用户名: 密码: 验证码:
金属簇活化甲烷C-H键的密度泛函研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由过渡金属簇催化的反应引起了相当大的重视[1-5]。比如异核二聚体PtM~+ (M = Cu, Ag, Au)能够使甲烷脱氢,且与单核金属离子相比活性较高,生成的[PtMCH_2]~+可以作为反应前体通过C-N键的耦合合成HCN [11]。与金属阳离子与甲烷的广泛研究相比,二聚体与甲烷的反应研究工作较少。对于PtM~+ (M = Cu, Ag, Au, Pt)与CH_4的理论研究已有一些报道,而二聚体PdM~+(M = Cu, Ag)对活化甲烷中C-H键的理论研究尚无报道。
     本文以量子化学中的分子轨道理论为基础,利用密度泛函理论(DFT),耦合簇方法(CCSD(T))和自然键轨道(NBO)分析方法,对所研究的体系(二金属簇催化)选择合适的基组,通过计算找出反应中各物种(包括过渡态)的优化构型,进而得到体系的势能面,热力学数据和轨道的有关信息。我们用这些数据综合分析反应机理问题,为进一步的实验研究提供了理论依据。
     全文共分四章。第一章,综述了二金属簇催化甲烷C-H键反应的研究进展及本文主要工作。第二章,概述了本文工作的理论背景和计算方法。前两章主要概括了本文工作的理论背景和理论依据,为我们的研究提供了可靠的量子化学方法。
     第三章,计算研究了二金属簇与甲烷的脱氢反应机理。结果显示Pd原子很容易插入到CH_4的C-H键中,产生中间体[MPd(CH3)H]~+,此中间体在反应中是势能面上的稳定构型;它进一步反应,第二个C-H键被活化,产生分子-离子复合物[H_2-Pd(CH_2)M]~+,但其活化能较高(约175 kJ/ mol),是整个反应的速率控制步骤。通过对反应物电子结构的分析,解释了对C-H键活化能垒的高低。我们也把计算结果与PtM~+ (M = Cu,Ag) ~+ CH_4体系进行了比较。结果发现跟单核金属Pd~+相比,当Pd~+结合金属M (M = Cu和Ag)以后,由于金属M的影响,二金属簇PM~+ (M = Cu,Ag)活化甲烷C-H键的活性被提高了,但仍然比PtM~+ (M = Cu,Ag) ~+ CH_4体系低。
     第四章,在密度泛函理论下对二金属簇NiM~+(M = Cu,Ag,Au)催化甲烷反应生成H_2的机理进行了研究。结果发现,二聚体NiM~+(M = Cu,Ag)与CH_4的反应历程和PdM~+(M = Cu,Ag)与CH_4反应历程完全相同;而二聚体NiAu~+表现出更复杂的反应机理,与前两者不同,NiAu~+在活化甲烷的第一个C-H键时,第一个H原子转移时不是向Ni原子而是向Au原子转移,并且整个脱氢反应为放热反应。
The catalytic reactions mediated by transition-metal clusters have attracted considerable attention in recent years. The heteronuclear metal dimers PtM~+ (M = Cu, Ag, Au) are capable of efficiently dehydrogenating methane, and they exhibit relatively high reactivities with respect to the metal ions. The resulting metallic species [PtMCH2]~+ should be taken as the important precursors to C-N bond coupling for the synthesis of HCN. Compared with the comprehensive studies of the reaction of metal ion with methane, there are little theoretical reports about the C-H bond activation by metal dimmers. However, the dehydrogenation reaction which catalyzed by metal clusters PtM~+ (M = Cu, Ag, Au,Pt) have been studied in theoretical investigation at the ZORA level, but there is no theoretical report about the reaction mechanism of PdM~+(M = Cu,Ag) with methane.
     In this paper, we chose several typical reactions that have been carefully studied using quantum methods, obtained some interesting results. On the basis of the molecular orbital theory, the tradition transition state theory as well as quantum chemistry theory, the systems (bimetallic clusters) chose have been investigated using Density Functional Theory (DFT), the coupled cluster CCSD(T) calculations and the National Orbital analysis. The structures of the reagents, the reaction products and transition states along the reaction paths have been obtained, and then obtained the reaction surfaces, the spectrum datum, thermodynamic datum as well as the information of orbitals. The reaction mechanism has been argued deeply using these data.
     The whole paper consists of four chapters. Chapter 1 mainly reviews the evolution of bimetallic clusters with methane. The second chapter summarizes the theory of quantum chemistry and calculation methods of this paper. The contents of two chapters were the basis and background of our studies and offer us with userful and reliable quantum methods.
     In chapter 3, a computational study of the bimetallic clusters dehydrogenation reaction mechanism with methane is presented. The results shows the reactants give molecule–ion complex [PdMCH_4]~+, [PdMCH_4]~+ could undergo oxidative addition, cleaving a C-H bond and yielding the insertion product [MPd(CH3)H]~+, which is the stable structure on potential energy surfaces . The third step is a reductive elimination, leading to a molecule–ion complex [H_2-Pd(μ-CH_2)M]~+, and this step is the rate-determination step in the whole reaction path. Predicted high activation energies are understood through the electronic configurations of their reactive precursors. The results of these calculations are compared with those of PtM~+ clusters. The calculated results indicate that bimetallic clusters PdM~+ (M = Cu, Ag) exhibit relatively high activity toward CH_4 with respect to Pd~+, but it is still lower than PtM~+ (M = Cu, Ag) clusters.
     Chapter 4, in this paper we have carried out a theoretical investigation at the DFT (B3LYP) level of the mechanism of the C-H insertion reaction catalyzed by heteronuclear NiM~+(M = Cu, Ag, Au) cluster. The results indicate that the reaction of NiM~+(M = Cu, Ag) cluster is completely same with the heteronuclear cluster PdM~+(M = Cu, Ag) in the activation of methane C-H bond. However, the NiAu~+ shows more complex reaction mechanism. Different from NiM~+(M = Cu, Ag), the first H atom transfer rather than to the Ni atom but to the Au atom in the activation of a methane C-H bond, and the whole dehydrogenation reaction is exothermic.
引文
[1] Shilov, A. E.; Shul’pin, G. B. Chem. Rev. 1997, 97, 2879.
    [2] Hall, C.; Perutz, R. N. Chem. Rev. 1996, 96, 3125.
    [3] Arndsten, B. A.; Bergman, R. G.; Mobley, T. A.; Peterson, T. H. Acc. Chem. Res. 1995, 28, 154.
    [4] Eller, K.; Schwarz, H. Chem. Rev. 1991, 91, 1121.
    [5] Crabtree, R. H. Chem. Rev. 1985, 85, 245.
    [6] Schwarz, H. Angew. Chem. Int. Ed. Engl. 1991, 30, 820.
    [7] Reichert, E. L.; Thurau, G.; Weisshaar, J. C. J. Chem. Phys. 2002, 117, 653.
    [8] Reichert, E. L.; Weisshaar, J. C. J. Phys. Chem. 2002, 106, 5563.
    [9] Yi, S. S.; Reichert, E. L.; Holthausen, M. C.; Koch, W.; Weisshaar, J. C. Chem. Eur. J. A. 2000, 6, 2232.
    [10] Porembski, M.; Weisshaar, J. C. J. Phys. Chem. A. 2001, 105, 4851.
    [11] Loos, J.; Schr?der, D.; Zummack, W.; Schwarz, H. Int. J. Mass Spectrom. Ion Processes 2002, 217, 169.
    [12] Barsch, S.; Schr?der, D.; Schwarz, H. Int. J. Mass Spectrom. Ion Processes 2000, 202, 363.
    [13] Schwarz, H. Chem. Phys. Lett. 1997, 277, 399.
    [14] Sicilia, E.; Russo, N. J. Am. Chem. Soc. 2002, 124, 1471.
    [15] Russo, N.; Sicilia, E. J. Am. Chem. Soc. 2001, 123, 2588.
    [16] Walters, R. S.; Jaeger, T. D.; Duncan, M. A. J. Phys. Chem. 2002,106, 10482.
    [17] Zhang, X. G.; Liyanage, R.; Armentrout, P. B. J. Am. Chem. Soc. 2001, 123, 5563.
    [18] Armentrout, P. B.; Baer, T. J. Phys. Chem. 1996,100, 12866.
    [19] Sievers, M. R.; Armentrout, P. B. J. Chem. Phys. 1995, 102, 754.
    [20] Chen, Y.; Armentrout, P. B. J. Phys. Chem. 1995, 99, 10775.
    [21] Bowers, M. T.; Kemper, P. R.; Koppen, P. A. M.; Wyttenbach, T.; Carpenter, C. J.; Weis, P.; Gidden, J. In Energetics of StableMolecules and Reaction Intermediates; Hinas da Peidade, M. E., Ed.; KluwerAcademic: Dordrecht, The Netherlands, 1999; p 235.
    [22] Kemper, P. R.; Weis, P.; Bowers, M. T. Chem. Phys. Lett. 1998, 293, 503.
    [23] Kemper, P. R.; Bushnell, J.; Koppen, P. A. M.; Bowers, M. T. J. Phys. Chem. 1993, 97, 1810.
    [24] Achatz, U.; Beyer, M.; Joos, S.; Fox, B. S.; Niedner-Schatteburg,G.; Bondybey, V. E. J. Phys. Chem. A. 1999, 103, 8200.
    [25] Albert, G.; Berg, C.; Beyer, M.; Achatz, U.; Joos. S.; Niedner-Schatteburg, G.; Bondybey, V. E. Chem. Phys. Lett. 1997, 268, 235.
    [26] Westerberg, J.; Blomberg, M. R. A. J. Phys. Chem. A. 1998, 102, 7303.
    [27] Wittborn, A. M. C.; Costas, M.; Blomberg, M. R. A.; Siegbahn, P. E. M. J. Chem. Phys. 1997, 107, 4318.
    [28] Freiser, B. S. Organometallic Ion Chemistry, Ed.; Kluwer Academic Publishers: Dordrecht, The Nethelands, 1996.
    [29] S?ndig, N.; Koch, W. Organometallics. 1997, 16, 5244.
    [30] Holthausen, M. C.; Koch, W. J. Am. Chem. Soc. 1996, 118, 9932.
    [31] Musaev, D. G.; Morokuma, K. J. Phys. Chem. 1996, 100, 11600.
    [32] Tolbert, M. A.; Mandich, M. L.; Halle, L. F.; Beauchamp, J. L. J. Am. Chem. Soc. 1986, 108, 5675.
    [33] Byrd, G. D.; Freiser, B. S. J. Am. Chem. Soc. 1982, 104, 5944.
    [34] Perry, J. K.; Ohanessian, G.; Goddard, W. A. Organometallics 1994, 13, 1870.
    [35] Irikura, K. K.; Beauchamp, J. L. J. Phys. Chem. 1991, 95, 8344.
    [36] Irikura, K. K.; Beauchamp, J. L. J. Am. Chem. Soc. 1989, 111, 75.
    [37] Irikura, K. K.; Beauchamp, J. L. J. Am. Chem. Soc. 1991, 113, 2769.
    [38] Margareta, R. A. J. Phys. Chem. A. 1997, 101, 1567.
    [39] Ganbing Zhang; Shuhua Li. Organometallics. 2003, 22, 3820.
    [40] Lias, S. G; Liebman, J. F; Levin, R. D.; Kafafi, S. A. NIST Standard Reference Database, PositiVe Ion Energetics, Version 2.01, Gaithersburg, MD, January, 1994.
    [41] Heinemann, C.; Hertwig, R. H.; Wesendrup, R.; Koch, W.; Schwarz, H. J. Am. Chem. Soc. 1995, 117, 495.
    [42] Armentrout, P. B. Acc. Chem. Res. 1995, 28, 430.
    [43] Holthausen, B. L.; Armentrout, P. B. J. Am. Chem. Soc. 1996, 118, 9652.
    [44] Perry, J. K.; Ohanessian, G.; Goddard III, W.A. Organometallics. 1994, 13, 1870
    [45] Shaik, S.; Danovich, D.; Fiedler, A.; Schroder, D.; Schwarz, H. Helv, Chim.Acta 1995, 78, 1393
    [46] Schr?der, D.; Schwarz, H.; Shaik, S. structure ang bonding (Ed.: B. Meunier), Springer, Berlin, 2000, p.97.
    [47] Ryan, M. F.; Fiedler, A.; Schroder, D.; Schwarz, H. J. Am. Chem. Soc. 1995, 117, 2033.
    [48] Shiota, S.; Yoshizawa, K. J. Am. Chem. Soc. 2000, 122, 12317.
    [49] Schr?der, D.; Holthausen, M. C.; Schwarz, H. J. Phys. Chem. B. 2004, 108, 14407.
    [50] Zhang, Q.; Kemper, P. R.; Shin, S. K.; Bowers, M. T. Int. J.Mass Spectrom. Ion Processes 2001, 204, 281.
    [51] Zhang, Q.; Kemper, P. R.; Bowers, M. T. Int. J. Mass Spectrom. Ion Processes 2001, 210, 265.
    [52] Zhang, Q.; Bowers, M. T. J. Phys. Chem. A. 2004, 108, 9755.
    [53] Armentrout, P. B.; Beauchamp, J. L. Acc. Chem. Res. 1989, 22, 315.
    [54] Armentrout, P. B. Science. 1991, 251, 175.
    [55] Weisshaar, J. C. Acc. Chem. Res. 1993, 26, 231.
    [56] Schr?der, D.; Schwarz, H. Angew. Chem., Int. Ed. 1995, 34, 1973.
    [57] Schwarz, H.; Schr?der, D. Pure Appl. Chem. 2000, 72, 2319.
    [58] Chen, P. Angew. Chem. 2003, 115, 2938.
    [59] Schwarz, H. Int, J. Mass Spectrom. 2004, 237, 75.
    [60] B?hme, D. K.; Schwarz, H. Angew. Chem. 2005, 117, 2388.
    [61] Andrews, L.; Cho, H. G. Organometallics. 2006, 25, 4040
    [62] Li, F. X.; Zhang, X. G.; Armentrout, P. B. Int, J. Mass Spectrom. 2006, 255/256, 279.
    [63] Li, F. X.; Armentrout, P. B. J. Chem. Phys. 2006, 125, 133114.
    [64] Shilov, A. E. Activation of saturated hydrocarbons by transition metal complexes, Reidel, D ordrecht, 1984.
    [65] Periana, R. A.; Taube, D. J.; Gamble, S.; Taube, T. Sato, H. FuJi, Science 1998, 280, 560.
    [66] Owen, J. S.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 2006, 128, 2005.
    [67] Pyykk?, P. Chem. Rev. 1988, 88, 563.
    [68] Schwarz, H. Angew. Chem. 2003, 115, 4580.
    [69] Kaldor, A.; Cox, D. M. Pure Appl. Chem. 1990, 62, 79.
    [70] Achatz, U.; Berg, C.; Joos, S.; Fox, B. S.; Beyer, M. K.; Niedner-Schatteburg, G.; Bondybey, V. E. Chem, Phys. Lett. 2000, 320, 53.
    [71] Koszinowski, K.; Schroder, D.; Schwarz, H. J. Phys. Chem. A. 2003, 107, 4999.
    [72] Kummerl?we, G.; Balteanu, I.; Sun, Z.; Balaj, O. P.; Bondybey, V. E.; Beyer, M. K. Int, J. Mass Spectrom. 2006, 254, 183.
    [73] Xia, F.; Cao, Z. J. Phys. Chem. A. 2006, 110, 10078.
    [74] Yin Y. Q.; Li, Q. S.; Ding, E. R. Journal of Molecular Cataysis, 1997, 11, 445.
    [75] Shan, Y. K.; Da, L. Y.; Yu, S. Y. Progress in Chemistry, 2003, 15, 151.
    [76] Harada, M.; Dexpert, H. J. Phys. Chem. 1996, 100, 565.
    [77] Wu, Z. J. Chem, Phys. Lett. 2004, 383, 251.
    [78] Wu, Z. J. Chem, Phys. Lett. 2005, 406, 24.
    [79] Minori A.; Sayaka M. Chem. Phys. 2005 311, 129.
    [80] Koszinowski, K.; Schroder, D.; Schwarz, H. J. Am. Chem. Soc.2003, 125, 3676.
    [81] Koszinowski, K.; Schroder, D.; Schwarz, H. Angew. Chem. Int. Ed. 2004, 43, 121.
    [82] Br?strup, M.; Schroder, D.; Schwarz, H. Organometallics. 1999, 18, 1939.
    [83] Koszinowski, K.; Schroder, D.; Schwarz, H. Organometallics. 2003, 22, 3809.
    [84] Koszinowski, K.; Schroder, D.; Schwarz, H. Organometallics. 2004, 23, 1132.
    [85] Xia, F.; Chen, J.; Zeng, K.; Cao, Z. X. Organometallic. 2005, 24, 1845.
    [1]唐敖庆,杨忠志,李前树.量子化学[M].北京,科学出版社,1982
    [2]刘靖疆,基础量子化学与应用,北京:高等教育出版社,2004
    [3]廖沐真,吴国是,刘洪霖,量子化学从头计算方法[M],清华大学出版社,1984
    [4]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算方法(中册)[M].北京,科学出
    版社,1985
    [5]刘靖疆 基础量子化学与应用 高等教育出版社,2004
    [6]赵学庄.化学反应动力学原理[M].北京:高等教育出版社,1984
    [7]韩德刚,高盘良.化学动力学基础[M].北京:北京大学出版社,1987
    [8]Hehre,W.J.,Radom,L.;Schleyer P.V.R. Ab initio molecular orbital theory[M].John Wiley&Sons,lnc.,1986
    [9]Mcquarrie,D.A.Quantum chemistry university science books[M]:Mill Vally. 1983.
    [10]Chong,D.P.Recent advances in density functional methods.Part II.Singapore:WorldScientific.1995,11,782
    [11]Parr,R.G.;Yang,W Density-functional theory of atoms and molecules.Oxford University Press:Oxford,1989.
    [12]Thomas,H.Porc.Camb.Phil.Soc.1927,23,545.
    [13]Hohenberg,P.;Kohn,W. Inbomogenous Electron Gas,Phys.Rev.1964,136,864.
    [14]Foresman,J.B.;Gordon,M.H.;Pople,J.A.;Frisch,M.J.J.Chem. Phys.1992,96,135
    [15]Winn J.s.;Physical Chemistry[M].Harper Collins College Publishers,1995.
    [16]Atkins P.w.;Physical Chemistry[M].New York:W.H. Freeman and Company,1990.
    [17]Billing G.D.,Mikkelsen K.V.;Introduction to molecular dynamics and chemical kinetics[M].New York:John Wiley&Sons,Inc.,1996.
    [18]Johnston H.s.;Gas phase reaction rate theory[M].New York:Ronald Press Company,1966.
    [19]Glasstone s.;Laidler K.;Erying H.;Theory of rate processes[M].New York:McGraw-Hill,1941.
    [20]ThuhIar D.C.;Isaacson A.D.;Garreett B.C.Generalized transition state theory[M].Thetheory of chemical reaction dynamics,Baer M.,ed.. Boca Raton,FL:CRC Press,1985,4,65.
    [21]Hase W. L.J.Chem.Phys.1976,64,2442.
    [22]Garrett B.C.;Truhlar D.G.;J.Phys.Chem.1979,83,1052.
    [23]Baldridge K.K.;Gordon M.s.;Steckler R.;Truhlar D.G.J. Phys.Chem.1989,93,5107.
    [24]Garrett B.C.;Truhlar D. G.;Chem.Phys.1979,70,1593.
    [25]Garrett B.C.;Truhlar D.G.;J.Am.Chem.Soc.1979,101,4534.
    [26]Garrett B.C.;Truhlar D.G.;Grev R.S.;Magnuson A.W.J.Phys.Chem.1980,84,1730.
    [27]Pople,J.A.;Raghavachari,K.J.Chem.Phys.1987,87,5968.
    [28]Scuseria,G.E.;Schaefer,H.F.J.Chem.Phys.1989,90,3700.
    [29]Purvis,G.D.;Bartlett,R.J.J.Chem.Phys.1982,76,1910.
    
    [1] Crabtree, R. H.Chem. Rev. 1995, 95, 987.
    [2] Saillard, J Y.; Hoffmann, R. J. Am. Chem. Soc. 1984, 106, 2006.
    [3] Crabtree, R. H. Chem. Rev. 1985, 85, 245.
    [4] Crabtree, R. H. Chem. Rev. 1995, 95, 987.
    [5] Saillard, J. Y.; Hoffmann, R. J. Am. Chem. Soc. 1984, 106, 2006.
    [6] Rostrup-Nielsen, J. R. Catal. Today. 2000, 63, 159.
    [7]Lunsford, J. H. Catal. Today. 2000, 63, 165.
    [8] Allison, J.; Freas, R. B.; Ridge, D. P. J. Am. Chem. Soc. 1979, 101, 1332.
    [9] Squires, R. R. Chem. Rev. 1987, 87, 623.
    [10] Allison, J. Prog. Inorg. Chem. 1986, 34, 627.
    [11] Russell, D. H. Plenum: New York, 1989.
    [12] Armentrout, P. B.; Beauchamp, J. L. Acc. Chem. Res. 1989, 22, 315.
    [13] Armentrout, P. B. Annu. Rev. Phys. Chem. 1990, 41, 313.
    [14] Jennings, K. R. Ed. Fundamentals of Gas-Phase Ion Chemistry, Kluwer Academic Publishers: Dordrecht, 1990.
    [15] Eller, K.; Schwarz, H. Chem. Rev. 1991, 91, 1121.
    [16] Irikura, K. K.; Beauchamp, J. L. J. Am. Chem. Soc. 1991, 113, 2769.
    [17] Irikura, K. K.; Beauchamp, J. L. J. Phys. Chem. 1991, 95, 8344.
    [18] Schwarz, H. Angew. Chem., Int. Ed. Engl. 1991, 30, 820.
    [19] Yoshizawa, K.; Suzuki, A.; Yamabe, T. J. Am. Chem. Soc. 1999, 121, 5266.
    [20] Yoshizawa, K. J. Organomet. Chem. 2001, 635, 100.
    [21] Blomberg, M. R. A.; Siegbahn, P. E. M.; Svensson, M. J. Phys. Chem. 1994, 98, 2062.
    [22] Irikura, K. K.; Goddard, W. A. J. Am. Chem. Soc. 1994, 116, 8733.
    [23] Heinemann, C.; Hertwig, R. H.; Wesendrup, R.; Koch, W.; Schwarz, H. J. Am. Chem. Soc. 1995, 117, 495.
    [24] Hendrickx, M.; Ceulemans, M. Theoretical study on the stability of low-spin hydridomethyl complexes of the first-row transition metal cations[J]. J. Phys. Chem. 1997, 101, 2465.
    [25] Ranasinghe, Y. A.; Macmahon, T. J.; Freiser, B. S. J. Phys. Chem. 1991, 95, 7721.
    [26] Irikura, K. K.; Beauchamp, J. L. J. Am. Chem. Soc. 1991, 113, 2769.
    [27] S?ndig, N.; Koch, W. Organometallics. 1997, 16, 5244.
    [28] Perry, J. K.; Ohanessian, G.; Goddard, W. A. Organometallics. 1994, 13, 1870.
    [29] Pavlov, M.; Blomberg, M. R. A.; Siegbahn, P. E. M.; Wesendrup, R.; C.
    [30] Heinemann, C.; Wesendrup, R.; Schwarz, H. Chem Phys Lett. 1995, 239, 75.
    [31]Achatz, U.; Beyer, M.; Joos, S. J. Phys. Chem. A. 1999, 103, 8200.
    [32] Blomberg, M. R. A.; Siegbahn, P. E. M.; Svensson, M. J. Phys. Chem. 1994, 98, 2062.
    [33] Koszinowski, K.; Schr?der, D.; Schwarz, H. J. Am. Chem. Soc. 2003, 125, 3676.
    [34] Koszinowski, K.; Schr?der, D.; Schwarz, H. Angew. Chem., Int. Ed. 2004, 43, 121.
    [35] Koszinowski, K.; Schr?der, D.; Schwarz, H. Organometallics. 2004, 23, 1132.
    [36] Xia Fei; Cao Zexing. J. Phys. Chem. A. 2006, 110,10078.
    [37] Molander, G. A.; Etter, J. B. J. Org. Chem. 1987, 52, 3944.
    [38] Molander, G. A.; Etter, J. B.; Zinke, P. W. J. Am. Chem. Soc. 1987, 109, 453.
    [39] Grunwald, C.; Gevert, O.; Gonzalez-Herrero, P.; Werner, H. Organometallics. 1996, 15, 1960.
    [40] Charette, A. B.; Marcoux, J.-F.; Belanger-Gariepy, F. J. Am. Chem. Soc. 1996, 118, 6792.
    [41] Heinemann, C.; Hertwig, R. H.; Wesendrup, R. J. Am. Chem. Soc. 1995, 117, 495.
    [42] Jong, G. T.; Geerke, D. P.; Diefenbach, A. Chemical Physics, 2005, 313, 261.
    [1] Wesendrup, R.; Schroder, D.; Schwarz, H. Angew. Chem. 1994, 195, 1232.
    [2] Bond, G. C. In Chemistry of the Platinum Group Metals: Recent Developments; Hartley, F. R.,Ed.; Elsevier: Amsterdam, 1991; Chapter 2.
    [3] Sinfelt, J. H. In Catalysis: Science and Technology; Anderson, J. R., Boudart, M., Eds.;Springer-Verlag: Heidelberg, 1981; Vol. 1, Chapter 5.
    [4] Eller, K.; Schwarz, H. Chem. Rev. 1991, 91, 1121.
    [5] Thomas, J. M. Angew. Chem., Int. Ed. Engl. 1994, 33, 913.
    [6] Schwarz, H.; Schroder, D. Pure Appl. Chem. 2000, 72, 2319.
    [7] Balaj, O. P.; Balteanu, I; Rossteuscher, T. T. J.; Beyer, M. K.; Bondybey, V. E. Angew. Chem.,Int. Ed 2004,43,6519.
    [8] Balteanu, I; Balaj, O. P.; Beyer, M. K.; Bondybey, V. E. Phys. Chem. Chem. Phys. 2004, 6,2910.
    [9] Schwarz, H. Angew. Chem., Int. Ed. Engl. 1991, 30, 820.
    [10] Schroder, D.; Schwarz, H. Angew. Chem., Int. Ed. Engl. 1990, 29, 1433.
    [11] Schroder, D.; Fiedler, A.; Hrusa'k, J.; Schwarz, H. J. Am.Chem. Soc. 1992,114, 1215.
    [12] Ryan, M. F.; Fiedler, A.; Schroder, D.; Schwarz, H. Organometallics. 1994, 13, 4072.
    [13] Ryan, M. F.; Fiedler, A.; Schroder, D.; Schwarz, H. J. Am. Chem. Soc. 1995, 117,2033.
    [14] Clemmer, D. E.; Aristov, N.; Armentrout, P. B. J. Phys. Chem. 1993, 97, 544.
    [15] Chen, Y.-M.; Clemmer, D. E.; Armentrout, P. B. J. Am.Chem. Soc. 1994, 116, 7815.
    [16] A review: Schroder, D.; Schwarz, H. Angew. Chem., Int. Ed. Engl. 1995, 34, 1973.
    [17] Allison, J. Prog. Inorg. Chem. 1986, 34, 627.
    [18] Armentrout, P. B.; Beauchamp, J. L. Acc. Chem. Res. 1989, 22, 315.
    [19] Armentrout, P. B. Annu. Rev. Phys. Chem. 1990, 41, 313.
    [20] Irikura, K. K.; Beauchamp, J. L. J. Am. Chem. Soc. 1991, 113, 2769.
    [21] Inkura, K. K.; Beauchamp, J. L. J. Phys. Chem. 1991, 95, 8344.
    [22] Hendrickx, M.; Ceulemans, M.; Gong, K.; Vanquickenborne, L. J. Phys. Chem. A. 1997, 101,2465.
    [23] Yoshizawa, K.; Suzuki, A.; Yamabe, T. J. J. Am. Chem. Soc. 1999, 121, 5266.
    [24] Yoshizawa, K. J. Organomet. Chem. 2001, 635, 100.
    [25] Blomberg, M. R. A.; Siegbahn, P. E. M.; Svensson, M. J. Phys. Chem. 1994, 98, 2062.
    [26] Irikura, K. K.; Goddard, W. A. J. Am. Chem. Soc. 1994, 116, 8733.
    [27] Heinemann, C; Hertwig, R. H.; Wesendrup, R.; Koch, W.; Schwarz, H. J. Am. Chem. Soc.1995, 117, 495.
    [28] Zhang, Q.; Kemper, P. R.; Shin, S. K.; Bowers, M. T. Int. J. Mass Spectrom. Ion Processes2001,204,281.
    [29] Zhang, Q.; Kemper, P. R.; Bowers, M. T. Int. J. Mass Spectrom. Ion Processes 2001, 210,265.
    [30] Zhang, Q.; Bowers, M. T. J. Phys. Chem. A. 2004, 108, 9755.
    [31] Trevor, D. J.; Cox, D. M.; Kaldor, A. J. Am. Chem. Soc. 1990, 112, 3742.
    [32] Kaldor, D. A.; Cox, D. M. Pure Appl. Chem. 1990, 62, 79.
    [33] Xia Fei; Cao Ze-xing. J. Phys. Chem. A. 2006, 110, 10078.
    [34] Molander, G. A.; Etter, J. B. J. Org. Chem. 1987, 52, 3944.
    [35] Molander, G. A.; Etter, J. B.; Zinke, P. W. J. Am. Chem. Soc. 1987, 109, 453.
    [36] Grunwald, C; Gevert, O.; Gonzalez-Herrero, P.; Werner, H. Organometallics. 1996, 15,1960.
    [37] Reed, A. E.; Curtiss, L. A.; Wemhold, F. Chem. Rev. 1988, 88, 899.
    [38] Charette, A. B.; Marcoux, J.-F.; Belanger-Gariepy, F. J. Am. Chem. Soc. 1996, 118, 6792. [39] Huber, H. P.; Herzberg, G. Constants of Diatomic Molecules; van Nostrand-Reinhold: NewYork, 1979.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700