrazolium chloride methodof determining cold injury. Plant Physiol.,1967,42:1423-1426.
    [25] Neuhoff V, Taube A D, Eirhardt W. Improved staining of proteins in polyacrylamidegels including isoelectric focusing gels with clear background at nanogram sensitivityusing Coomassie Brilliant Blue G-250and R-250. Electrophoresis,1988,9:255-262.
    [26] Cunningham S M, Volenec J J. Purification and characterization of alfalfa taprootvegetative storage proteins. J Plant Physiol.,1996,147:625-632.
    [27] Polle A, Otter T, Seifert F. Apoplastic peroxidases and lignification in needles ofNorway spruce (Picea abies L.). Plant Physiol.,1994,106:53-60.
    [28] Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specificperoxidase in spinach chloroplast. Plant Cell Physiol.,1981,22:867-80.
    [29] Dhindsa R H, Plumb-Dhindsa P, Thorpe T A. Leaf senescence correlated withincreased level of membrane permeability, lipid peroxidation and decreased level of SODand CAT. J Exp Bot.,1981,32:93-101.
    [30] Ndimba B K, Chivasa S, Simon W J, et al. Identification of Arabidopsis salt andosmotic stress responsive proteins using two-dimensional difference gel electrophoresisand mass spectrometry. Proteomics,2005,5:4185-4196.
    [31] McCue K F, Hanson A D. Drought and salt tolerance: towards understanding andapplication. Biotechnology,1990,8:358.
    [32] Mittler R. Oxidative stress, antioxidants and stress tolerance Trends Plant Sci.,2002,7:405-410.
    [33] Noreen S, Ashraf M. Alleviation of adverse effects of salt stress on sunflower(Helianthus Annus L.) by exogenous application of salicylic acid: Growth andphotosynthesis. Pakistan J Bot.,2008,40:1657-1663.
    [34] Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signaltransduction. Annu. Rev Plant Physiol Plant Mol Biol.,2004,55:373-399.
    [35] Salekdeh G H, Siopongco J, Wade L J, et al. Proteomic analysis of rice leaves duringdrought stress and recovery. Proteomics,2002,2:1131-1145.
    [36] Hernandez J A, Jimenez A, Mullineaux P, et al. Tolerance of pea (Pisum sativum L.)to long-term salt stress is associated with induction of antioxidant defences. Plant CellEnviron,2000,23:853-862.
    [37] Rajguru S N, Banks S W, Gossett D R, et al. Antioxidant response to salt stressduring berdevelopment in cotton ovules. J Cotton Sci,1999,3:11-18.
    [38] Minárik P, TomaáskováN, KollárováM, et al. Malate Dehydrogenases-Structure andfunction. General Physiology and Biophysics,2002,21:257-265.
    [39] Dooki A D, Mayer-Posner F J, Askari H, et al. Proteomic responses of rice youngpanicles to salinity. Proteomics,2006,6:6498-6507.
    [40] Imin N, Kerim T, Rolfe B G, et al. Effect of early cold stress on the maturation ofrice Anthers. Proteomics,2004,4:1873-1882.
    [41] Liska A J, Shevchenko A, Pick U, et al. Enhanced photosynthesis and redox energyproduction contribute to salinity tolerance in Dunaliella, as revealed by homology-basedproteomics. Plant Physiol.,2004,136:2806-2817.
    [42] Echt C S, Polacco M L, Neuffer M G. A nuclear encoded chloroplast ATP synthasemutant of Zea mays L. MGG Molecular&General Genetics,1987,208:230-234.
    [43] Flagellum Z, Trono D, Pompa M, et al. Seawater stress applied at germinationaffects mitochondrial function in durum wheat (Triticum durum) early seedlings.Functional Plant Biology,2006,33:357-366.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700