用户名: 密码: 验证码:
钇稳定氧化锆—硅酸镧复合氧离子导体的制备、导电性及相关机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米复合材料集两种或两种以上材料组元的纳米特性和复合特性于一体,从而在性能上表现出优于或完全不同于单个组元的特性。纳米复合后,两相界面占体积比例高,且由于结构的差异在界面处产生高密度缺陷。而界面缺陷区中,空间电荷的重排以及晶格失配引起的应变势场对材料综合导电性的变化产生重要作用。因此,纳米复合技术成为功能材料领域研究发展的重要手段,该技术为改善氧离子电解质材料的离子导电性提供了新思路。
     论文结合8mol%氧化钇稳定氧化锆(YSZ)和磷灰石型硅酸镧(La10-xSi6O27-δ,LSO)的结构和物化特性,通过不同的实验方法以及两相含量的变化研究复合电解质导电性的变化并讨论相关机理。在交流阻抗技术的理论基础上,利用Zview软件模拟晶粒和晶界电阻电容值变化时材料总电导的变化规律。另外,还重点讨论了晶粒纳米化对材料导电性的影响、纳米尺寸下晶界特性的转变及其产生的效应。工作主要涵盖以下内容:
     (1)利用共沉淀法合成YSZ和La10-xSi6O27-δ,对比并讨论结构变化对材料导电性的影响。着重讨论立方和四方YSZ结构转变方式以及转变前后载流子浓度及导电通道的变化。分析了La含量变化时磷灰石结构的变化及其如何影响氧离子通道,进而影响材料导电性等问题。
     (2)通过固相混合的方式将YSZ和LSO纳米粉体复合制备成两相共存的氧离子复合电解质。通过LSO含量的变化,结合空间电荷理论、界面应变场理论和渗流理论讨论两相复合后材料的导电机理。分析认为对于高缺陷浓度的氧离子导体,复合界面区的空间电荷层非常窄,对材料综合导电性的影响可忽略。而界面应变区内的应变和位错群则是氧离子迁移的关键通道并主导界面导电,结合渗流理论说明导电通道的连通性对材料导电性的影响。
     (3)利用改性共沉淀法制备了YSZ-15wt%LSO纳米复合氧离子导体。主要分析讨论沉淀体表面进行改性处理的机制以及产生的效应。聚乙二醇的大分子结构通过空间位阻效应将沉淀粒子分隔防止团聚,而柠檬酸则是通过静电排斥作用使颗粒分散。另外,纳米颗粒的高活性和高表面能为陶瓷烧结提高了驱动力,体积扩散是材料收缩致密化的关键因素。
     (4)制备并研究了LSO基体中含有10wt%YSZ时材料导电性的变化。结合X射线衍射结果和相关界面导电理论,分析了复合引起的晶格畸变以及界面区缺陷浓度对导电性的影响通过阻抗谱分析,讨论了不同温度及测试频率下晶粒和晶界导电方式的转变。认为在LSO-10wt%YSZ复合电解质中,晶界导电性质的转变和提高对材料整体导电性变化产生决定性作用。
Nano-composite materials combine the merits of nano-technology and composite technique, and they always show a unique performance that is better than the ones of the components. The properties of nano-composite materials are changed for the higher volume ratio of interfaces and a large amount of interface defects. The carrier redistributed in space charge region and lattice misfit produced at interfaces, and these changes play a significant role in the enhancement of conductivities. Therefore, the nano-composite method has been being applied in researching and development of functional materials, and supplied a novel way to improve the conductivities of oxygen-ion conductors.
     8 mol% yttria stabilized zirconia (YSZ) and lanthanum silicates (La10-xSi6O27-δ, LSO) have been synthesized by various methods, the effect of the second phase and the conductive mechanism have been discussed. Based on the foundation of alternate current impedance technology, the relationship, capacitance of grain or grain boundary and total conductivity, has been simulated by Zview software. Besides, the effects of grains and grain boundaries on conductivities have been discussed when the grain size is less than 100 nm. The work includes the following aspects.
     (1) YSZ and La10-xSi6O27-δhave been synthesized by coprecipitation method, and the structural effect on conduction has been invetigated, too. The concentration of charge carrier and the mechanism of ionic transportation change with the structure change from tetragonal to cubic types in YSZ materials were studied. The effect of La content in the apatite La10-xSi6O27-δon the channel of oxygen migration and material conductivity were approached.
     (2) Composites have been prepared with nano-powders of YSZ and LSO, and the conductive mechanism has been discussed by combining space charge theory, interface strain field and percolation theory. In spite of heavily doped electrolytes, the width of space charge region is very narrow, so the space charge effect could be neglected. However, the misfit dislocations at interfaces are the key factors for the ionic migration. Percolation theory implies that the connectivity of the higher conductive interface determines the total conductivities of composites.
     (3) YSZ-15wt%LSO nanocomposite has been synthesized by a modified coprecipitate method. The mechanism of surface modification and the related effect have been discussed. As the modified agents, polyethylene glycol dispersed the precipitated particles by space steric effect, but citric acid worked by electrostatic repulsion. The sintering driving force originates from the higher activity and surface energy of nanopowders, and the volume diffusion is the key for the densification of ceramics.
     (4) The conductivity of LSO containing 10wt%YSZ has been studied. The conductivity of the composite depends on the strain and defects formed at the interfaces. Combining the XRD analysis and interfacial conductive theory, the conductive mechanism has been discussed. The conduction models changed between grain effect and grain-boundary effect at various temperatures and measurement frequencies were investigated by analyzing the AC impedance spectra. It concluded that the interfacial conductivity determines the total conductive property of the compiste electrolyte.
引文
[1]Brett D J L, Atkinson A, Brandon N P, et al. Intermediate temperature solid oxide fuel cells. Chemical Society Reviews,2008,37(8):1568-1578.
    [2]Singhal S C, Kendall K. High-Temperature Solid Oxide Fuel Cells:Fundamentals, Design and Applications, Elsevier Science, Oxford, UK,2003.
    [3]黄镇江,刘凤君.燃料电池及其应用.北京:电子工业出版社,2005.7-9.
    [4]Winter M, Brodd R J. What Are Batteries, Fuel Cells, and Supercapacitors? Chemical Reviews,2004,104 (10):4245-4270.
    [5]詹姆斯·拉米尼,安德鲁·迪克斯.燃料电池系统-原理·设计·应用.北京:科学出版社,2006.136-190.
    [6]毛宗强.燃料电池.北京:化学工业出版社,2005.276.
    [7]王常珍.固体电解质和化学传感器.北京:冶金工业出版社,2000.73-74.
    [8]Badwal S P S. Zirconia-based solid electrolytes:microstructure, stability and ionic conductivity. Solid State Ionics.1992,52(1-3):23-32.
    [9]Jiang N X, Wachsman E D, Jung S H. A higher conductivity Bi2O3-based electrolyte. Solid State Ionics,2002,150(3-4):347-353.
    [10]Dikmena S, Aslanbay H, Dikmen E, et al. Hydrothermal preparation and electrochemical properties of Gd3+and Bi3+, Sm3+, La3+, and Nd3+ co-doped ceria-based electrolytes for intermediate temperature-solid oxide fuel cell. Journal of Power Sources,2010 195(9):2488-2495.
    [11]Ishihara T, Matsuda H, Takita Y. Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor. Journal of the American Chemical Society,1994,116(9): 3801-3803.
    [12]Li B, Liu W, Pan W. Synthesis and electrical properties of apatite-type La1oSi6O27. Journal of Power Sources,2010,195(8):2196-2201.
    [13]Nakayama S, Sakamoto M, Higuchi M, et al. Oxide ionic conductivity of apatite type Nd9·33(SiO4)6O2 single crystal. Journal of the European Ceramic Society, 1999,19(4):507-510.
    [14]Nakayama S, Higuchi Y, Kondo Y, et al. Effects of cation- or oxide ion-defect on conductivities of apatite-type La-Ge-O system ceramics. Solid State Ionics,2004, 170(3-4):219-223.
    [15]Philippe L, Francois G, Odile B, et al. Designing fast oxide-ion conductors based on La2Mo2O9. Nature,2000,404(6780):856-858.
    [16]Maiti H S, Subbarao E C. Electrical Conduction in CaO-Doped Thoria Electrolytes. Journal of The Electrochemical Society,1976,123(11):1713-1718.
    [17]Mehrotra A K, Maiti H S, Subbarao E C. Electrical conductivity of pure and CaO-doped ThO2 ceramics. Materials Research Bulletin,1973,8(8):899-907.
    [18]Pirzada M, Grimes R W, Minervini L, et al. Oxygen migration in A2B2O7 pyrochlores. Solid State Ionics,2001,140(3-4):201-208.
    [19]Kesapragada S V, Bhaduri S B, Bhaduri S, et al. Densification of LSGM electrolytes using activated microwave sintering. Journal of Power Sources,2003, 124 (2):499-504.
    [20]Kwon O H, Choi G M. Electrical conductivity of thick film YSZ. Solid State Ionics,2006,177(35-36):3057-3062.
    [21]Wang Z, Chen Z Q, Zhua J, et al. Evidence of defect associates in yttrium-stabilized zirconia. Radiation Physics and Chemistry,2000,58(5-6): 697-701.
    [22]Badwal S P S. Grain boundary resistivity in zirconia-based materials:effect of sintering temperatures and impurities. Solid State Ionics,1995,76 (1-2):67-80.
    [23]Arachi Y, Sakai H, Yamamoto O, et al. Electrical conductivity of the ZrO2-Ln2O3 (Ln=lanthanides) system. Solid State Ionics,1999,121(1-4):133-139.
    [24]Kaiser A, Feighery A J, Fagg D P, Irvin J T S. Electrical Characterization of Highly Titania Doped YSZ. Ionics,1998,4 (3-4):215-219.
    [25]Raj E S, Atkinson A, Kilner J A. Oxygen diffusion studies on (Y2O3)2(Sc2O3)9(ZrO2)89. Solid State Ionics,2009,180 (14-16):952-955.
    [26]Kan Y M, Li S L, Wang P L, et al. Preparation and conductivity of Yb2O3-Y2O3 and Gd2O3-Y2O3 co-doped zirconia ceramics. Solid State Ionics,2008,179 (27-32):1531-1534.
    [27]Chen I W, Wang X H. Sintering Dense Nanocrystalline Ceramics without Final-stage Grain Growth. Nature,2000,404(6774):168-171.
    [28]Kosacki I T, Rouleau C M, Becher P F, et al. Nanoscale effects on the ionic conductivity in highly textured YSZ thin films. Solid State Ionics,2005,176 (13-14):1319-1326.
    [29]Hesabi Z R, Mehdi M, Ebadzadeh T. Enhanced electrical conductivity of ultrafine-grained 8Y2O3 stabilized ZrO2 produced by two-step sintering technique. Journal of Alloys and Compounds,2010,494 (1-2):362-365.
    [30]Sillassen M, Eklund P, Pryds N, et al. Low-Temperature Superionic Conductivity in Strained Yttria-Stabilized Zirconia. Advanced Functional Materials,2010,20(13):2071-2076.
    [31]Malavasi L, C A J Fisher, M S Islam. Oxide-ion and proton conducting electrolyte materials for clean energy applications:structural and mechanistic features. Chemical Society Reviews,2010,39(11):4370-4387.
    [32]Kendrick E, M S Islam, P R Slater. Developing apatites for solid oxide fuel cells: insight into structural, transport and doping properties. Journal of Materials Chemistry,2007,17(30):3104-3111.
    [33]Leon-Reina L, Losilla E R, Martinez-Lara M, et al. Interstitial oxygen conduction in lanthanum oxy-apatite electrolytes. Journal of Materials Chemistry,2004,14(7):1142-1149.
    [34]Nakayama S, Aono H, Sadaoka Y. Ionic Conductivity of Ln10(SiO4)6O3 (Ln= La, Nd, Sm, Gd, and Dy). Chemistry Letters,1995,26(45):431-432.
    [35]Nakayama S, Kageyama T, Aono H. Ionic conductivity of lanthanoid silicates, Ln10(SiO4)6O3(Ln= La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb). Journal of Materials Chemistry,1995,5(11):1801-1805.
    [36]Nakayama S, Sakamoto M. Electrical properties of new type high oxide ionic conductor RE10Si6O27 (RE= La, Pr, Nd, Sm, Gd, Dy). Journal of the European Ceramic Society,1998,18(10):1413-1418.
    [37]Isabe S, Porras-Vazquez J M, Losilla E R, et al. Colloidal Processing and Characterization of Aluminum-Doped Lanthanum Oxyapatite, La10AlSi5O26.5. Journal of The American Ceramic Society,2011,94(1):224-230.
    [38]Adriennt V, Beaudet S S, Francois G. Elaboration and ionic conduction of apatite-type lanthanum silicates doped with Ba, La10-xBax(SiO4)6O3-x/2 with x=0.25-2. Journal of the European Ceramic Society,2007,27(2-3):1187-1192.
    [39]Shaula A L, Kharton V V, Marques F M B. Ionic and electronic conductivities, stability and thermal expansion of La10-x(Si,Al)6O26-d solid electrolytes. Solid State Ionics,2006,177(19-25):1725-1728.
    [40]Marques F M B, Kharton V V. Development of Oxygen Ion Conductors:One Relevant Tendency. Ionics,2005,11 (5):321-326.
    [41]Higuchi M, Masubuchi Y, Nakayama S. Single crystal growth and oxide ion conductivity of apatite-type rare-earth silicates. Solid State Ionics,2004,174 (1-4):73-80.
    [42]Jennifer L M R, Ludwig J G. Microstructures and electrical conductivity of nanocrystalline ceria-based thin films. Solid State Ionics,2006,177(26-32): 2513-2518.
    [43]Liang C C. Conduction Characteristics of the Lithium Iodide-Aluminum Oxide Solid Electrolytes. Journal of The Electrochemical Society,1973,120(10): 1289-1292.
    [44]Horita T, Sakai N, Yokokawa H, et al. Ceria-Zirconia Composite Electrolyte for Solid Oxide Fuel Cells. Journal of Electroceramics,1997,1(2):155-164.
    [45]Tompsett G A, Sammes N M, Yamamoto O. Ceria-Yttria-Stabilized Zirconia Composite Ceramic Systems for Applications as Low-Temperature Electrolytes. Journal of The American Ceramic Society,1997,80(12):3181-3186.
    [46]Mishima Y, Mitsuyasu H, Ohtaki M, et al. Solid Oxide Fuel Cell with Composite Electrolyte Consisting of Samaria-Doped Ceria and Yttria-Stabilized Zirconia. Journal of the Electrochemical Society,1998,145(3):1004-1007.
    [47]Luo J B, Stevens R J R. Gadolinia doped ceria/yttria stabilised zirconia electrolytes for solid oxide fuel cell applications. Journal of Materials Science, 2004,39(1):235-240.
    [48]Azad S. M, Wang O A, Saraf C M, et al. Nanoscale effects on ion conductance of layer-by-layer structures of gadolinia-doped ceria and zirconia. Applied Physics Letters,2005,86(13):131906-131908.
    [49]Wang C M, Azad S, Shutthanandan V, et al. Microstructure of ZrO2-CeO2 hetero-multi-layer films grown on YSZ substrate. Acta Materialia,2005,53(7): 1921-1929.
    [50]Wang C M, Engelhard M H, Azad S, et al. Distribution of oxygen vacancies and gadolinium dopants in ZrO2-CeO2 multi-layer films grown on [alpha]-Al2O3. Solid State Ionics,2006,177(15-16):1299-1306.
    [51]Wang Y G, An L N, Saraf L V, et al. Microstructure and ionic conductivity of alternating-multilayer structured Gd-doped ceria and zirconia thin films. Journal of Materials Science,2009,44(8):2021-2026.
    [52]Sanna S, Esposito V, Tebano A, et al. Enhancement of Ionic Conductivity in Sm-Doped Ceria/Yttria-Stabilized Zirconia Heteroepitaxial Structures. Small, 2010,6(17):1863-1867.
    [53]Xu D, Liu X M, Wang D J, et al. Fabrication and characterization of SDC-LSGM composite electrolytes material in IT-SOFCs. Journal of Alloys and Compounds,2007,429(1-2):292-295.
    [54]Jo S H, Muralidharan P, Kim D K. Electrical conductivity studies on the LSGM-CGO composite electrolytes. Journal of Alloys and Compounds,2010, 491(1-2):416-419.
    [55]Li S, Li Z C, Bergman B. Lanthanum gallate and ceria composite as electrolyte for solid oxide fuel cells. Journal of Alloys and Compounds,2010,492(1-2): 392-395.
    [56]Korte C, Peters A, Janek J, et al. Ionic conductivity and activation energy for oxygen ion transport in superlattices-the semicoherent multilayer system YSZ (ZrO2+9.5 mol% Y2O3)/Y2O3. Physical Chemistry Chemical Physics,2008, 10(31):4623-4635.
    [57]Korte C, Schichtel N, Hesse D, et al. Influence of interface structure on mass transport in phase boundaries between different ionic materials. Monatshefte fur Chemie-Chemical Monthly,2009,140(9):1069-1080.
    [58]Peters A, Korte C, Hesse D, et al. Ionic conductivity and activation energy for oxygen ion transport in superlattices-The multilayer system CSZ (ZrO2+CaO)/Al2O3. Solid State Ionics,2007,178(1-2):67-76.
    [59]Schichtel N, Korte C, Hesse D, et al. Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films-theoretical considerations and experimental studies. Physical Chemistry Chemical Physics, 2009,11(17):3043-3048.
    [60]Garcia-Barriocanal J, Rivera-Calzada A, Varela M, et al. Colossal Ionic Conductivity at Interfaces of Epitaxial ZrO2:Y2O3/SrTiO3 Heterostructures. Science,2008,321(5889):676-680.
    [61]Guo X. Comment on Colossal Ionic Conductivity at Interfaces of Epitaxial ZrO2-Y2O3-SrTiO3 Heterostructures. Science,2009,324(5926):465a.
    [62]Garcia-Barriocanal J, Rivera-Calzada A, Varela M, et al. Response to Comment on Colossal Ionic Conductivity at Interfaces of Epitaxial ZrO2-Y2O3-SrTiO3 Heterostructures. Science,2009,324(5926):465b.
    [63]Pennycook T J, Beck M J, Kalman V, et al. Origin of Colossal Ionic Conductivity in Oxide Multilayers:Interface Induced Sublattice Disorder. Physical Review Letters,2010,104(11):115901-4.
    [64]Rajalekshmi C, Sreekumar C, Amarakoon V R W. The electrical properties of microwave sintered gadolinia doped ceria-alumina nano-composite electrolyte. Journal of Power Sources,2011,196(4):1808-1817.
    [65]Rajalekshmi C, Amarakoon V R W, Giesche H. Alumina/cerium oxide nano-composite electrolyte for solid oxide fuel cell applications. Journal of the European Ceramic Society,2008,28(5):959-963.
    [66]Otsuka K, Kuwabara A, Nakamura A, et al. Dislocation-enhanced ionic conductivity of yttria-stabilized zirconia. Applied Physics Letters,2003,82(6): 877-879.
    [1]曹楚南,张鉴清.电化学阻抗谱导论.北京:科学出版社.2002.1-19.
    [2]Irvine J T S, Sinclair D C, West A R. Electroceramics:Characterization by Impedance Spectroscopy. Advanced Materials,1990,2(3):132-138.
    [3]Sillassen M, P Eklund, Pryds N, et al. Low-Temperature Superionic Conductivity in Strained Yttria-Stabilized Zirconia. Advanced Functional Materials,2010, 20(13):2071-2076.
    [4]Wang Y, An L, Saraf L V, et al. Microstructure and ionic conductivity of alternating-multilayer structured Gd-doped ceria and zirconia thin films. Journal of Materials Science,2009,44(8):2021-2026.
    [5]Sanna S, Esposito V, Tebano A, et al. Enhancement of Ionic Conductivity in Sm-Doped Ceria/Yttria-Stabilized Zirconia Heteroepitaxial Structures. Small, 2010,6(17):1863-1867.
    [6]Tuller H L, Litzelman S J, Jung W. Micro-ionics:next generation power sources. Physical Chemistry Chemical Physics,2009,11(17):3023-3034.
    [7]Fabbri E, Pergolesi D, Traversa E. Ionic conductivity in oxide heterostructures:the role of interfaces. Science and Technology of Advanced Materials,2010,11(5): 054503.
    [8]Zheng H, Mathe M. Enhanced conductivity and stability of composite membranes based on poly (2,5-benzimidazole) and zirconium oxide nanoparticles for fuel cells. Journal of Power Sources,2011,196(3):894-898.
    [9]Souza F. Sol-gel nonhydrolytic synthesis of a hybrid organic-inorganic electrolyte for application in lithium-ion devices. Solid State Ionics,2004,166(1-2):83-88.
    [10]Nugent J L, Moganty S S, Archer L A. Nanoscale Organic Hybrid Electrolytes. Advanced Materials,2010,22(33):3677-3680.
    [11]Makiura R, Yonemura T, Yamada T, et al. Size-controlled stabilization of the superionic phase to room temperature in polymer-coated AgI nanoparticles. Nature Materials,2009,8(6):476-480.
    [12]Korte C, Schichtel N, Hesse D, et al. Influence of interface structure on mass transport in phase boundaries between different ionic materials. Monatshefte fur Chemie-Chemical Monthly,2009,140(9):1069-1080.
    [13]Schichtel N, Korte C, Hesse D, et al. Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films—theoretical considerations and experimental studies. Physical Chemistry Chemical Physics, 2009,11(17):3043.
    [14]Korte C, Schichtel N, Hesse D, et al. Influence of interface structure on mass transport in phase boundaries between different ionic materials. Monatshefte fur Chemie-Chemical Monthly,2009,140(9):1069-1080.
    [15]Chen I W, Wang X H. Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature,2000,404(6774):168-171.
    [16]Cologna M, Prette A L G, Raj R. Flash-Sintering of Cubic Yttria-Stabilized Zirconia at 750℃ for Possible Use in SOFC Manufacturing. Journal of The American Ceramic Society,2011,94(2):316-319.
    [1]Arachi Y, Sakai H, Yamamoto O, et al. Electrical conductivity of the ZrO2-Ln2O3 (Ln=lanthanides) system. Solid State Ionics,1999,121(1-4):133-139.
    [2]Haering C, Roosen A, Schichl H, et al. Degradation of the electrical conductivity in stabilised zirconia system Part II:Scandia-stabilised zirconia. Solid State Ionics, 2005,176 (3-4):261-268.
    [3]Chen X J, Khor K A, Chan S H, et al. Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte. Materials Science and Engineering A,2002,335 (1-2):246-252.
    [4]Wang Q, Peng R, Xia C, et al. Characteristics of YSZ synthesized with a glycine-nitrate process. Ceramics International,2008,34(7):1773-1778.
    [5]Valefi M, Falamaki C, Ebadzadeh T. New Insights of the Glycine-Nitrate Process For the Synthesis of Nano-Crystalline 8YSZ. Journal of The American Ceramic Society,2007,90(7):2008-2014.
    [6]He T M, He Q, Wang N. Synthesis of nano-sized YSZ powders from glycine-nitrate process and optimization of their properties. Journal of Alloys and Compounds,2005,396 (1-2):309-315.
    [7]Tarancon A, Dezanneau G, Arbiol J, et al. Synthesis of nanocrystalline materials for SOFC applications by acrylamide polymerization. Journal of Power Sources, 2003,118(1):256-264.
    [8]Shaula A L, Kharton V V, Marques F M B. Ionic and electronic conductivities, stability and thermal expansion of La10-x(Si,Al)6O26±δ solid electrolytes. Solid State Ionics,2006,177(19-25):1725-1728.
    [9]Slater P R, Sansom J E H, Tolchard JR. Development of apatite-type oxide ion conductors. The Chemical Record,2004,4(6):373-384.
    [10]Leon-Reina L, Losilla E R, Martinez-Lara M, et al. Interstitial oxygen in oxygen-stoichiometric apatites. Journal of Materials Chemistry,2005,15(25): 2489-2498.
    [11]Kharlamova T, Pavlova S, Sadykov V, et al. Fe- and Al-doped apatite-type lanthanum silicates:Structure and property characterization. Solid State Ionics, 2009,180(11-13):796-799.
    [12]Santacruz I, Porras-Vazquez J M, Losilla E R. Colloidal Processing and Characterization of Aluminum-Doped Lanthanum Oxyapatite, La10AlSi5O26.5. Journal of The American Ceramic Society,2011,94(1):224-230.
    [13]Shackelford J F, Doremus R H. Ceramic and Glass Materials:Structure, Properties and Processing. US. Springer.2008.169-193.
    [14]Santoyo-Salazar J, Gonzalez G, Ascencio J A, et al. Novel yttria-stabilised zirconia-alumina tetragonal phase obtained by co-precipitation. Journal of Crystal Growth,2006,290 (1):307-312.
    [15]Katoa A, Inouea K, Katataea Y. Sintering behavior of yttria-stabilized zirconia (YSZ) powders prepared by homogeneous precipitation. Materials Research Bulletin,1987,22(9):1275-1281.
    [16]李廷盛,尹其光.超声化学.北京:科学出版社.1995.32-40.
    [17]Higuchi M, Masubuchi Y, Nakayama S, et al. Single crystal growth and oxide ion conductivity of apatite-type rare-earth silicates. Solid State Ionics,2004, 174(1-4):73-80.
    [18]Kendrick E, Islam M S, Slater P R. Developing Apatites for Solid Oxide Fuel Cells:Insight into Structural, Transport and Doping Properties. Journal of Materials Chemistry,2007,17(30):3104-3111.
    [1]南策文.非均质材料物理—显微结构-性能关联.北京:科学出版社.2005.3-10.
    [2]Garcia-Barriocanal J., A. Rivera-Calzada, M. Varela, et al. Colossal Ionic Conductivity at Interfaces of Epitaxial ZrO2:Y2O3/SrTiO3 Heterostructures. Science,2008,321(5889):676-680.
    [3]Reyren N, Thiel S, Caviglia A D, et al. Superconducting Interfaces Between Insulating Oxides. Science,2007,317(5842):1196-1199.
    [4]Azad S M, Wang O A, Saraf C M, et al. Nanoscale effects on ion conductance of layer-by-layer structures of gadolinia-doped ceria and zirconia. Applied Physics Letters,2005,86(13):131906-131908.
    [5]Wang C M, Azad S, Shutthanandan V, et al. Microstructure of ZrO2-CeO2 hetero-multi-layer films grown on YSZ substrate. Acta Materialia,2005,53(7): 1921-1929.
    [6]Wang C M. Engelhard H, Azad S, et al. Distribution of oxygen vacancies and gadolinium dopants in ZrO2-CeO2 multi-layer films grown on [alpha]-Al2O3. Solid State Ionics,2006,177(15-16):1299-1306.
    [7]Wang Y G, An L N, Saraf L V, et al. Microstructure and ionic conductivity of alternating-multilayer structured Gd-doped ceria and zirconia thin films. Journal of Materials Science,2009,44(8):2021-2026.
    [8]周海涛,张鸿,李志成.纳米复合La9.33Si6O26/Ce0.85Bi0.15O1.925氧离子导电体的制备及其导电性能.中南大学(自然科学版),2009,40(5):1265-1269.
    [9]张鸿,张哲,马国强,等Ce0.8Sm0.2O1.9基纳米复合材料的共沉淀合成与氧离子导电性.无机材料学报,2009,24(2):353-356.
    [10]Li S, Li Z C, Bergman B. Lanthanum gallate and ceria composite as electrolyte for solid oxide fuel cells. Journal of Alloys and Compounds,2010,492 (1-2): 392-395.
    [11]Xu D, Liu X M, Wang D J, et al. Fabrication and characterization of SDC-LSGM composite electrolytes material in IT-SOFCs. Journal of Alloys and Compounds,2007,429 (1-2):292-295.
    [12]Sanna S, Esposito V, Tebano A, et al. Enhancement of Ionic Conductivity in Sm-Doped Ceria/Yttria-Stabilized Zirconia Heteroepitaxial Structures. Small, 2010,6(17):1863-1867.
    [13]Schichtel N, Korte C, Hesse D, et al. On the influence of strain on ion transport: microstructure and ionic conductivity of nanoscale YSZ|Sc2O3 multilayers. Physical Chemistry Chemical Physics,2010,12(43):14596-14608.
    [14]Santiso J, Burriel M. Deposition and characterisation of epitaxial oxide thin films for SOFCs. Journal of Solid State Electrochemistry,2010.1-22. DOI:10.1007/s10008-010-1214-6.
    [15]Chockalingam R, Chockalingam S, Amarakoon V R W. The electrical properties of microwave sintered gadolinia doped ceria-alumina nano-composite electrolyte. Journal of Power Sources,2011,196(4):1808-1817.
    [16]Peters A, Korte C, Hesse D, et al. Ionic conductivity and activation energy for oxygen ion transport in superlattices- The multilayer system CSZ (ZrO2+CaO)/Al2O3. Solid State Ionics,2007,178(1-2):67-76.
    [17]Korte C, Peters A, Janek J, et al. Ionic conductivity and activation energy for oxygen ion transport in superlattices-the semicoherent multilayer system YSZ (ZrO2+9.5 mol% Y2O3)/Y2O3. Physical Chemistry Chemical Physics,2008, 10(31):4623.
    [18]Maier J. Ionic conduction in space charge regions. Progress in Solid State Chemistry,1995,23(3):171-263.
    [19]Kim S, Fleig J R, Maier J. Space charge conduction:Simple analytical solutions for ionic and mixed conductors and application to nanocrystalline ceria. Physical Chemistry Chemical Physics,2003,5(11):2268-2273.
    [20]Schichtel N, Korte C, Hesse D, et al. Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films-theoretical considerations and experimental studies. Physical Chemistry Chemical Physics, 2009,11(17):3043-3048.
    [21]Otsuka K, Kuwabara A, Nakamura A, et al. Dislocation-enhanced ionic conductivity of yttria-stabilized zirconia. Applied Physics Letters,2003,82(6): 877-879.
    [22]Sillassen M, Eklund P, Pryds N, et al. Low-Temperature Superionic Conductivity in Strained Yttria-Stabilized Zirconia. Advanced Functional Materials,2010,20(13):2071-2076.
    [23]Pennycook T J, Beck M J, Varga K, et al. Origin of Colossal Ionic Conductivity in Oxide Multilayers:Interface Induced Sublattice Disorder. Physical Review Letters,2010,104(11):115901-115904.
    [24]Fabbri E, Pergolesi D, Traversa E. Ionic conductivity in oxide heterostructures: the role of interfaces. Science and Technology of Advanced Materials,2010,11(5): 054503.
    [25]Liu C F, Zhang H, Zhang Z, et al. Fabrication and Characterization of composite YSZ-La9.33Si6O26 oxygen-ion conductor. Journal of central south university of technology,2011, Accepted.
    [26]刘超峰,张鸿,夏俊霄,等La9.33Si6O26基氧离子导电复合材料的制备与导电性.无机材料学报,2011,已接收.
    [27]Shante V K S, Kirkpatrick S. An introduction to percolation theory. Advances in Physics,1971,20(85):325-357.
    [28]Stauffer D, Aharony A. Introduction to percolation theory-2nd. London. Taylor&Francis.2003.89-113.
    [1]Bellino M G, Lamas D G, Walsoe de Reca N E. Enhanced Ionic Conductivity in Nanostructured, Heavily Doped Ceria Ceramics. Advanced Functional Materials, 2006,16(1):107-113.
    [2]Chen I W, Wang XH. Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature,2000,404(6774):168-171.
    [3]Tartaj J, Tartaj P. Two-Stage Sintering of Nanosize Pure Zirconia. Journal of The American Ceramic Society,2009,92:S103-S106.
    [4]Maglia F, Dapiaggi M, Tredici I, et al. Synthesis of Fully Dense Nanostabilized Undoped Tetragonal Zirconia. Journal of The American Ceramic Society,2010, 93(7):2092-2097.
    [5]Mazaheri M, Valefi M, Hesabi Z, et al. Two-step sintering of nanocrystalline 8Y2O3 stabilized ZrO2 synthesized by glycine nitrate process. Ceramics International,2009,35(1):13-20.
    [6]Song X, Lu J, Zhang T, et al. Two-Stage Master Sintering Curve Approach to Sintering Kinetics of Undoped and Al2O3-Doped 8 Mol% Yttria-Stabilized Cubic Zirconia Journal of The American Ceramic Society,2011,94(4):1053-1059.
    [7]Razavi H Z, Mazaheri M, Ebadzadeh T. Enhanced electrical conductivity of ultrafine-grained 8Y2O3 stabilized ZrO2 produced by two-step sintering technique. Journal of Alloys and Compounds,2010,494(1-2):362-365.
    [8]Ghosh S, Chokshi A H, Lee P, et al. A huge Effect of Weak dc Electrical Fields on Grain Growth in Zirconia. Journal of The American Ceramic Society,2009, 92(8):1856-1859.
    [9]Cologna M, Rashkova B, Raj R. Flash Sintering of Nanograin Zirconia in <5 s at 850℃. Journal of The American Ceramic Society,2010,93(11):3556-3559.
    [10]Yang D, Conrad H. Enhanced sintering rate of zirconia (3Y-TZP) by application of a small AC electric field. Scripta Materialia,2010,63(3):328-331.
    [11]Yang D, Raj R, Conrad H. Enhanced Sintering Rate of Zirconia (3Y-TZP) Through the Effect of a Weak dc Electric Field on Grain Growth. Journal of The American Ceramic Society,2010,93(10):2935-2937.
    [15]Cologna M, Prette A L G, Raj R. Flash-Sintering of Cubic Yttria-Stabilized Zirconia at 750℃ for Possible Use in SOFC Manufacturing. Journal of The American Ceramic Society,2011,94(2):316-319.
    [13]Kumagai T. Rapid Densification of Yttria-Stabilized Tetragonal Zirconia by Electric Current-Activated/Assisted Sintering Technique. Journal of The American Ceramic Society,2011,94(4):1215-1223.
    [14]Muccillo R, Kleitz M, Muccillo E N S. Flash grain welding in yttria stabilized zirconia. Journal of the European Ceramic Society,2011,31 (8):1517-1521.
    [15]Zhang H, Li Z C, Bergman B, et al. Investigation of La9.33Si6O26 Oxygen Ionic Conductor. Journal of Materials Sciences & Technology,2007,23(5):629-932.
    [16]Korte C, Schichtel N, Hesse D, et al. Influence of interface structure on mass transport in phase boundaries between different ionic materials. Monatshefte fur Chemie-Chemical Monthly,2009,140(9):1069-1080.
    [17]Tian C G., Liu J L, Cai J, et al. Direct synthesis of La9.33Si6O26 ultrafine powder via sol-gel self-combustion method. Journal of Alloys and Compounds,2008, 458(1-2),378-382.
    [18]Herring C. Effect of Change of Scale on Sintering Phenomena Journal of applied physics,1950,21(4):301-303.
    [1]Steele. B C H. Fuel-cell technology:Running on natural gas. Nature,1999,400 (6745):619-621.
    [2]Azad S, Marina O A, Wang C M, et al. Nanoscale effects on ion conductance of layer-by-layer structures of gadolinia-doped ceria and zirconia. Applied Physics Letters,2005,86(13):131906-131908.
    [3]Wang C M, Engelhard M H, Azad S, et al. Distribution of oxygen vacancies and gadolinium dopants in ZrO2-CeO2 multi-layer films grown on α-Al2O3. Solid State Ionics,2006,177(15-16):1299-1306.
    [4]Li S, Li Z C, Bergman B. Lanthanum gallate and ceria composite as electrolyte for solid oxide fuel cells. Journal of Alloys and Compounds,2010,492 (1-2): 392-395.
    [5]Xu D, Liu X M, Wang D J, et al. Fabrication and characterization of SDC-LSGM composite electrolytes material in IT-SOFCs. Journal of Alloys and Compounds, 2007,429 (1-2):292-295.
    [6]周海涛,张鸿,李志成.纳米复合La9.33Si6O26/Ce0.85Bi0.15O1.925氧离子导电体的制备及其导电性能.中南大学学报(自然科学版),2009,40(5):1265-1269.
    [7]张鸿,张哲,马国强,等Ce0.8Sm0.2O1.9基纳米复合材料的共沉淀合成与氧离子导电性.无机材料学报,2009,24(2):353-356.
    [8]Garcia-Barriocanal J, Rivera-Calzada A, Varela M, et al. Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures. Science, 2008,321 (5889):676-680.
    [9]Porras-Vazquez J M, Losilla E R, Leon-Reina L, et al. Microstructure and oxide ion conductivity in a dense La9.33(SiO4)6O2 oxy-apatite. Journal of the American Ceramic Society,2009,92(5):1062-1068.
    [10]田长安,刘俊亮,蔡俊,等.溶胶凝胶-自燃烧法合成La9.33Si6O26超细粉体.无机材料学报,2008,23(1):77-81.
    [11]Kharlamova T, Pavlova S, Sadykov V, et al. Low-temperature synthesis and characterization of apatite-type lanthanum silicates. Solid State Ionics,2008, 179(21-26):1018-1023.
    [12]Celerier S, Laberty C, Ansart F, et al. New chemical route based on sol-gel process for the synthesis of oxyapatite La9.33Si6O26.Ceramics International,2006, 32(3):271-276.
    [13]Arikawa H, Nishiguchi H, Ishihara T, et al. Oxide ion conductivity in Sr-doped La10Ge6O27 apatite oxide. Solid State Ionics,2000,136-137(2):31-37.
    [14]Mineshige A, Ohnishi Y, Sakamoto R, et al. Effect of cation doping on ionic and electronic properties for lanthanum silicate-based solid electrolytes. Solid State Ionics,2010, doi:10.1016/j.ssi.2010.09.059
    [15]王贵领,张密林,赵辉,等La9(SiO4)6-x(VO4)xO1.5+0.5x的合成及其导电性能的研究.无机材料学报,2006,21(5):1258-1261.
    [16]Chefi S, Madani A, Boussetta H, et al. Electrical properties of Al-doped oxyapatites at intermediate temperature. Journal of Power Sources,2008,177(2): 464-469.
    [17]Zhang H, Li Z C, Bergman B, et al. Investigation of La9.33Si6O26 oxygen ionic conductor.Journal of Materials Science and Technology,2007,23(5):629-932.
    [18]Hodge I M, Ingram M D, West A R. Impedance and modulus spectroscopy of polycrystalline solid electrolytes. Journal of Electroanalytical Chemistry,1976, 74(2):125-143.
    [19]Gerhardt R. Impedance and dielectric spectroscopy revisited:Distinguishing localized relaxation from long-range conductivity. Journal of Physics and Chemistry of Solids,1994,55(14):1491-1506.
    [20]Sillassen M, Eklund P, Pryds N, et al. Low-temperature superionic conductivity in strained yttria-stabilized zirconia. Advanced Functional Materials,2010,20 (19):2071-2076

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700