用户名: 密码: 验证码:
复杂环境下混凝土硫酸盐侵蚀微—宏观劣化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土硫酸盐侵蚀涉及到硫酸根离子在混凝土孔隙系统中传输、同时发生化学反应或侵蚀物质结晶、侵蚀产物对混凝土结构造成破坏(表现为开裂、剥落、强度损失等)的微-宏观复杂演变过程。野外实际观测表明,干湿循环作用下混凝土受硫酸盐侵蚀比连续浸泡下严重。但现有一些研究在进行干湿循环时经常采用升温加速干燥来创造干状态,一方面,升温加速干燥难以与实际相符,另一方面,提高温度会改变侵蚀产物的侵蚀机理。本文通过试验研究了干湿循环作用下混凝土受硫酸钠溶液侵蚀劣化机理,干状态选择空气中自然干燥、充分结晶,在此基础上考虑了荷载作用的影响,最后进行了硫酸钠溶液侵蚀与亚高温水淬循环、硫酸钠溶液侵蚀与碳化等复合环境作用的研究。
     试验研究采用宏微观相结合的方法,主要取得了以下成果:(1)通过DSC热分析技术及SEM、XRD等微观测试技术综合分析了侵蚀产物。干湿循环时湿状态下主要侵蚀产物为钙矾石,干状态下叠加Na2SO4晶体与Na2SO4 10H2O晶体侵蚀且以Na2SO4晶体居多。(2)用改进硫酸钡重量法(化学滴定法)测量了受侵蚀混凝土中硫酸根离子含量的分布规律,并考虑了W/C、侵蚀溶液浓度、荷载水平、亚高温水淬循环作用以及碳化作用等因素对硫酸根离子传输特性的影响。(3)宏观上主要测试了混凝土抗压强度、劈裂抗拉强度、抗折强度的劣化规律。混凝土受压破坏呈分层剥落状态;劈裂抗拉强度对硫酸盐侵蚀产生的损伤比抗压强度敏感;荷载水平超过40%后对抗折强度劣化影响比较显著。
     针对干湿循环时湿状态和干状态两个状态下混凝土受硫酸盐侵蚀的特点分别进行了模型研究:(1)基于边界移动的扩散-反应问题,建立了混凝土硫酸盐侵蚀微-宏观损伤全过程模型。模型微观上主要解决了侵蚀离子在开裂混凝土中的传输特性,宏观上实现了对抗压强度劣化规律的模拟。模型计算结果和相关试验结果的对比表明模型在微观层面和宏观层面上的模拟是合理的。(2)从理论上分析了干状态下由蒸发作用引起的硫酸钠结晶侵蚀全过程。主要计算了由Na2SO4晶体和Na2SO4 10H2O晶体生长产生的结晶压力以及由其导致的环向拉应力。
Degradation of concrete exposed to sulfate salts is the result of sulfate ions transport through the pore system, chemical reaction with the hydration product phases present or crystallization, generation of stress due to the creation of the expansive reaction products, and the mechanical response (typically cracking, spalling, strength loss, et al.) of the bulk material due to these stresses. The degradation is a very complex micro-macro evolution process. According to field observations, degradation of concrete is more serious under wet-dry cycling than under continuous immersing. But many laboratory researches under wet-dry cycling often accelerate drying by rising temperature under the dry cycling. When doing so, on the one hand, it is hard to simulate the field-like conditions, and on the other hand, rising temperature will change the attack mechanisms of reaction products. In this paper, experimental study on deterioration mechanisms of sulfate attack on concrete under wet-dry cycling was conducted, in which the specimens were naturally drying in the air under the dry cycling. Based on this, the effect of load was further considered. And the compound environments action cases were also studied, mainly including the alternate action of repeat sub-high temperature/cooling by water and sodium sulfate solution attack, and the alternate action of carbonation and sodium sulfate solution attack.
     By micro-analysis and macro-analysis in the tests, the main results were achieved as follows:
     (1) The attack products were analyzed by DSC method, combined with SEM and XRD techniques. Under alternate action of wet-dry cycling, concretes are attacked mainly by ettringite during the wet cycling, and Na2SO4 and Na2SO4 10H2O crystallization damage, induced by evaporation, is superposed during the dry cycling. And the Na2SO4 crystallization damage has a dominant control during the dry cycling.
     (2) The sulfate-ion content profiles in the concrete were determined by the modified barium sulfate gravimetric method (chemical titration). The effects of W/C, concentrations of attack solution, loading levels, action of the repeat sub-high temperature/cooling by water and action of the carbonation on the sulfate ions transport properties were considered respectively.
     (3) The macro-mechanical behavior changes including compressive strength, splitting strength and flexural strength were determined. The compressive failure of attacked concretes shows the mode of layered scalling. The splitting strength appears to be more susceptive to the damage resulted from sulfate attack. And after the 40% ultimate flexural load, the effect of increased load on the flexural strength is remarkable.
     Based on sulfate attack features on concrete during the wet cycling and the dry cycling respectively, two modelling studies were conducted as follows:
     (1) Based on the diffusion-reaction problem with a moving boundary, the micro-macro damage evolution model of sulfate attack on concrete was constructed. On the micro-level, the simulation on the sulfate ions transport properties in the cracking concrete was resolved, and on the macro-level, the simulation on the compressive strength degradation was realized. The contrast between the model calculations and the tests showed the simulations on the micro-macro levels are reasonable.
     (2) Combined with some theoretical models present, the sodium sulfate crystallization attack evolution process, induced by evaporation action during the dry cycling, was analyzed. The crystallization stresses generated by Na2SO4 and Na2SO4 10H2O crystals growth were calculated, and the tensile hoop stresses induced by the crystallization stresses were also calculated.
引文
[1]王柏源,詹学易,裴端宁.坝基可疑病态——混凝土硫酸盐侵蚀问题的研究与诊断.大坝与安全, 1994, (1): 31-34.
    [2]亢景富.混凝土硫酸盐侵蚀研究中的几个基本问题.混凝土, 1995, (3): 9-18.
    [3] Ma B, Gao X, Byars E A, et al. Thaumasite formation in a tunnel of Bapanxia Dam in Western China. Cement and Concrete Research, 2006, 36(4): 716-722.
    [4]王铠,庞锦娟.论水、土中硫酸盐对混凝土结晶腐蚀的气候与评价.勘察科学技术, 2007, (1): 34-38.
    [5]冯乃谦,邢锋.混凝土与混凝土结构耐久性.北京:机械工业出版社, 2009.
    [6]马宏威,张雷,林学玮,等.硫酸盐对桥涵基础混凝土的侵蚀分析及预防措施.东北公路, 2003, 26(2): 119-121.
    [7]马保国,贺行洋,苏英,等.内盐湖环境中混凝土硫酸盐侵蚀破坏研究.混凝土, 2001, (4): 11-15.
    [8]高礼雄,荣辉,刘金革.钡盐对混凝土抗硫酸盐侵蚀的有效性研究.混凝土, 2007, (3): 17-18, 21页.
    [9]程选生,杜永峰,史晓宇,等.黄土对地下贮库的湿陷敏感性及化学侵蚀影响.地下空间与工程学报, 2006, 2(6): 1072-1075.
    [10] Santhanam M, Cohen M D, Olek J. Sulfate attack research - Whither now?. Cement and Concrete Research, 2001, 31(6): 845-851.
    [11] Neville A. The confused world of sulfate attack on concrete. Cement and Concrete Research, 2004, 34(8): 1275-1296.
    [12]金伟良,赵羽习.混凝土结构耐久性.北京:科学出版社, 2002.
    [13]张誉,蒋利学,张伟平,等.混凝土结构耐久性概论.上海:上海科学技术出版社, 2003.
    [14]牛荻涛.混凝土结构耐久性与寿命预测.北京:科学出版社, 2003.
    [15] Ferraris C F, Stutzman P E, Snyder K A. Sulfate Resistance of Concrete: A New Approach. PCA, 2006.
    [16] Clifton J R, Pommersheim J M. Sulfate Attack of Cementitious Materials: Volumetric Relations and Expansions (NISTIR 5390). Gaithersburg: NIST, 1994.
    [17] Skalny J, Marchand J, Odler I. Sulfate Attack on Concrete. London and New York: Spon Press, 2002.
    [18]阎培渝,杨文言.钙矾石膨胀机理的SEM研究.电子显微学报, 1994, 13(4): 297-300.
    [19]阎培渝,杨文言.模拟大体积混凝土条件下生成的钙矾石的形态.建筑材料学报, 2001, 4(1): 39-43.
    [20]游宝坤,席耀忠.钙矾石的物理化学性能与混凝土的耐久性.中国建材科技, 2002, 11(3): 13-18.
    [21]席耀忠.二次钙矾石形成和膨胀混凝土的耐久性.混凝土与水泥制品, 2003, (2): 5-9.
    [22] Tixier R. Microstructural Development and Sulfate Attack Modeling in Blended Cement-based materials [D]. Arizona: Arizona State University, 2000.
    [23] Santhanam M, Cohen M D, Olek J. Effects of gypsum formation on the performance of cement mortars during external sulfate attack. Cement and Concrete Research, 2003, 33(3): 325-332.
    [24] Mehta P K, Pirtz D, Polivka M. Properties of alite cements. Cement and Concrete Research, 1979, 9(4): 439-450.
    [25] Tian B, Cohen M D. Expansion of alite paste caused by gypsum formation during sulfate attack. Journal of Materials in Civil Engineering, 2000, 12(1): 24-25.
    [26] Gaze M E, Crammond N J. Formation of thaumasite in a cement:lime:sand mortar exposed to cold magnesium and potassium sulfate solutions. Cement and Concrete Composites, 2000, 22(3): 209-222.
    [27] Hill J, Byars E A, Sharp J H, et al. An experimental study of combined acid and sulfate attack of concrete. Cement and Concrete Composites, 2003, 25(8): 997-1003.
    [28] Barker A P, Hobbs D W. Performance of Portland limestone cements in mortar prisms immersed in sulfate solutions at 5℃. Cement and Concrete Composites, 1999, 21(2): 129-137.
    [29] Vuk T, Ek R G, I V K. The influence of mineral admixtures on sulfate resistance of limestone cement pastes aged in cold MgSO4 solution. Cement and Concrete Research, 2002, 32(9): 1421-1427.
    [30] Hartshorn S A, Sharp J H, Swamy R N. The thaumasite form of sulfate attack in Portland-limestone cement mortars stored in magnesium sulfate solution. Cement and Concrete Composites, 2002, 24(3-4): 351-359.
    [31] Santhanam M. Studies on Sulfate Attack: Mechanisms, Test Method, and Modeling [D]. West Lafayette: Purdue University, 2001.
    [32] Brown P, Hooton R D, Clark B. Microstructural changes in concretes with sulfate exposure. Cement and Concrete Composites, 2004, 26(8): 993-999.
    [33]马保国,高小建,罗忠涛.矿物掺合料对水泥砂浆TSA侵蚀的影响.材料科学与工程学报, 2006, 24(2): 230-234.
    [34]高小建,马保国,邓红卫.胶凝材料组成对混凝土TSA硫酸盐侵蚀的影响.哈尔滨工业大学学报, 2007, 39(10): 1554-1558.
    [35] Scherer G W. Crystallization in pores. Cement and Concrete Research, 1999, 29(8): 1347-1358.
    [36] Scherer G W. Stress from crystallization of salt. Cement and Concrete Research, 2004, 34(9): 1613-1624.
    [37] Rodriguez-Navarro C, Doehne E. Salt weathering: Influence of evaporation rate, supersaturation and crystallization pattern. Earth Surface Processes and Landforms, 1999, 24(2-3): 191-209.
    [38] Rodriguez-Navarro C, Doehne E, Sebastian E. How does sodium sulfate crystallize? Implications for the decay and testing of building materials. Cement and Concrete Research, 2000, 30(10): 1527-1534.
    [39] Flatt R J. Salt damage in porous materials: How high supersaturations are generated. Journal of Crystal Growth, 2002, 242(3-4): 435-454.
    [40] Tsui N, Flatt R J, Scherer G W. Crystallization damage by sodium sulfate. Journal of Cultural Heritage, 2003, 4(2): 109-115.
    [41] Thaulow N, Sahu S. Mechanism of concrete deterioration due to salt crystallization. Materials Characterization, 2004, 53(2-4): 123-127.
    [42] Genkinger S, Putnis A. Crystallisation of sodium sulfate: Supersaturation and metastable phases. Environmental Geology, 2007, 52(2): 295-303.
    [43] Benavente D, Garcia Del Cura M A, Fort R, et al. Thermodynamic modelling of changes induced by salt pressure crystallization in porous media of stone. Journal of Crystal Growth, 1999, 204(1): 168-178.
    [44] Schaffer R J. The Weathering of Natural Building Stones (DSIR, Building Research Special Report 18). London: Stationery Office, 1932.
    [45] Punuru A R, Chowdhury A N, Kulshreshtha N P, et al. Control of porosity on durability of limestone at the Great Sphinx, Egypt. Environmental Geology and Water Sciences, 1990, 15(3): 225-232.
    [46] Tiller W A. The Science of Crystallization: Microscopic Interfacial Phenomena. London: Cambridge University Press, 1991.
    [47] Tardy Y, Nahon D. GEOCHEMISTRY OF LATERITES, STABILITY OF Al-GOETHITE, Al-HEMATITE, AND Fe3 + -KAOLINITE IN BAUXITES AND FERRICRETES: AN APPROACH TO THE MECHANISM OF CONCRETION FORMATION. American Journal of Science, 1985, 285(10): 865-903.
    [48] Bucea L, Khatri R, Sirivivatnanon V. Chemical and Physical Attack of Salts on Concrete. UrbanSalt 2005 Conference, 2005, : 1-16.
    [49]杨全兵,杨钱荣.硫酸钠盐结晶对混凝土破坏的影响.硅酸盐学报, 2007, 35(7): 877-880, 885页.
    [50]石明霞,谢友均,刘宝举.水泥-粉煤灰复合胶凝材料抗硫酸盐结晶侵蚀性.建筑材料学报, 2003, 6(4): 350-355.
    [51]马昆林,谢友均,龙广成,等.硫酸钠对水泥砂浆的物理侵蚀作用.硅酸盐学报, 2007, 35(10): 1376-1381.
    [52]马昆林,谢友均,刘运华,等.可溶性盐对混凝土材料物理侵蚀的研究评述.腐蚀与防护, 2008, 29(9): 530-533.
    [53] Xie Y, Ma K, Long G. Sulfate crystallization attack on cement-based materials. Key Engineering Materials, 2009, 400-402: 89-99.
    [54]马昆林,谢友均,龙广成,等.水泥基材料在硫酸盐结晶侵蚀下的劣化行为.中南大学学报(自然科学版), 2010, 41(1): 303-309.
    [55] Kurtis K E, Shomglin K, Monteiro P J M, et al. Accelerated test for measuring sulfate resistance of calcium sulfoaluminate, calcium aluminate, and portland cements. Journal of Materials in Civil Engineering, 2001, 13(3): 216-221.
    [56] González M A, Irassar E F. Ettringite formation in low C3A portland cement exposed to sodium sulfate solution. Cement and Concrete Research, 1997, 27(7): 1061-1072.
    [57] Mbessa M, Péra J. Durability of high-strength concrete in ammonium sulfate solution. Cement and Concrete Research, 2001, 31(8): 1227-1231.
    [58] Park Y, Suh J, Lee J, et al. Strength deterioration of high strength concrete in sulfate environment. Cement and Concrete Research, 1999, 29(9): 1397-1402.
    [59] Al-Dulaijan S U, Maslehuddin M, Al-Zahrani M M, et al. Sulfate resistance of plain and blended cements exposed to varying concentrations of sodium sulfate. Cement and Concrete Composites, 2003, 25(4-5 SPEC): 429-437.
    [60] Tikalsky P J, Carrasquillo R L. Influence of fly ash on the sulfate resistance of concrete. ACI Materials Journal, 1992, 89(1): 69-75.
    [61] Torii K, Taniguchi K, Kawamura M. Sulfate resistance of high fly ash content concrete. Cement and Concrete Research, 1995, 25(4): 759-768.
    [62] Hill J, Byars E A, Sharp J H, et al. An experimental study of combined acid and sulfate attack of concrete. Cement and Concrete Composites, 2003, 25(8): 997-1003.
    [63] Hekal E E, Kishar E, Mostafa H. Magnesium sulfate attack on hardened blended cement pastes under different circumstances. Cement and Concrete Research, 2002, 32(9): 1421-1427.
    [64] Cao H T, Bucea L, Ray A, et al. The effect of cement composition and pH of environment on sulfate resistance of Portland cements and blended cements. Cement and Concrete Composites, 1997, 19(2): 161-171.
    [65] Shannag M J, Shaia H A. Sulfate resistance of high-performance concrete. Cement and Concrete Composites, 2003, 25(3): 363-369.
    [66] Nehdi M, Hayek M. Behavior of blended cement mortars exposed to sulfate solutions cycling in relative humidity. Cement and Concrete Research, 2005, 35(4): 731-742.
    [67]邓德华,肖佳,元强,等.水泥基材料的碳硫硅钙石型硫酸盐侵蚀(TSA).建筑材料学报, 2005, 8(5): 532-541.
    [68]邓德华,肖佳,元强,等.水泥基材料中的碳硫硅钙石.建筑材料学报, 2005, 8(4): 400-409.
    [69]元强,邓德华,张文恩,等.粉煤灰与混凝土的硫酸盐侵蚀.粉煤灰, 2005, 17(2): 43-45.
    [70]邓德华,肖佳,元强,等.石灰石粉对水泥基材料抗硫酸盐侵蚀性的影响及其机理.硅酸盐学报, 2006, 34(10): 1243-1248.
    [71]肖佳,邓德华,元强,等.硅灰对水泥净浆抗硫酸盐侵蚀性能的改善作用.西南石油学院学报, 2006, 28(3): 103-105.
    [72]肖佳,邓德华,张文恩,等.硫酸盐侵蚀下石膏形成引起的水泥净浆破坏.建筑材料学报, 2006, 9(1): 19-23.
    [73]元强,邓德华,张文恩,等.硫酸钠侵蚀下掺粉煤灰砂浆的体积膨胀规律及其机理研究.混凝土, 2006, (1): 33-35, 42页.
    [74]高礼雄.掺矿物掺合料水泥基材料的抗硫酸盐侵蚀性研究[博士学位论文].北京:中国建筑材料科学研究院, 2005.
    [75]周俊龙,杨德斌.粉煤灰水泥砂浆抗硫酸盐侵蚀的研究.粉煤灰综合利用, 2002, (3): 18-20.
    [76]杨德斌,周俊龙,汪宏涛,等.外加剂与矿物掺合料对混凝土抗硫酸盐侵蚀的有效性研究.混凝土, 2003, (4): 12-15.
    [77]申春妮,杨德斌,方祥位,等.混凝土硫酸盐侵蚀影响因素的探讨.水利与建筑工程学报, 2004, 2(2): 16-19.
    [78]申春妮,杨德斌,方祥位,等.混凝土硫酸盐侵蚀试验方法研究.四川建筑科学研究, 2005, 31(2): 103-106.
    [79]方祥位,申春妮,杨德斌,等.混凝土硫酸盐侵蚀速度影响因素研究.建筑材料学报, 2007, 10(1): 89-96.
    [80]巩鑫.混凝土抗硫酸盐侵蚀试验研究[硕士学位论文].大连:大连理工大学, 2008.
    [81] Biczok I. Concrete Corrosion and Concrete Protection. New York: Chemical Publishing, 1967.
    [82] Santhanam M, Cohen M D, Olek J. Modeling the effects of solution temperature and concentration during sulfate attack on cement mortars. Cement and Concrete Research, 2002, 32(4): 585-592.
    [83] Bellmann F, Moser B, Stark J. Influence of sulfate solution concentration on the formation of gypsum in sulfate resistance test specimen. Cement and Concrete Research, 2006, 36(2): 358-363.
    [84]席耀忠.近年来水泥化学的新进展:记第九届国际水泥化学会议.硅酸盐学报, 1993, 21(6): 577-588.
    [85] Mehta P K, Gjorv O E. New test for sulfate resistance of cements. Journal of Testing and Evaluation, 1974, 2(6): 510-515.
    [86] Brown P. An evaluation of the sulfate resistance of cements in a controlled enviroment. Cement and Concrete Research, 1981, 11(5-6): 719-727.
    [87] Ferraris C F, Clifton J R, Stutzman P E, et al. Mechanisms of degradation Portland cement-based systems by sulfate attack. in: Young J F, eds. Proceedings of the Materials Research Society’s Symposium on Mechanisms of Chemical Degradation of Cement-based Systems. Boston: Materials Research Society’s Symposium on Mechanisms of Chemical Degradation of Cement-based Systems, 1997.
    [88] Clifton J R, Frohnsdorff G, Ferraris C. Standard for evaluation the susceptibility of cement-based materials to external sulphate attack. in: Materials Science of Concrete-Sulfate Attack Mechanisms (Special Volume). Quebec: Proceedings from Seminar on Sulfate Attack, 1999.
    [89]江逢霖.基础物理化学.上海:复旦大学出版社, 1992.
    [90]梁咏宁,袁迎曙.硫酸盐腐蚀后混凝土单轴受压应力应变全曲线.混凝土, 2005, (7): 59-61, 77页.
    [91]梁咏宁,袁迎曙.硫酸盐侵蚀环境因素对混凝土性能退化的影响.中国矿业大学学报, 2005, 34(4): 452-457.
    [92]梁咏宁,袁迎曙.硫酸钠和硫酸镁溶液中混凝土腐蚀破坏的机理.硅酸盐学报, 2007, 35(4): 504-508.
    [93] Werner K, Chen Y, Odler I. Investigations on stress corrosion of hardened cement pastes. Cement and Concrete Research, 2000, 30(9): 1443-1451.
    [94] Gerdes A, Wittmann F H. Influence of Stress Corrosion on Fracture Energy of Cementitious Materials. in: Wittmann F H, eds. Fracture Mechanics of Concrete Structures (Proc. FRAMCOS-2). Freiburg: AEDIFCATIO Publishers, 1995.
    [95] Schneider U, Piasta W. The behavior of concrete under Na2SO4 solution attack and sustained compression or bending. Magazine of concrete research, 1991, 43(157): 281-289.
    [96] Schneider U, Chen S. Behavior of high-performance concrete under ammonium nitrate solution and sustained loading. ACI Materials Journal, 1999, 96(1): 47-51.
    [97] Schneider U, Chen S. Modeling and empirical formulas for chemical corrosion and stress corrosion of cementitious materials. Materials and Structures, 1998, 31(214): 662-668.
    [98] Schneider U, Chen S. The Chemomechanical Effect and the Mechanochemical Effect on High-Performance Concrete Subjected to Stress Corrosion. Cement and Concrete Research, 1998, 28(4): 509-522.
    [99] Bassuoni M T, Nehdi M L. Durability of self-consolidating concrete to sulfate attack under combined cyclic environments and flexural loading. Cement and Concrete Research, 2009, 39(3): 206-226.
    [100]金祖权.西部地区严酷环境下混凝土的耐久性与寿命预测[博士学位论文].南京:东南大学, 2006.
    [101]李金玉,林莉,曹建国,等.高浓度和应力状态下混凝土硫酸盐侵蚀性的研究.见:王媛俐,姚燕,编.重点工程混凝土耐久性的研究与工程应用.北京:中国建材工业出版社, 2001.
    [102] Xing F, Huang Z, Dong B, et al. Study on the sulfate corrosion of concrete under the action of loading. Key Engineering Materials, 2009, 400-402: 175-180.
    [103]余红发.盐湖地区高性能混凝土的耐久性、机理及使用寿命预测方法[博士学位论文].南京:东南大学, 2004.
    [104]张磊.混凝土在硫酸盐与冻融双因素作用下的复合损伤研究[硕士学位论文].扬州:扬州大学, 2007.
    [105]王琴.混凝土在干湿循环与硫酸盐侵蚀双重因素作用下的损伤研究[硕士学位论文].扬州:扬州大学, 2008.
    [106] Huang W. Properties of cement-fly ash grout admixed with bentonite, silica fume, or organic fiber. Cement and Concrete Research, 1997, 27(3): 395-406.
    [107] Atkinson A, Haxby A, Hearne J A. The chemistry and expansion of limestone-portland cement mortars exposed to sulphate-containing solutions (NIREX rep. NSS/R127). Oxfordshire: Nirex, Harwell, 1988.
    [108]王素瑞,金钦华.碱—骨料反应和干湿循环对混凝土的协同破坏效应研究.混凝土与水泥制品, 2000, (4): 15-17.
    [109]乔宏霞,何忠茂,刘翠兰,等.高性能混凝土抗硫酸盐侵蚀的研究.兰州理工大学学报, 2004, 30(1): 101-105.
    [110]张亚梅,陈胜霞,高岳毅.浸-烘循环作用下橡胶水泥混凝土的性能研究.建筑材料学报, 2005, 8(6): 665-671.
    [111]牛全林.预防盐碱环境中混凝土结构耐久性病害的研究及应用[博士学位论文].北京:清华大学, 2004.
    [112] GB/T 50082-2009.普通混凝土长期性能和耐久性能试验方法标准.
    [113] Pommersheim J M, Clifton J R. Models of transport processes in concrete (NISTIR 4405). Gaithersburg: NIST, 1991.
    [114] Pommersheim J M, Clifton J R. Expansion of cementitious materials exposed to sulfate solutions. Scientific basis for nuclear waste management. in: Barkatt A, Van Konynenburg R, eds. Materials Research Societ Sym. Proc.ⅩⅦ. Pittsburgh: Materials Research Society, 1994.
    [115] Santhanam M, Cohen M D, Olek J. Mechanism of sulfate attack: A fresh look - Part 1. Summary of experimental results. Cement and Concrete Research, 2002, 32(6): 915-921.
    [116] Santhanam M, Cohen M D, Olek J. Mechanism of sulfate attack: A fresh look - Part 2. Proposed mechanisms. Cement and Concrete Research, 2003, 33(3): 341-346.
    [117] Rigo E, Schmidt-D?hl F, Krauss M, et al. Transreac: A model for the calculation of combined chemical reactions and transport processes and its extension to a probabilistic model. Cement and Concrete Research, 2005, 35(9): 1734-1740.
    [118] Goktepe A B, Inan G, Ramyar K, et al. Estimation of sulfate expansion level of PC mortar using statistical and neural approaches. Construction and Building Materials, 2006, 20(7): 441-449.
    [119] Monteiro P J M, Kurtis K E. Time to failure for concrete exposed to severe sulfate attack. Cement and Concrete Research, 2003, 33(7): 987-993.
    [120] Tumidajski P J, Chan G W, Philipose K E. An effective diffusivity for sulfate transport into concrete. Cement and Concrete Research, 1995, 25(6): 1159-1163.
    [121] Atkinson A, Hearne J A. Mechanistic model for the durability of concrete barriers exposed to sulfate-bearing groundwaters. in: Oversby V M, Brown P W, eds. Scientific basis for nuclear waste management (Ⅷ). Pittsburgh: Materials Research Society, 1989.
    [122] Krajcinovic D, Basista M, Mallick K, et al. Chemo-micromechanics of brittle solids. Journal of the Mechanics and Physics of Solids, 1992, 40(5): 965-990.
    [123] Basista M, Weglewski W. Micromechanical modelling of sulphate corrosion in concrete: Influence of ettringite forming reaction. Theoretical Applied Mechanics, 2008, 35(1-3): 29-52.
    [124] Basista M, Weglewski W. Chemically assisted damage of concrete: A model of expansion under external sulfate attack. International Journal of Damage Mechanics, 2009, 18(2): 155-175.
    [125] Boehm M, Rosen I G. Global weak solutions and uniqueness for a moving boundary problem for a coupled system of quasilinear diffusion-reaction equations arising as a model of chemical corrosion of concrete surface. Berlin: Humboldt-Universit?t, 1997.
    [126] Clifton J R, Bentz D P, Pommersheim J M. Sulfate diffusion in concrete (NISTIR 5361). Gaithersburg: NIST, 1994.
    [127] Gospodinov P, Kazandjiev R, Mironova M. The effect of sulfate ion diffusion on the structure of cement stone. Cement and Concrete Composites, 1996, 18(6): 401-407.
    [128] Gospodinov P N, Kazandjiev R F, Partalin T A, et al. Diffusion of sulfate ions into cement stone regarding simultaneous chemical reactions and resulting effects. Cement and Concrete Research, 1999, 29(10): 1591-1596.
    [129] Mironova M K, Gospodinov P N, Kazandjiev R F. The effect of liquid push out of the material capillaries under sulfate ion diffusion in cement composites. Cement and Concrete Research, 2002, 32(1): 9-15.
    [130] Gospodinov P N. Numerical simulation of 3D sulfate ion diffusion and liquid push out of the material capillaries in cement composites. Cement and Concrete Research, 2005, 35(3): 520-526.
    [131] Samson E, Marchand J, Beaudoin J J. Describing ion diffusion mechanisms in cement-based materials using the homogenization technique. Cement and Concrete Research, 1999, 29(8): 1341-1345.
    [132] Samson E, Marchand J. Numerical Solution of the Extended Nernst–Planck Model. Journal of Colloid and Interface Science, 1999, 215: 1-8.
    [133] Samson E, Marchand J, Beaudoin J J. Modeling the influence of chemical reactions on the mechanisms of ionic transport in porous materials: An overview. Cement and Concrete Research, 2000, 30(12): 1895-1902.
    [134] Marchand J, Samson E, Maltais Y, et al. Theoretical analysis of the effect of weak sodium sulfate solutions on the durability of concrete. Cement and Concrete Composites, 2002, 24(3-4): 317-329.
    [135] Samson E, Marchand J. Modeling the transport of ions in unsaturated cement-based materials. Computers & Structures, 2007, 85(23-24): 1740-1756.
    [136] Narsilio G A, Li R, Pivonka P, et al. Comparative study of methods used to estimate ionic diffusion coefficients using migration tests. Cement and Concrete Research, 2007, 37(8): 1152-1163.
    [137] Schmidt-D?hl F, Rostásy F S. A model for the calculation of combined chemical reactions and transport processes and its application to the corrosion of mineral-building materials: Part I. Simulation model. Cement and Concrete Research, 1999, 29(7): 1039-1045.
    [138] Schmidt-D?hl F, Rostásy F S. A model for the calculation of combined chemical reactions and transport processes and its application to the corrosion of mineral-building materials: Part II. Experimental verification. Cement and Concrete Research, 1999, 29(7): 1047-1053.
    [139] Ferraris C F, Clifton J R, Stutzman P E. Mechanisms of degradation of Portland cement-based systems by sulfate attack. in: Scrivener K L, Young J F, eds. Mechanisms of chemical degradation of cement-based systems. London: E & FN Spon, 1997.
    [140] Tixier R, Mobasher B. Modeling of damage in cement-based materials subjected to external sulfate attack. I: Formulation. Journal of Materials in Civil Engineering, 2003, 15(4): 305-313.
    [141] Tixier R, Mobasher B. Modeling of damage in cement-based materials subjected to external sulfate attack. II: Comparison with experiments. Journal of Materials in Civil Engineering, 2003, 15(4): 314-322.
    [142] Gerard B, Pijaudier-Cabot G, Laborderie C. Coupled diffusion-damage modelling and the implications on failure due to strain localisation. International Journal of Solids and Structures, 1998, 35(31-32): 4107-4120.
    [143] Saetta A V. Mechanical behavior of concrete under physical-chemical attacks. Journal of Engineering Mechanics, 1998, 124(10): 1100-1109.
    [144] Saetta A V, Scotta R, Vitaliani R. Coupled environmental-mechanical damage model of RC structures. Journal of Engineering Mechanics, 1999, 125(8): 930-940.
    [145] Saetta A V. Deterioration of Reinforced Concrete Structures due to Chemical–Physical Phenomena Model-Based Simulation. Journal of Materials in Civil Engineering, 2005, 17(3): 313-319.
    [146] Sarkar S, Mahadevan S, Meeussen J C L, et al. Numerical simulation of cementitious materials degradation under external sulfate attack. Cement and Concrete Composites, 2010, 32(3): 241-252.
    [147] Bentz D P, Ehlen M A, Ferraris C F, et al. Life Prediction Based on Sorptivity for Highway Concrete Exposed to Sulfate Attack and Freeze-Thaw Conditions (FHWA-RD-01-162). Washington, D. C.: Federal Highway Administration, 2001.
    [148] Gerard B, Marchand J. Influence of cracking on the diffusion properties of cement-based materials. Part I: Influence of continuous cracks on the steady-state regime. Cement and Concrete Research, 2000, 30(1): 37-43.
    [149] Coussy O. Deformation and stress from in-pore drying-induced crystallization of salt. Journal of the Mechanics and Physics of Solids, 2006, 54(8): 1517-1547.
    [150] Chanvillard G, Scherer G. Crystallization of salts in porous medium: experimental validation of damage mechanisms with limestone. Private communication, 2005.
    [151] Steiger M. Crystal growth in porous materials I: The crystallization pressure of large crystals. Journal of Crystal Growth, 2005, 282(3-4): 455-469.
    [152] Steiger M. Crystal growth in porous materials II: Influence of crystal size on the crystallization pressure. Journal of Crystal Growth, 2005, 282(3-4): 470-481.
    [153] Steiger M, Asmussen S. Crystallization of sodium sulfate phases in porous materials: The phase diagram Na2SO4–H2O and the generation of stress. Geochimica et Cosmochimica Acta, 2008, 72(17): 4291-4306.
    [154] Espinosa R M, Franke L, Deckelmann G. Model for the mechanical stress due to the salt crystallization in porous materials. Construction and Building Materials, 2008, 22(7): 1350-1367.
    [155] Benavente D, Cura M A G D, Garcca-Guinea J, et al. Role of pore structure in salt crystallisation in unsaturated porous stone. Journal of Crystal Growth, 2004, 260(3-4): 532-544.
    [156] Clifton J R, Knab L R. Service life of concrete (NUREG/CR-5466). Washington, D. C.: U. S. Nuclear Regulatory Commission, 1989.
    [157] Cody R D, Cody A M. Reduction of concrete deterioration by ettringite using crystal growth inhibition techniques (TR-431). Iowa: University of Iowa, 2001.
    [158] Boyd A J, Mindess S. The use of tension testing to investigate the effect of W/C ratio and cement type on the resistance of concrete to sulfate attack. Cement and Concrete Research, 2004, 34(3): 373-377.
    [159] ASTM C114. Test methods for chemical analysis of hydraulic cement.
    [160] JTJ 270-98.水运工程混凝土试验规程.
    [161]赵顺波,陈记豪,高润东,等.硫酸盐侵蚀混凝土内部硫酸根离子浓度测试方法.港工技术, 2008, (3): 31-33.
    [162] GB/T 50476-2008.混凝土结构耐久性设计规范.
    [163]匈牙利技术大学应用化学系.热分析曲线图谱集(翁祖琪译).北京:冶金工业出版社, 1978.
    [164]杨南如,岳文海.无机非金属材料图谱手册.武汉:武汉工业大学出版社, 2000.
    [165] Lee S T, Moon H Y, Swamy R N. Sulfate attack and role of silica fume in resisting strength loss. Cement and Concrete Composites, 2005, 27(1): 65-76.
    [166] Zhao S, He R, Gao R, et al. Research on mechanism of sulfate attack on concrete by TG-DSC method. in: Jin W, Ueda T, Basheer P A M, eds. Advances in Concrete Structural Durability (ICDCS 2008). Hangzhou: Zhejiang University Press, 2008. 549-555.
    [167]高润东,赵顺波,李庆斌,等.干湿循环作用下混凝土硫酸盐侵蚀劣化机理试验研究.土木工程学报, 2010, 43(2): 48-54.
    [168] Schmidt T, Lothenbach B, Romer M, et al. Physical and microstructural aspects of sulfate attack on ordinary and limestone blended Portland cements. Cement and Concrete Research, 2009, 39(12): 1111-1121.
    [169]冷发光.荷载作用下混凝土氯离子渗透性及其测试方法研究[博士学位论文].北京:清华大学, 2002.
    [170] Gao R, Zhao S, Li Q. Concrete deterioration mechanisms under simultaneous sulfate attack and load action. in: Li J, Wu B, Wu Z, et al, eds. Innovation & Sustainability of Structures (ISISS’2009). Guangzhou: South China University of Technology Press, 2009. 1160-1165.
    [171] Zhao S, Yang X, Li X, et al. Experimental Study on Deterioration Concrete Strength Different Sub-high Temperature Cycles. Journal of Wuhan University of Technology (Materials Science), 2006, (z1): 53-57.
    [172] Li X, Shi C, Zhao S, et al. Experimental Study on Measurement of Carbonation Depth of Concrete. Journal of Wuhan University of Technology (Materials Science), 2006, (z1): 64-67.
    [173]高润东,赵顺波,李庆斌.复合因素作用下混凝土硫酸盐侵蚀劣化机理.建筑材料学报, 2009, 12(1): 41-46.
    [174] Thaulow N, Jakobsen U H. The diagnose of chemical deterioration of concrete by optical microscopy. in: Scrivener K L, Young J F, eds. Mechanism of chemical degradation of cement-based systems. London; New York: E & FN Spon, 1997.
    [175] Collepardi M. A state-of-the-art review on delayed ettringite attack on concrete. Cement and Concrete Composites, 2003, 25(4): 401-407.
    [176] Brown P, Hooton R D, Clark B. Microstructural changes in concretes with sulfate exposure. Cement and Concrete Composites, 2004, 26(8): 993-999.
    [177] Blanco-Varela M T, Aguilera J, Martcnez-Ramcrez S. Effect of cement C3A content, temperature and storage medium on thaumasite formation in carbonated mortars. Cement and Concrete Research, 2006, 36(4): 707-715.
    [178] Collett G, Crammond N J, Swamy R N, et al. The role of carbon dioxide in the formation of thaumasite. Cement and Concrete Research, 2004, 34(9): 1599-1612.
    [179] Thomas M D A, Rogers C A, Bleszynski R F. Occurrences of thaumasite in laboratory and field concrete. Cement and Concrete Composites, 2003, 25(8): 1045-1050.
    [180] Ju J W, Weng L S, Mindess S. Damage assessment of service life prediction of concrete subject to sulfate attack. in: Marchand J, Skalny J P, eds. Materials Science of Concrete: Sulfate Attack Mechanisms. Ohio: American Ceramic Society, 1999.
    [181] Taylor H F W. Cement Chemistry (Second edition). London: Thomas Telford, 1997.
    [182] Hansen T C. Physical structure of hardened cement paste: a classical approach. Materials and Structures, 1986, 9(114): 423-436.
    [183] Bentz D P, Garboczi E J. Percolation of Phases in a three-dimensional cement paste microstructural model. Cement and Concrete Research, 1991, 21(2-3): 325-344.
    [184] H?glund L O. Some notes of ettringite formation in cementitous materials; Influence of hydration and thermodynamic constraints for durability. Cement and Concrete Research, 1992, 22(2-3): 217-228.
    [185] Mura T. Micromechanics of Defects in Solids. Hague: Martinus Nijhoff Publ., 1987.
    [186] Budiansky B, O'Connell R J. Elastic moduli of a cracked solid. International Journal of Solids and Structures, 1976, 12(2): 81-97.
    [187]赵铁军.混凝土渗透性.北京:科学出版社, 2006.
    [188] Garboczi E J, Bentz D P. Computer Simulation of the Diffusivity of Cement-based Materials. Journal of Material Sciences, 1992, 27: 2083-2092.
    [189] Page C L, Short N R, El Tarras A. Diffusion of chloride ions in hardened cement pastes. Cement and Concrete Research, 1981, 11(3): 395-406.
    [190] Basista M. Micromechanical and Lattice Modeling of Brittle Damage (IFTR Reports). Warsaw: 2001.
    [191] Salganik R L. Transfer Processes in Bodies with a Great Number of Cracks. Mechanics of Solids (Inzhenerno-Fizicheskij Zhurnal), 1974, 27: 1069-1075.
    [192] Stauffer D. Introduction to Percolation Theory. London: Taylor & Francis, 1985.
    [193] Charlaix E. Percolation Thresholds of a Random Array of Discs: A Numerical Simulation. Journal of Physics A, 1986, 19: L533-L536.
    [194] Sornette D. Critical Transport and Failure in Continuum Crack Percolation. Journal de Physique (France), 1988, 49: 1365-1377.
    [195] Espenson H J. Chemical Kinetics and Reaction Mechanisms. New York: McGraw-Hill, 1981.
    [196] Astarita G. Mass Transfer with Chemical Reaction. Amsterdam: Elsevier, 1967.
    [197] Rosenberg V, Dale U. Methods for the Numerical Solution of Partial Differential Equations. New York: American Elsevier Pub. Co., 1969.
    [198] Ferraris C F, Clifton J R, Stutzman P E, et al. Mechanisms of degradation of portland cement-based systems by sulfate attack. in: Scrivener K L, Young J F, eds. Mechanisms of chemical degradation of cement-based systems. London; New York: E & FN Spon, 1997. 185-192.
    [199] Lagerblad B. Long term test of concrete resistance against sulphate attack. in: Marchand J, Skalny J, eds. Materials Science of Concrete: Sulfate Attack Mechanisms. Ohio: American Ceramic Society, 1999. 325-336.
    [200] GB50010-2002.混凝土结构设计规范.
    [201] Winkler E M, Singer P C. Crystallization pressure of salt in stone and concrete. Geological Society of America Bulletin, 1972, 83: 3509-3514.
    [202] Cooke R U. Salt weathering and the urban water table in deserts. in: Robinson D A, Williams R B G, eds. Rock Weathering and Landform Evolution. Chichester: John Wiley and Sons, 1994. 193-205.
    [203] Scherer G W. Stress from crystallization of salt in pores. Proceedings of the 9th International Congress on Deterioration and Conservation of Stone, 2000, : 187-194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700