用户名: 密码: 验证码:
尖晶石型LiMn_2O_4的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文概述了锂离子电池的工作原理、发展现状和正极材料的研究进展。研究了LiMn_2O_4的制备方法及其工艺条件。针对LiMn_2O_4正极材料在充放电循环过程中发生Jahn-Teller畸变、Mn在电解液中溶解和表面形成钝化膜这三个导致容量衰减和循环性能劣化的关键问题,分别采用Fe、Al、Cu阳离子的一元掺杂和多元掺杂两种措施,对尖晶石结构的LiMn_2O_4正极材料进行了改性研究。
     采用溶胶.凝胶法制备了LiMn_2O_4和Li_(1.08)Mn_2O_4样品,通过X射线衍射分析和循环性能的分析,比较两者的优劣。结果发现,经过50次循环后Li_(1.08)Mn_2O_4的比容量保持率为80.3%,而LiMn_2O_4的比容量仅为原来的78.10%。可见尖晶石的富锂方案,可以较好地改善尖晶石的循环性能,但同时初始放电容量略有减小。将富锂和掺杂的工艺结合起来,即“富锂+掺杂”方案,用这种方法合成的Li_(1+x)M_yMn_(2+y)O_4,可以抑制容量的衰减。
     采用溶胶-凝胶法制备了Li_(1.08)Fe_xMn_(2-x)O_4、Li_(1.08)Al_xMn_(2-x)O_4、Li_(1.08)Cu_xMn_(2-x)O_4、Li_(1.08)Cu_(0.025)M_(0.025)Mn_(1.95)O_4和Li_(1.08)Cu_(0.025)Fe_(0.025)Al_(0.025)Mn_(1.925)O_4尖晶石化合物,并通过X射线衍射分析、扫描电子显微镜、恒电流充放电、电化学阻抗和循环伏安等测试考察了阳离子的一元掺杂和多元掺杂对LiMn_2O_4样品的结构、形貌和电化学性能的影响。结果显示,样品均具有单一尖晶石结构。随着掺杂量的增加,材料的初始放电比容量降低,但却提高了尖晶石结构的稳定性和循环性能。循环伏安测试结果发现,Fe~(3+)、Al~(3+)、Cu~(2+)掺杂改性后的正极材料氧化还原电势差变小,表明其电化学可逆性得到提高。结合各单元素掺杂的优点,又进行了二元及多元掺杂。其中综合性能最好的是LiFe_(0.025)Cu_(0.025)Mn_(1.95)O_4,首次放电比容量为101.89 mAh·g~(-1),经过50次循环后的放电比容量为97.10 mAh·g~(-1),容量保持率高达95.3%。
The principle and development of lithium ion batteries and the survey of cathode materials have been described in this paper. The preparation methods and technical conditions of LiMn_2O_4 were studied. During charge-discharge progress some existing problems of LiMn_2O_4 have been introduced with emphasis, such as the Jahn-Teller distortion, Mn dissolution to electrolyte and the formation of passivating films on the surface, which are the three main factors resulting in fading capacity and poor cyclability. In order to solve these problems, we used two methods such as single ion doping and multiple doping with Fe、Al、Cu cations,and research the modified of spinel LiMn_2O_4 cathode material.
     The LiMn_2O_4 and Li_(1.08)Mn_2O_4 samples were prepared by the sol-gel method. The X-ray diffraction and cyclability analysis were used to contrast the two samples. It was found that after 50th charge-discharge cycle, the discharge specific capacity retention of Li_(1.08)Mn_2O_4 was 80.3%,but that of LiMn_2O_4 only turned to 78.10% compared with the original one.So it can be seen clearly that the scheme of lithium-rich improved the cyclability properties of spinel, but the first discharge specific capacity retention slight decreased simultaneously. We combine the scheme of lithium-rich with doping technology, which is named "lithium-rich+ doping" scheme.Li_(1+x)Mn_(2-y)M_yO_4,which was synthesized by the aboved scheme, can restrain the loss of the capacity.
     The spinel compound LiFe_xMn_(2-x)O_4,LiAl_xMn_(2-x)O_4,LiCu_xMn_(2-x)O_4, LiCu_(0.025)M_(0.025)Mn_(1.95)O_4 and LiCu_(0.025)Fe_(0.025)Al_(0.025)Mn_(1.925)O_4 were prepared by the sol-gel method. The influences of the single cation doping and multiple doping of cations on the structure, morphology and electrochemical performance of LiMn_2O_4 was investigated by X-ray diffraction (XRD), scanning electric microscopy (SEM), charge-discharge at constant current, AC impedance (EIS), cyclic voltammety (CV) as well as various electrochemical analysis methods. The results show that all the samples formed pure spinel structure. As the doping content increased, the first discharge specific capacity of samples were reduces, but the structural stability and cycle performances were improved. The result of cyclic voltammety (CV) indicated that the electrochemical reversibility was improved, for the redox potential difference of the cathode materials was smaller after doping Fe~(3+),Al~(3+),Cu~(2+) ions. Together with the advantages of single ion doping, two and multiple doping was carried out in this thesis. The property of LiFe_(0.025)Cu_(0.025)Mn_(1.95)O_4 cathode material is the best. The first discharge specific capacity is 101.89 mAh·g~(-1), and the discharge specific capacity is 97.10 mAh·g~(-1) after 50th cycle. The discharge specific capacity retention reaches 95.3%.
引文
[1] J. R. Dahn, U. Von Sacken, M. W. Juskow. Rechargeable LiNiO_2/carbon cells. J. Electrochem. Soc, 1991,138: 2207-2211P
    [2] D. Guyonard, J. M. Tarascon. Rechargeable Li_+(1+x)Mn_2O_4 cells with a new electrolyte composition. J. Electrochem. Soc, 1993,140: 3071-3081P
    [3] J. M. Tarascon, W. R. Mckinnon, F. Coowar, et al. Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn_2O_4.J. Electrochem. Soc, 1994,141: 1421-1431P
    [4] A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J.Electrochem. Soc, 1997, 144: 1188-1194P
    [5] A. Yamada, S. C. Chung, K. Hinokuma. Optimized LiFePO_4 for lithium battery cathodes. J. Electrochem. Soc, 2001,148: A224-A229P
    [6] C. Cartier, A. Tranchant, M. Verdaguer, et al. X-ray diffraction and X-ray absorption studies of the structural modifications induced by electrochemical lithium intercalation into V_2O_5. Electrochim. Acta, 1990, 35:889-898P
    [7] R. Koksbang, J. Barker, H. Shi, et al. Cathode materials for lithium rocking chair batteries. Solid State Ionics, 1996, 84: 1-21P
    [8] T. Nohma, H. Kurokawa, M. Uehara, et al. Electrochemical characteristics of LiNiO_2 and LiCoO_2 as a positive material for lithium secondary batteries. J. Power Sources, 1995, 54: 522-524P
    [9] Y. Nishi. Lithium ion secondary batteries: past 10 years and the future. J.Power Sources, 2001, 100: 101-106P
    [10] J. M. Tarascon, M. Armand. Issues and challenges facing rechargeable lithium batteries. Nature, 2001,144: 359-367P
    [11] M.S.Whittingham.Insertion electrodes as SMART materials: the first 25 years and future promises.Solid State Ionics,2000,134:169-178P
    [12] T.Fang,L.Y.Hsiao,J.G.Duh,et al.A novel composite negative electrode consist of multiphase Sn compounds and mesophase graphite powders for lithium ion batteries.J.Power Sources,2006,160:536-541P
    [13] F.Nobili,S.Dsoke,T.Mecozzi,et al.Metal-oxidized graphite composite electrodes for lithium-ion batteries.Electrochim.Acta,2005,51: 536-544P
    [14] S.C.Nam,C.H.Paik,W.I.Cho,et al.Electrochemical characterization of various tin-based oxides as negative electrodes for rechargeable lithium batteries.J.Power Sources,1999,84:24-31P
    [15] 徐仲榆,郑洪河.锂离子蓄电池碳负极/电解液的相容性研究进展Ⅰ碳电极界面化学与碳负极/电解液的相容性.电源技术,2000(3):171-177页
    [16] 庄全超,刘文儿,武山,等.锂及锂离子蓄电池有机溶剂研究进展.化学研究与应用,2003,15:25-30页
    [17] B.A.Johnson,R.E.White.Characterization of commercially available lithium-ion batteries.J.Power Sources,1998,70: 48-54P
    [18] 徐艳辉.锂离子电池正极材料电化学.稀有金属材料与工程,2003,32(11):875-879页
    [19] 刘景,温兆银,吴梅梅,等.锂离子电池正极材料的研究进展.无机材料学报,2002,17(1):19-20页
    [20] 伊廷锋,胡信国,高昆.锂离子电池正极材料固体核磁共振研究进展.电源技术,2005,29(12):845-848页
    [21] T.Nakamura,A.Kajiyama.Synthesis of LiCoO_2 particles with uniform size distribution using hydrothermally precipitated CO_3O_4 fine particles.Solid State Ionics,1999,123(1-4): 95-101P
    [22] M.Carewska,S.Scaccia,C.Fausto,et al.Electrical conductivity and~(6,7) Li NMR studies of Li_(1+y)CoO_2.Solid State Ionics,1997,93(3-4):227-237P
    [23] 张凤敏,李宁,黎德育,等.锂离子电池正极材料研究现状.电池,2003,33(6):392-394页
    [24] A.Hajime,O.Shigeto,S.Yoji,et al.Reversibility of LiNiO_2 cathode.Solid State Ionics,1997.95(3-4): 275-282P
    [25] H.M.Wu,J.P.Tu,X.T.Chen,et al.Synthesis and characterization of abundant Ni-doped LiNi_2Mn_(2-x)O_4 (x=0.1-0.5) powders by spray-drying method.Electrochim.Acta,2006,51 (20): 4148-4152P
    [26] Y.S.Lee,Y.K.Sun,K.S.Nahm.Synthesis and characterization of LiNiO_2 cathode material prepared by an adiphic acid-asisted sol-gel method for lithium secondary batteries.Solid State Ionics,1999,118(1-2):159-168P
    [27] J.Molenda,P.Wilk,J.Marzec.Transport poperties of the LiNi_(1-y)Co_yO_2 system.Solid State Ionics,1999,119(1-4):19-22P
    [28] 吴宇平,万春荣,姜长印,等.锂离子二次电池.北京:化学工业出版社,2002:173-177页
    [29] 任俊霞,阎杰,王小建,等.锂离子电池正极材料LiFePO_4的研究进展.电池,2004,34(1):53-55页
    [30] S.Franger,C.Benoit,C.Bourbon,et al.Chemistry and electrochemistry of composite LiFePO_4 materials for secondary lithium batteries.J.Physics and Chemistry of Solids,2006,67(5-6): 1338-1342P
    [31] 吕正中,周震涛.LiFePO_4/C复合正极材料的结构与性能.电池,2003,33(5):269-271页
    [32] H.Masashi,K.Keiichi,A.Yasuo,et al.Synthesis of LiFePO_4 cathode material by microwave processing.J.Power Sources,2003(119-121): 258-261P
    [33] 倪江锋,苏光耀,周恒辉,等.锂离子电池正极材料LiMPO_4的研究进展.化学进展,2004,16(4):554-560页
    [34] C.Bellitto,M.G.Dimarco,W.R.Branford,et al.Cation distribution in Ga-doped Li_(1.02)Mn_2O_4.Solid State Ionics,2001,140(1-2):77-81P
    [35] 吴川,吴锋,任旭梅,等.尖晶石LiMn2O_4的容量衰减及掺杂改性研究.高技术通讯,2000,11:98-101页
    [36] H.J.Dong,M.O.Seung.Electrolyte effects on spinel dissolution and cathodic capacity losses in 4V Li/Li_xMn_2O_4 rechargeable cells.J.Electrochem.Soc,1997,144: 3342-3348P
    [37] Takayuki Aoshima,Kenji Okahara,et al.Mechanisms of manganese spinels dissolution and capacity fade at high temperature.J.Power Sources.2001.97-98: 377-380P
    [38] Y.Xia,Y.zhou,M.Yoshio.Studies on Li-Mn-O spinel system (obtained from melt-impregnation method) as a cathode for 4V lithium batteries Part Ⅳ: High and low temperature performance of LiMn_2O_4.J.Power Sources,1997,66:129-133P
    [39] M.M.Thackery.Y.Shao-Hom,A.J.Kahaian,et al.Structural fatigue in spinel electrodes in high voltage (4V) Li/Li_xMn_2O_4 cells.Electrochem.Solid State Lett,1998,1:7-9P
    [40] D.Guyomard,J.M.Tarascon.High voltage stable liquid electrolytes Li_(1+x)Mn_2O_4/carbon rocking-chair lithium batteries.J.Power Sources,1995,54: 92-98P
    [41] H.Huang,C.A.Vincent,P.G Bruce.Correlating capacity loss of stoichiometric and nonstoichiometric lithium manganese oxide spinel electrodes with their structural integrity.J.Electrochem.Soc,1999,146(10): 3649-3654P
    [42] S.S.Zhang,K.Xi,T.R.Jow.Understanding formation of solid electrolyte interface film on LiMn_2O_4 electrode.J.Electrochem.Soc.2002,149(12):A1521-A1526P
    [43] 陈彦彬,刘国庆.高温下LiMn_2O_4的容量衰减及对策.电池,2001,31(4):198-200页
    [44] 康慨,戴受惠,万玉华.固相配位化学反应法合成LiMn_2O_4的研究.功能材料,2000,31(3):283-286页
    [45] Toshimi Takada,Hiroshi Hayakawa,Hirotoshi Enoki,et al.Structure and electrochemical characterization of Li_(1+x)Mn_(2-x)O_4 for rechargeable lithium batteries.J.Power sources,1999,81-82:504-505P
    [46] 李琪,乔庆东.Li_(1+x)Mn_2O_4的溶胶凝胶法合成及其电化学性能.应用化学,2003,20(12):1171-1175页
    [47] 郑子山,唐子龙,张中太,等.锂离子电池正极材料Li_(1+x)Mn_2O_4的合成及性能研究.无机材料学报,2001,16(6):1182-1188页
    [48] 黄吉儿,周盈科,中承民,等.溶胶凝胶制备纳米级锂离子电池正极材料LiMn_(2-x)Cr_xO_4.兰州大学学报(自然科学版),2002,38(5):38-43页
    [49] I.J.Davidson,R.S.McMillan,et al.Electrochemisty and structure of Li_(1+x)Cr_yMn_(2+y)O_4 phases.J.Power sources,1999,81-82:406-411P
    [50] 傅强,陈彬,黄小文,等.锂离子电池正极材料LiMn_(2+x)Cr_xO_4电化学性能的研究.高等学校化学学报,2004,25(1):128-130页
    [51] Chuan Wu,Feng Wu,et al.X-ray diffraction X-ray photoelectron spectroscopy analysis of Cr-doped spinel LiMn_2O_4 for lithium ion batteries.Solid State Ionics,2002 ,152-153: 335-339P
    [52] 毕渭滨,高海春,孙长敏,等.LiMn_(2+x)M_xO_4(M=Cr,Al)尖晶石相阴极材料研究.盐湖研究,2001,9(3):38-42页
    [53] 郑子山,唐子龙,张中太,等.掺铬锂电池正极材料Li_(1+x)Cr_yMn_(2+y+x)O_4的合成及其结构性能的研究.硅酸盐学报,2001,29(6):554-558页
    [54] G.X.wang,D.H.Bradhurst,et al.Improvment of electrochemical properties of the spinel LiMn_2O_4 using a Cr dopant effect.Solid State Ionics,1999,120:95-101P
    [55] 佟健,胡国荣.掺钴复合材料LiMn_(2-x)Co_xO_4的制备与性能.电源技术,2003,27(1):20-23页
    [56] 雷钢铁,李朝晖,苏光耀,等.锂离子电池阴极材料LiCo_xMn_(2-x)O_4的研究.化学世界,2003(10):514-516页
    [57] ZhiXing Wang,Hiromasa kuta,Yoshiharu Uchimoto.Preparation and electrochemical properties of stoichiometric and nonstcichimetric LiCo_xMn_(2-x)O_(4-δ).J.Eletrochem.Soc,2003,150(9):A1250-A1254P
    [58] A.D.Robertson,S.H.Lu,W.F.Howard.M~(3+) modified LiMn_2O_4 spinel intercalation cathodes,Al metal effects on morphology and electrochemical performance.J.Electrochem.Soc,1997,144(10):3500-3505P
    [59] A.de Kock,E.Ferg.R.J.Gummow.The effect of multivalent cation dopants on lithium manganese spinel cathodes.J.Power sources,1998,70: 247-252P
    [60] Jyh-Fu Lee,Yin-Wen Tsai,Raman Santhanam,et al.Local structure transformation of nano-sized Al-doped LiMn_2O_4 sintered at different temperatures.J.Power sources,2003,119-121:721-726P
    [61] 宫杰,杨景海,王春忠,等.Al掺杂对尖晶石型Li[Mn(Al)]_2O_4结构的影响.高等学校化学学报,2002,23(12):2322-2324页
    [62] P.Strobel,M.Anne,Y Chabre,et al.Characteristics of the 4V plateau in LiMn_2[O_(4-x)F_x] studied by bin situ synchrotron X-ray diffraction.J.Power sources,1999,81-82: 458-462P
    [63] 唐致远,冯季军,徐国祥.尖晶石LiMn_2O_4的多元掺杂改性研究.化学学报,2003,61(8):1316-1318页
    [64] 刘兴泉,钟辉,唐毅,等.锂离子蓄电池正极材料LiMn_(2-x-y-z)Tl_xAl_yM_zO_4(M=Co、Cr、Ni)的合成及电化学性能研究.无机化学学报,2003,19(5):467-472页
    [65] Masaki Yoshio.Yongyao Xia,Kumada Naoki,et al.Storage and cycling performance of Cr-modified spinel at elevated temperatures.J.Power sources, 2001,101:79-85P
    [66] 陈召勇,刘兴泉,贺益,等.高容量的Li_(1.1)Mn_2O_(3.95)F_(0.05)锂离子二次电池正极材料.化学学报,2001,59(9):1380-1383页
    [67] 李文,苏光耀,李朝晖,等.LiCo_xNi_(0.5-x)Mn_(1.5)O_(3.95)F_(0.05):5V锂离子电池正极材料.电池,2004,34(1):35-37页
    [68] 夏君磊,赵世玺,刘韩星,等.S-Co复合掺杂LiMn_2O_4的合成与性能.无机材料学报,2003,18(4):942-946页
    [69] 杨军,解晶莹,王久林.化学电源测试原理与技术.北京:化学工业出版社,2006:45-46页
    [70] 田昭武.电化学研究方法.北京:科学出版社,1984:108-169页
    [71] M.W.Verbrugge,B.J.Koch Modeling lithium intercalation of single-fiber carbon microelectrodes,J Electrochem Soc,1996,143(2)600P
    [72] 徐保伯,刘务华.锂离子电池的制造及其市场.电池,2002,32(4):242-244页
    [73] 罗穗莲,李伟善,刘煦,等.过量锂尖晶石锂锰氧化物的结构与电化学行为.中国锰业,2001,19(4):11-14页
    [74] 卢世刚,孙玉成,刘人敏,等.正尖晶石LiMn_2O_4电化学性能研究.电化学,2000,6(4):442-449页
    [75] G.G.Amatucci,Pereira,N.T.Zheng,et al.Failure mechanism and improvement of the elevated temperature cycling of LiMn_2O_4 compounds through the use of the LiAl_xMn_(2-x)O_(4-z)F_z solid solution.J.Electrochem.Soc.,2001,148(2):A171-A182P
    [76] 郑子山,唐子龙,张中太,等.铝锂混合掺杂尖晶石相Li_(1+x)Al_yMn_(2-y)O_4材料结构性能的研究.电化学,2001,7(4):433-438页
    [77] Y Gao,.J.R.Dahn.The high temperature phase diagram of Li_(1+x)Mn_(2-x)O_4 and its implications.J.Electrochem.Soc,1996,143(6):1783-1788P
    [78] D.H.Jang,Y.J.Shin,et al.Dissolution of spinel oxides and capacity losses in 4V Li/Li_xMn_2O_4 cell.J.Electrochem.Soc,1996,143: 2204-2211P
    [79] Wen-Jia Zhou,Shu-Juan Bao,Ben-Lin He,et al.Synthesis and electrochemical properties of LiAl_(0.05)Mn_(1.95)O_4 by the ultrasonic assisted rheological phase method.Electrochim.Acta,2006,51:4701-4708P
    [80] 唐致远,卢星河,张娜.阴阳离子复合掺杂对尖晶石型正极材料的影响.物理化学学报,2005,21(8):934-938页
    [81] Chuanyuan Wan.Yanna Nuli,Jihua Zhuang,et al.Synthesis of spinel LiMn_2O_4 using direct solid state reaction.Materials Letters,2002,56:357-363P
    [82] W.Liu,K.Kowal,G.C.Farrington.Mechanism of the electrochemical insertion of lithium into LiMn_2O_4 spinel.J.Electrochem.Soc,1998,145(2): 459-465P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700