用户名: 密码: 验证码:
QAPEI及其复合膜的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢氧根离子交换膜燃料电池工作在碱性环境中,具有电极反应速率快、催化剂选择范围宽以及甲醇渗透率低等优点,但是其电池性能仍有待提高。通常氢氧根离子交换膜是通过氯甲基化聚合物与三甲胺水溶液的非均相季铵化反应制备的,这种方法转化率低,膜的离子传导率低,所以电池性能不高。本文旨在选择以氯甲基化后可以与三甲胺水溶液完全季铵化的聚合物,制备具有较好离子传导率并且适合燃料电池应用的氢氧根离子交换膜。
     聚醚酰亚胺(PEI)被发现是满足要求的聚合物,首先采用无毒高活性的氯甲基辛基醚(CMOE)作为氯甲基化试剂制备了一系列不同氯甲基化程度(DC)的氯甲基化PEI (CMPEI)。实验表明溶剂用量、催化剂用量、反应温度等对反应结果有很大的影响,并确定最佳反应条件为:PEI: CMOE:C2H4Cl2:ZnCl2=2.0g:4ml:50ml:1.0g,反应温度60℃。
     CMPEI可以溶解到三甲胺水溶液中通过均相反应得到季铵化PEI (QAPEI),核磁谱图表明CMPEI反应完全。为提高膜的机械性能,将QAPEI与亲水粘性的聚乙烯醇(PVA)复合制备QAPEI/PVA复合膜。考察了PVA含量对复合膜机械性能的影响,确定最适宜质量比为QAPEI:PVA=l:0.25.复合膜的离子交换容量、吸水率、溶胀度和离子传导率都随着DC以及温度的升高而升高。在20℃时,复合膜的离子传导率可以达到0.167S/cm,并在60℃时升高到0.289S/cm。复合膜具有非常高的吸水率和比较大的溶胀度,其最大吸水率为344%,最大溶胀度可以达到89%,但是可以保持膜的形貌完整。
     为降低膜的溶胀度,将QAPEI与疏水性的聚四氟乙烯(PTFE)膜进行复合制备QAPEI/PTFE复合膜。扫描电镜和红外谱图测试都表明QAPEI与PTFE具有良好的相容性。与QAPEI/PVA复合膜相比,QAPEI/PTFE复合膜的吸水率和溶胀度都有明显的降低,具有更好的机械稳定性。QAPEI/PTFE复合膜的离子交换容量、吸水率、溶胀度和离子传导率与QAPEI/PVA复合膜遵循相同的规律,也随着温度和DC的升高而升高。在20℃时QAPEI/PTFE复合膜的离子传导率可以达到0.119S/cm,并在60℃时升高到0.352S/cm。
Hydroxide exchange membrane fuel cells work in alkaline environment and have many merits, such as high electrochemical reaction rate, wide catalyst options and low methanol permeability. Unfortunately, its performance is poor because of the lower ionic conductivity of the hydroxide exchange membrane. Generally, the hydroxide exchange membrane is prepared by aminating chloromethylated polymers with trimethylamine aqueous solution through heterogeneous reaction which is insufficient and result in the low conductivity. In the present work, polyetherimide (PEI) which could achieve sufficient homogeneous reaction with trimethylamine aqueous solution were chosen to make hydroxide exchange membrane with high conductivity and suitable for use in hydroxide exchange membrane fuel cells.
     Chloromethylated polyetherimide (CMPEI) was primarily synthesized by non-toxic and high-efficient chloromethyl octyl ether (CMOE) as chloromethylation reagent. The amount of solvent and catalyst, and the reaction temperature affect the chloromethylation of PEI significantly. The optimized condition is:PEI:CMOE:C2H4Cl2:ZnCl2=2.0g:4ml:50ml:l.0g at60oC. Under optimum condition, a series of CMPEI with different degrees of chloromethylation (DC) were prepared successfully by controlling the reaction time.
     Quaternized PEI (QAPEI) was then obtained by dissolving CMPEI in trimethylamine aqueous solution to complete quaternization. The nuclear magnetic resonance (NMR) spectroscopy confirmed the completely conversion of CMPEI. In order to strengthen the mechanical stability of the membrane, hydrophilic polyvinyl alcohol (PVA) was added to prepare QAPEI/PVA composite membranes. The content of PVA was investigated and determined the best mass ratio of QAPEI to PVA was1:0.25. The ion exchange capacity (IEC), water uptake, swelling ratio and hydroxide conductivity of the membranes all increased with the increasing of DC and temperature. The hydroxide conductivity could reach0.167S/cm at20oC and rose to0.289S/cm at60°C. The membrane exhibited water uptake as high as344%and swelling ratio as high as89%accordingly. But the membranes were able to keep their integrated morphology even at60°C.
     In order to decrease the water uptake and swelling ratio of the membrane, hydrophobic Polytetrafluoroethylene (PTFE) was used to composite with QAPEI. The results of scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) showed that the QAPEI was well composited with PTFE. As expected, the water uptake and swelling ratio of QAPEI/PTFE was significantly reduced compared with QAPEI/PVA, and the membrane owned good dimensional stability. The ion exchange capacity (IEC), water uptake, swelling ratio and hydroxide conductivity of QAPEI/PTFE composite membranes also increased with the increasing of DC and temperature. The hydroxide conductivity could reach0.119S/cm at20°C and rose to0.352S/cm at60°C.
引文
[1]侯明,衣宝廉.燃料电池技术发展现状与展望[J].电化学,2012(18):1-12.
    [2]衣宝廉.燃料电池现状与未来[J]. Chinese journal of power sources,1998(22):216-221.
    [3]Carrette L, Friedrich K A, StimmingU. Fuel Cells-Fundamentals and Applications[J]. Fuel Cells,2001(1):1-39.
    [4]Park S, Popov B N. Effect of a GDL based on carbon paper or carbon cloth on PEM fuel cell performance[J]. Fuel,2011(90):4436-440.
    [5]刘建国,孙公权.燃料电池概述[J].物理学与新能源材料专题,2004(32):79-83.
    [6]衣宝廉.燃料电池的原理、技术状态与展望[J].电池工业,2003(8):16-22.
    [7]于大勇.联盟与制定标准,各方角逐燃料电池汽车[N].中国高新技术产业导报,2012,15.
    [8]Wang Y, Chen K S, Mishler J, et al. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research[J]. Applied Energy,2011(88):981-1007.
    [9]刘晓霞,屈睿.燃料电池的研究与应用[J].广州化工,2007(35):21-26.
    [10]何晓亮.燃料电池技术:5到10年将产业化[N].科技日报,2012,09.
    [11]张世敏,张无敌,尹芳,等.21世纪的绿色新能源-燃料电池[J].科技创新导报,2008(18):116-117.
    [12]Kirubakaran A, Shailendra J, Nema R K. A review on fuel cell technologies and power electronic interface [J]. Renewable and Sustainable Energy Reviews,2009(13):2430-2440.
    [13]朱梅,徐献芝,苏润.燃料电池的研究现状与方向[J].自然杂志,2003(26):85-87.
    [14]Smitha B, Sridhar S, Khan A A. Solid polymer electrolyte membranes for fuel cell applications-a review[J]. Journal of Membrane Science,2005(259):10-26.
    [15]Grot W. Discovery and development of Nafion perfluorinated membranes[J]. Chemistry and Industry,1985(19):647-649.
    [16]王国芝,李明威,胡继文.燃料电池用质子交换膜的研究发展,高分子通报,2006(6):24-31.
    [17]Li L, Zhang J, Wang Y X. Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cell[J]. Journal of Membrane Scicece,2003(226):159-167.
    [18]Charreteur F, Jaouen F, Ruggeri S, et al. Fe/C/N non-precious catalysts for PEM fuel cells:Influence of the structural parameters of pristine commercial carbon blacks on their activity for oxygen reduction[J]. Electrochimica Acta,2008(53):2925-2938.
    [19]Stamenkovic V R, Fowler B. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability[J]. Science,2007(315):493-496.
    [20]Gulzow E. Alkaline fuel cells:a critical view[J]. Journal of Power Sources, 1996(61):99-104.
    [21]WangGG, Weng Y M, Chu D, et al. Preparation of alkaline anion exchange membranes based on functional poly (ether-imide) polymers for potential fuel cell applications[J]. Journal of Membrane Science,2009(326)4-8.
    [22]Gu S, Cai R, Luo T, et al. A soluble and highly conductive ionomer for high-performance hydroxide exchange membrane fuel cells[J]. Angewandte Chemie International Edition, 2009 (48):6499-6502.
    [23]Guizow E, Schulze M. Long-term operation of AFC electrodes with C02 containing gases [J]. Journal of Power Sources,2004(127):243-251.
    [24]Mclean G F, Niet T, Richard S, et al. An assessment of alkaline fuel cell technology [J]. International Journal of Hydrogen Energy,2002(27):507-526.
    [25]Gouerec P, Poletto L, Denizot J, et al. The evolution of the performance of alkaline fuel cells with circulating electrolyte[J]. Journal of Power Sources, 2004(129):193-204.
    [26]Agel E, Bouet J, Fauvarque J F. Characterization and use of anionic membranes for alkaline fuel cells[J]. Journal of power sources,2001(101):267-274.
    [27]ChengX, Shi Z, Glass L, et al. A review of PEM hydrogen fuel cell contamination:impacts, mechanisms, and mitigation[J]. Journal of power sources,2007(165):739-756.
    [28]Zeng Q H, Liu Q L, Broadwell I, et al. Anion exchange membranes based on quaternized polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene for direct methanol alkaline fuel cells[J]. Journal of membrane science,2010(349):237-243.
    [29]Hou H Y, Sun G Q, He R H, et al. Alkali doped polybenzimidazole membrane for alkaline direct methanol fuel cell[J]. International Journal of Hydrogen Energy, 2008(33):7172-7176.
    [30]Hou H Y, Sun G Q, He R H, et al. Alkali doped polybenzimidazole membrane for high performance alkaline direct ethanol fuel cell[J]. Journal of Power Sources, 2008(182):95-99.
    [3l]Yang C C, Lin S J, Wu G M. Study of ionic transport properties of alkaline poly (vinyl)alcohol-based polymer electrolytes[J]. Materials chemistry and physics, 2005(92):251-255.
    [32]Qiao J L, Fu J, Lin R, et al. Alkaline solid polymer electrolyte membranes based on structurally modified PVA/PVP with improved alkali stability[J]. Polymer, 2010(51):4850-4859.
    [33]Ying W, Katherine A M, Brant P, et al. Chitosan-based solid electrolyte composite membranes I. Preparation and characterization[J]. Journal of membrane science, 2006(280):666-674.
    [34]Ying W, Katherine A M, Brant P, et al. Chitosan-based solid electrolyte composite membranes II.Mechanical properties and ionic conductivity[J]. Journal of membrane science,2006(284):331-338.
    [35]He R H, Che Q T, Sun B Y. The acid doping behavior of polybenzimidazole membranes in phosphoric acid for proton exchange membrane fuel cells[J]. Fibers and Polymers, 2008(9):679-684.
    [36]SataT, TsujimotoM, Yamaguchi T, et al. Change of anion exchange membranes in an aqueous sodium.hydroxide solution at high temperature[J]. Journal of membrane science, 1996(112):161-170.
    [37]Zschocke P, Quellmalz D. Novel ion exchange membranes based on an aromatic polyethersulfone[J]. Journal of membrane science,1985(22):325-332.
    [38]Matsui K, Tobita E, Sugimoto K, et al. Novel anion exchange membranes having fluorocarbon backbone:preparation and stability[J]. Journal of applied polymer science,1986(32):4137-4143.
    [39]Danks T N, Slade R C T, Varcoe J R. Comparsion of PVDF-and FEP-based radiation-grafted alkaline anion-exchange membranes for use in low temperature portable DMFCs[J]. Journal of materials chemistry,'2002(12):3371-3373.
    [40]Danks T N, Slade R C T, Varcoe J R. Alkaline anion-exchange radiation grafted membranes for possible electrochemical application in fuel cells[J]. Journal of materials chemistry,2003(13):712-721.
    [41]Hinksma P, Isaac D H, Morrissey P. Environmental'stress cracking of poly(vinylidene flluoride) and welds in alkaline solutions[J]. Polymer degradation and stability, 2000(68):299-305.
    [42]Chempath S, Einsla B R, Pratt.L R, et al. Mechanism of tetraalkylammonium headgroup degradation in alkaline fuel cell membranes[J]. Journal of physical chemistry, 2008(112):3179-3182.
    [43]CopeAC, MehtaAS. Mechanism of the hofmann elimination reaction:anylide intermediate in the pyrolysis of a highly branched quaternary hydroxide[J]. Journal fo American chemical society,1963(85):1949-1952.
    [44]Chemath S, Boncella J M, Pratt L R, et al. Density functional theory study of degradation of tetraalkylammonium hydroxides[J]. Journal of physical chemistry C, 2010(114):11977-11983.
    [45]Chigo G, Cannina S, Maranzana G, et al. The mechanism of the Stevens and sommelet Hauser Rearrangements, a theoretical study [J]. Journal of organic chemistry, 2010(75):3608-3617.
    [46]Neagu V, Bunia 1, Plesca I. Chemical stability of strong base anion exchangers in aggressive media [J]. Polymer degradation and stability,2000(70)-.463-468.
    [47]Sata T, Yamaguchi T, Matsusaki K. Effect of hydrophobicity of ion exchange groups of anion exchange membranes on permselectivity between two anions[J]. Journal of physical chemistry,2002(99):12875-12882.
    [48]马平,田莉莉.Blanc氯甲基化聚苯乙烯树脂的制备及条件筛选[J].广东化工,2011(38):209-210.
    [49]Vinodh R, Ilakkiya A, Elamathi S, et al. A novel anion exchange membrane from polystyrene (ethylene butylene) polystyrene:Synthesis and characterization[J]. Materials Science and Engineering B,2010(167):43-50.
    [50]Xiong Y, Liu Q L, Zeng Q H. uaternized cardo polyetherketone anion exchange membrane for direct methanol alkaline fuel cells[J]. Journal of power sources,2009(193): 541-546.
    [51]申东升.芳香烃氯甲基化反应的综述[J].化学研究与应用,1999(11):229-234.
    [52]Xing D B, Zhang S H, Yin C X, et al. Preparation and characterization of chloromethylatd/quanternized poly (phthalazinone ether sulfone) anion exchange membrane,2009(157):1-5.
    [53]申艳玲,杨云峰,高保娇,等.以1,4-二氯甲氧基丁烷为氯甲基化试剂合成线性氯甲基化苯乙烯,高分子学报,2007(6):559-565.
    [54]颜春.季铵化聚芳醚砜酮纳滤膜及阴离子交换膜的研究[D].(博士学位论文)大连:大连理工大学,2007.
    [55]Xu T W, Yang W H. Fundamental studies of a new series of anion exchange membranes: membrane preparation and characterization[J]. Journal of membrane science, 2001 (190):159-166.
    [56]Wu Y H, Wu C M, Varcoe J R, et al. Novel silica/poly (2,6-dimethyl-l,4-phenylene oxide) hybrid anion-exchange membranes for alkaline fuel cells:Effect of silica content and the single cell performance[J]. Journal of power sources,2010(195):3069-3076.
    [57]Wu Y H, Wu G M, Xu T W, et al. Novel silica/poly (2,6-dimthyl-l,4-phenylene oxide) hybrid anion-exchange membranes for alkaline fuel cells:Effect of the heat treatment[J]. Journal of membrane science,2009(338):51-60.
    [58]Yan J M, Hickner M A. Anion exchange membranes by bromination of benzylmethyl containing poly (sulfone)s[J]. Macromolecules,2010(43):2349-2356.
    [59]Timothy N, Robert C, Varcoe J R. Alkaline anion-exchange radiation-grafted membranes for possible electrochemical application in fuel cells[J]. Journal of materials chemistry,2003 (13):712-721.
    [60]Varcoe J R, Slade R C T, Yee E. An alkaline polymer electrochemical interface:a breakthrough in application of alkaline anion-exchange membranes in fuel cells[J]. Chemical communications,2006(13)1428-1429.
    [61]谭翎燕,李惠玲,张景亚.正交实验法优化氯甲基化聚砜/聚砜共混膜的季铵化条件[J].工业水处理,2008(11):30-32.
    [62]Herman H, Slade R, Varcoe J R. The radiation-grafting of vinylbenzyl chloride onto poly (hexafluoropropylene-co-tetrafluoroethylene) films with subsequent conversion to alkaline anion-exchange membranes:optimisation of the experimental conditions and characterization[J]. Journal of membrane science,2003(218):147-163.
    [63]Li L, Wang Y X. Quaternized polyethersulfone Cardo anion exchange membranes for direct methanol alkaline fuel cells[J]. Journal of membrane science,2005(262):1-4.
    [64]Fang J, Shen P K. Quaternized poly (phthalazinon ether sulfone ketone) membrane for anion exchange membrane fuel cells[J]. Journal of membrane science,2006(185):317-322.
    [65]Varcoe J R, Slade R. An electron-beam-grafted ETFE alkaline anion-exchange membrane in metal-cation-free solid-state alkaline fuel cells[J]. Electrochemistry communications,2006(8):839-843.
    [66]WangGG, Weng Y M, Chu D, et al. Preparation of alkaline anion exchange membranes based on functional poly(ether-imide) polymers for potential fuel cell applications[J]. Journal of application polymer science,2009(112):721-727.
    [67]Xu H K, Fang J, Guo M L, et al. Novel anion exchange membrane based on copolymer of methyl methacrylate, vinylbenzyl chloride and ethyl acrylate for alkaline fuel cells[J]. Journal of membrane science,2010(354):206-211.
    [68]Yan X M, He G H, Gu S, et al. Quaternized poly(ether ether ketone) hydroxide exchange membranes for fuel cells[J]. Journal of membrane science,2011(375):204-211.
    [69]Pan J, Lu S F, Li Y, et al. High-performance alkaline polymer electrolyte for fuel cell applications[J]. Advanced functional materials,2010(20):312-319.
    [70]Vinodh R, Purushothaman M, Sangeetha D. Novel quaternized polysulfone/Zr02 composite membranes for solid alkaline fuel cell applications[J]. Internztional journal of hydrogen energy,2011(36):7291-7302.
    [71]Abuin G C, Nonjola P, Franceschini E. A, et al. Characterization of an anionic exchange membranes for direct methanol alkaline fuel cells[J]. International journal of hydrogen energy,2010(35):5849-5854.
    [72]WangGG, Weng Y M, Chu D, et al. Developing a polysulfone-based alkaline anion exchange membrane for improved ionic conductivity[J]. Journal of membrane science, 2009(332):63-68.
    [73]Wang G X, Sun G Q, Wang Q, et al. Improving the DMFC performance with Ketjen Black EC 300J as the additive in the cathode catalyst layer [J]. Journal of power sources, 2008(180):176-180.
    [74]Park J S, Park G G, Park S H, et al. Development of solid-state alkaline electrolystes for solid alkaline fuel cells[J]. Macromolecular symposia,2007(249):174-182.
    [75]Zhou J F, Unlu M,. Vega J A, et al. Anionic polysulfone ionomers and membranes containing fluorenyl groups for anionic fuel cells[J]. Journal of power sources, 2009(190):285-292.
    [76]Bauer B, Strathmann H, Effenberger F. Anion-exchange membranes with improved alkaline stability[J]. Desalination,1990(79):125-144.
    [77]Guo T Y, Zeng Q H, Zhao C H, et al. Quaternizzed polyepichlorohydrin/PTFE composite anion exchange membranes for direct methanol alkaline fuel cells[J]. Journal of membrane science,2011(371):268-275.
    [78]封悦霞,殷宁,李其峰,等.三乙烯二胺催化合成聚(碳酸1,6-已二醇)酯二醇[J].高分子材料科学与工程,2008(24):28-31.
    [79]白国义,陈立功,李阳,等.三乙烯二胺合成催化剂的表征和反应机理研究[J].精细化工,2004(21):577-580.
    [80]Stoica D, Alloin F, Marais S, et al. Polyepichlorhydrin membranes for alkaline fuel cells:Sorption and conduction properties[J]. Journal of physics and chemistry B, 2008(112):12338-12346.
    [81]StoicaD, Ogier L, Akrour L, et al. Anionic membrane based on polyepichlorhydrin matrix for alkaline fuel cell:Synthesis, physical and electrochemical properties [J]. Electrochimica Acta,2007(53):1596-1603.
    [82]Sollogoub C, Guinault A, Bonnebat C, et al. Formation and characterization of crosslinked membranes for alkaline fuel cells[J]. Journal of membrane science, 2009(335):37-42.
    [83]HuZX, Yin Y, Okamoto K, et al. Synthesis and characterization of sulfonated polyimides derived from 2,2-bis(4-sulfophenyl)-4,4-oxydianiline as polymer electrolyte membranes for fuel cell applications[J]. Journal of membrane science,2009(329):145-152.
    [84]Guo M L, Fang J, Xu H K, et al. Synthesis and characterization of novel anion exchange membranes based on imidazolium-type ionic liquid for alkaline fuel cells[J]. Journal of membrane science,2010(362):97-104.
    [85]Lin B C, Qiu L H, Lu J M, et al. Cross-linked alkaline ionic liquid-based polymer electrolytes for alkaline fuel cell applications[J]. Chemistry of materials, 2010(22):6718-6725.
    [86]Zhu X L, Wang B A, Wang H P. Effects of [Bmim]OH on structure and conductive properties of alkaline PVA/[Bmim]OH membranes[J]. Polymer Bulletin,2010(65):719-730.
    [87]Awad W H, Gilman J W, Nyden M, et al. Thermal degradation studies of alkyl imidazolium salts and their application in nanocomposites[J]. Thermochimica Acta,2004(409):3-11
    [88]YanXM, He G H, Gu S, et al. Imidazolium-functionalized polysulfone hydroxide exchange membranes for potential applications in alkaline membrane direct alcohol fuel cells[J]. International journal of hydrogen energy,2012(37):5216-5224.
    [89]Warshawsky A, Deshe A. Halomethyl octyl ethers:convenient halomethylation reagents [J]. Journal of polymer science,1985(23):1839-1841.
    [90]张玲玲.聚醚酰亚胺阻力复合膜的制备及性能研究[D].(博士学位论文)大连:大连理工大学,2010.
    [91]ZhangF, Zhang H, Qu C, et al. Poly (vinylidene fluoride) based anion conductive ionomer as a catalyst binder for application in anion exchange membrane fuel cell[J]. Journal of Power Sources,2011(196):3099-3103.
    [92]Xiong Y, Fang J, Zeng Q L, et al. Preparation and characterization of cross-linked quaternized poly(vinylalcohol)membranes for anion exchange membrane fuel cells[J]. Journal of Membrane Science,2008(311):319-325.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700